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Key Points  14 

● Predictive machine learning models have the potential to aid in life detection efforts beyond 15 

Earth using organic geochemical datasets. 16 

● We predicted organic carbon abundance using only XRF-derived elemental abundances 17 

with greater than 80% accuracy. 18 

● Post-hoc interpretation of our models highlights the importance of elements associated 19 

with clays in determining organic carbon concentrations. 20 

● We’ve developed a user-friendly interface to improve the accessibility of our classification 21 

model to predict organic carbon from XRF-derived elemental abundances. 22 

 23 

Abstract 24 

Modern advancements in laboratory and instrumental techniques in astrobiology have 25 

improved our life detection capabilities on both Earth and beyond. These advancements have also 26 

increased the complexity of data often resulting in datasets that are characterized by complex and 27 

non-linear relationships. Machine learning methods are underutilized in astrobiology; however, 28 

these methods are extremely effective at revealing structure and patterns in complex datasets when 29 

paired with the right algorithms. Here, we employ a series of classification and regression 30 

algorithms to predict the abundance of organic carbon (OC) from X-ray fluorescence (XRF) data 31 
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in dynamic Mars-analog hypersaline lake sediments. More specifically, we constructed models 32 

using the random forest (RF), k-nearest neighbors (KNN), support vector machine (SVM), and 33 

logistic regression (LR) algorithms. Overall, our trained models showed good performance with 34 

predicting the abundance of OC, with accuracies from 80% to 94%. Our results show how applying 35 

predictive models to astrobiology datasets can help life detection efforts. Machine learning 36 

approaches such as classification and regression algorithms offer insight into complex data while 37 

providing agnostic insights, ultimately creating a more efficient search for OC. We applied our 38 

trained model on XRF data from Martian soil using PIXL and Odyssey datasets to produce 39 

probability predictions of OC abundance. Our predictions show a high probability that OC 40 

abundance is low which is comparable to OC data from recently landed missions. These results 41 

highlight the potential for machine learning models to be trained on data from analog environments 42 

on Earth and then transferred (transfer learning) to extraterrestrial targets.  43 

 44 

Plain Language Summary 45 

 Modern datasets have become large as a by-product of the desire to discover unknown or 46 

characterize complex non-linear relationships. Machine learning approaches are extremely 47 

valuable for tackling such problems; however, those methods are underutilized in astrobiology and 48 

therefore have not been refined for these types of data. Here, we employ machine learning 49 

approaches to predict organic carbon abundance from a series of Mars-analog hypersaline lake 50 

sediment core and a freshwater lake from X-ray fluorescence-derived elemental abundances. 51 

Overall, our models successfully predicted organic carbon concentration, with average accuracies 52 

between 80% and 94% and root mean square errors within 1.0 wt% organic carbon. Furthermore, 53 

we applied our model to Martian instruments including PIXL and Odyssey. We compute 54 

probability predictions that corroborate organic carbon that has been measured on the Martian 55 

surface. Our study demonstrates the potential for machine learning methods to be employed to aid 56 

in life detection efforts.  57 

 58 

Introduction 59 

 Exploring the potential for ancient or extant life beyond Earth poses many challenges 60 

including but not limited to sample selection, sample priority, and the search for an ideal site 61 

(Warren-Rhodes et al., 2023; Theiling et al., 2022). These challenges and limitations are often due 62 
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to a lack of consensus for what establishes favorable features or conditions for life detection 63 

beyond Earth (Theiling et al., 2022). Although underutilized in astrobiological research, machine 64 

learning methods can be used to mitigate these limitations. Machine learning excels at detecting 65 

patterns and structures within large and/or complex datasets (Warren-Rhodes et al., 2023; Theiling 66 

et al., 2022; Peaple et al., 2021). As such, machine learning methods can be extremely valuable 67 

for using data that is less resource intensive (such non-destructive spectroscopy including X-ray 68 

Fluorescence (XRF)) to predict information that is resource intensive (such as organic carbon (OC) 69 

or biosignature analysis; Warren-Rhodes et al., 2023; Jacq et al., 2019). For example, the Curiosity 70 

Rover can analyze an effectively unlimited number of samples using its remote laser-induced 71 

breakdown spectroscopy (LIBS) instrument, ChemCam (Maurice et al. 2012), but the Sample 72 

Analysis at Mars (SAM) instrument has a limited number of sample cups for analyzing powdered 73 

samples via gas chromatography mass spectroscopy (Mahaffy et al. 2012). Similarly, the Planetary 74 

Instrument for X-ray Lithochemistry (PIXL) and the Scanning Habitable Environments with 75 

Raman & Luminescence for Organics & Chemicals (SHERLOC) instruments on the Perseverance 76 

Rover can detect elemental abundances using XRF and scan for organics using Raman 77 

spectroscopy; however, it is limited in its ability to detect OC beyond the surface of minerals or 78 

within inclusions of transparent evaporite minerals (Bhartia et al., 2021).  79 

 For Earth-based studies, major element analysis via XRF is often used on sediment cores 80 

to reconstruct paleohydroclimate (Shea et al., 2022; Puleo et al., 2020; Zhang et al., 2020). In 81 

contrast, these analyses applied beyond Earth such as Martian research are mostly limited to 82 

exploring the surface to provide insight into the processes that have guided surficial processes and 83 

the evolution of the Martian crust-mantle system (Allwood et al., 2015; Hahn et al., 2007). As 84 

such, there are rapid and streamlined procedures for the determination of the major element 85 

composition of sediments on Earth. XRF can yield abundance information for more than 30 86 

elements, ultimately producing relatively large and complex datasets. Due to this complexity, most 87 

researchers select a few of the most important elements to probe based on geologic relevance 88 

(Puleo et al., 2020; Evans et al., 2019; Zhang et al., 2019; Rothwell and Croudace, 2015).  89 

 Our greater understanding of Earth processes compared to Mars allows for selection of a 90 

few elements to explore; however, it is imperative that human biases are eliminated for studies 91 

beyond Earth. Thus, similarly to the maximum entropy principle, all pieces of available 92 

information should be utilized for exploration to provide agnostic insight into interpretation of the 93 
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data (Uffink, 1995). Ultimately, viewing data holistically reintroduces the challenges inherent to 94 

large and complex datasets. Here, we employ machine learning approaches to reveal patterns and 95 

make rapid and agnostic predictions of OC abundance in Holocene-aged Mars-analog hypersaline 96 

lake sediment cores from major XRF-derived element abundances. We utilize both unsupervised 97 

and supervised learning approaches to understand the structure of the data and make predictions 98 

of OC abundance. More specifically, we use unsupervised learning for exploratory data analysis. 99 

We then build classification models for broad scale characterization of sediments and then 100 

construct regression models for granular predictions of OC abundance. 101 

 102 

Study Area   103 

We targeted a series of hypersaline lakes located within the Cariboo Plateau of South-104 

Central Interior British Columbia, Canada including Salt Lake, Last Chance Lake, and the Basque 105 

Lakes. The chemistry and geography of these lakes are described in greater detail in Nichols et al., 106 

2023. In short, these lakes are closed basins and situated within a rain-shadow (~300 mm 107 

precipitation per year) contributing to their hypersaline nature. Despite the aridity, heavily 108 

vegetated catchment areas surround many of these lakes. Additionally, these lakes feature unusual 109 

chemistries dominated by high concentrations of magnesium sulfate (Salt Lake and the Basque 110 

Lakes) and of sodium carbonate (Last Chance Lake) ions making them ideal analogs to Mars. To 111 

improve the generalization of our model performance we also include a freshwater lake in 112 

Greenland near Narsarsuaq, informally named Mel3. Unlike the lakes from the Cariboo Plateau, 113 

Mel3 is open-basin, oligotrophic and surrounded by a sparsely vegetated catchment, with the 114 

closest meteorological station recording ~650 mm precipitation per year. 115 
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   116 

Figure 1. Location of Study Sites. A.) Last Chance Lake: 51º19'40.8" N, 121º38'9.6" W; B.) Salt 117 

Lake: 51º04'25.44" N, 121º35'11.244" W; C.) Basque Lake #1: 50º36'1.8" N, 121º21'32.4" W; D.) 118 

Basque Lake #2: 50º35'36.6" N, 121º20'58.2" W; E.) Basque Lake #4: 50º35'20.304" N, 119 

121º20'34.397" W.; F.) Mel3: 61º07'46.81" N, 45º20'10.68" W. Photo Credit: Mitchell Barklage, 120 

PhD (Canadian Lakes) and Pete J.K. Puleo (Greenland Lake).  121 

 122 

Methods 123 

Geochemical Sediment Analysis 124 

In British Columbia, Canada, we sampled nine sediment cores in the summer of 2018 and 125 

the summer of 2019 using a Unicoring device (2018) or an SDI Vibecore mini adapted to 3 inch 126 

diameter polycarbonate pipe (2019). Sediment water interfaces were stabilized with Gelzan and 127 

packing material. Sediment cores were capped and kept cold within 6 hours of collection, 128 

transported to the lab, and stored at 4ºC until further processing. The Mel3 sediment core was 129 

collected in August 2022 using an Aquatic Research Instruments “Universal” check-valve and 130 
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percussion coring system. The core was sealed, transported, and stored at 4ºC until analysis. Each 131 

sediment core was split using a GeoTek core splitter for bulk analysis and XRF analysis, 132 

respectively. The sediment elemental abundance (Ag, Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, 133 

Light Elements (LE), Mg, Mn, Mo, Nb, Ni, P, Pb, Rb, S, Sb, Se, Si, Sn, Sr, Th, U, V, W, Y, Zn, 134 

Zr, Ti), magnetic susceptibility (MS), and core imaging was determined using a Geotek Multi-135 

Sensor Core Logger (MSCL-S) paired with an Olympus Delta X-ray fluorescence (XRF) analyzer, 136 

a Bartington MS2E magnetic susceptibility meter, and a 50mm Canon camera of the core split. LE 137 

have weaker X-ray energies, thus, are harder to resolve individually. Accordingly, the LE are 138 

grouped into a single category. After scanning, bulk sediment material was taken throughout the 139 

Canadian cores in approximately 10 cm intervals for 14C-dating and calibration. The sediment core 140 

was then sub-sectioned and homogenized into 3 cm increments for further organic analysis. Bulk 141 

sediment samples for 14C dating were sent to the National Ocean Sciences Accelerator Mass 142 

Spectrometry facility at Woods Hole Oceanographic Institution.  143 

Total organic carbon (TOC) and total organic nitrogen (TON) abundances were measured 144 

in the Northwestern Stable Isotope Biogeochemistry Lab with an elemental analyzer isotope ratio 145 

mass spectrometer (EA-IRMS; Costech 4010 EA coupled to a Thermo Delta V+ IRMS through a 146 

Conflo IV interface). Freeze-dried samples were weighed then were treated with 1M HCl to 147 

remove inorganic carbon and acid soluble salts, rinsed with MilliQ water, then freeze-dried and 148 

weighed again. Fourier Transform Infrared Spectrometric (FTIR) analysis on Mel3 sediments 149 

confirmed no presence of carbonates (So et al., 2020), and thus these sediments were not acidified 150 

before analysis. The homogenized samples were loaded into tin capsules for analysis. Standards 151 

were run every 10 samples including IU-acetanilide (precision: ± 1.0%) and urea (precision: ± 152 

0.1%; Schimmelman et al., 2009). Additionally, TOC and TON values were corrected for the loss 153 

of acid soluble material determined gravimetrically. 154 

 155 

Model Selection and Descriptions 156 

All models in this study were constructed using the Python package Scikit-learn 157 

(Pedregosa, 2011). The explanatory variables were XRF-derived elemental abundances from 158 

sediments whereas the response variables were OC abundance divided amongst three classes (high, 159 

moderate, and low) as defined and justified below in the Geochemical and Sediment Analysis 160 

section. There are a variety of machine learning models available, but to limit the number of 161 
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models used in this study, we choose those that are most common and interpretable/explainable. 162 

Interpretable and explainable are defined as the degree to which a human can understand the cause 163 

of a decision or consistently predict the model’s result and perform well with small datasets (Belle 164 

& Papantonis, 2021; Molnar, 2019; Probst et al., 2018; Kim et al., 2016; Pal & Mather, 2005). We 165 

employed t-distributed stochastic neighbor embedding (t-SNE; van der Maaten & Hinton, 2008), 166 

principal component analysis (PCA; Jolliffe & Cadima, 2016), logistic regression (Maalouf, 2011), 167 

k-nearest neighbor (Taunk et al., 2019), random forest (Biau & Scornet, 2016), and support vector 168 

machine (Cortes & Vapnik, 1995). Even though deep learning models such as neural networks 169 

have become increasingly common due to their state-of-the-art performance, they require large 170 

datasets (thousands of training examples) to perform well (Cronin, 2021), and are therefore not 171 

appropriate for our study. Below we give a brief description of the models and hyperparameter 172 

tuning we applied; however, a more detailed description of the mathematics involved can be found 173 

in the references above. 174 

 175 

Unsupervised Learning: Dimensionality Reduction 176 

 We used unsupervised learning approaches to visualize information such as patterns 177 

exclusively from unlabeled data. There are a variety of such algorithms, but we chose two distinct 178 

yet common approaches to do so. This included t-distributed stochastic neighbor embedding (t-179 

SNE) and principal component analysis (PCA). The t-SNE method is a non-linear dimensionality 180 

reduction data visualization technique that preserves the local structure of data by minimizing the 181 

Kullback-Leibler divergence between the two distributions with respect to the locations of the 182 

points in the map (van der Maaten & Hinton, 2008). t-SNE excels at revealing structure at many 183 

different scales which is very important for high-dimensional data (van der Maaten & Hinton, 184 

2008). Conversely, PCA is a linear dimensionality reduction data visualization method that 185 

preserves the global structure of the data. To do so, PCA implements an orthogonal transformation, 186 

resulting in a number of components equal to or less to the number of original variables (Platzer, 187 

2013). As such, using these two methods in tandem allows for the visualization of the data 188 

separability as a first-order analysis of the structure of the data. 189 

 190 

Supervised Learning 191 
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 We employed four classification algorithms to make broad scale classifications of OC 192 

abundance and three regression algorithms to make granular predictions of OC abundance. More 193 

specifically, we use logistic regression (LR), k-nearest neighbor (KNN), support vector machine 194 

(SVM), and random forest (RF) due to their commonality and explainability. Explainability can 195 

be defined as simulatability (ability to be simulated by a human), decomposability (ability to break 196 

down a model into parts), and algorithmic transparency (ability to understand the procedure the 197 

model goes through to generate its output; Belle & Papantonis, 2021; Lipton, 2016). We applied a 198 

Synthetic Minority Oversampling Technique (SMOTE) to address issues of imbalance between 199 

classes prior to model construction. The parameters for each model constructed were determined 200 

through optimization via an iterative run of parameters. Although by definition SVM and RF are 201 

not considered explainable algorithms, post-hoc analysis such as feature importance extraction 202 

was used to improve their explainability including mean decrease in impurity, permutation 203 

importance, and Shapley additive explanations.  204 

 We calculate a variety of metrics including accuracy, precision, recall, and F1 score to 205 

evaluate the errors of each ML model. These metrics were chosen due to their popularity and 206 

interpretability. In short, each metric can be defined as follows: accuracy is the measure of the 207 

fraction of predictions the model got correct: 208 

Eq. 1: (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
) 209 

 precision is the measure of the proportion of positive identifications correctly identified: 210 

Eq. 2: (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
)  211 

recall is the measure of the proportion of actual positives identified correctly: 212 

Eq. 3: (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) 213 

and F1 score is a combined measurement of recall and precision that computes how many times a 214 

model made a correct prediction across the entire dataset: 215 

Eq. 4: (2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 216 

In addition to evaluation of errors, we performed a two-step process to prevent and evaluate 217 

overfitting. First, we employed a cross-validation technique to check each model’s ability to 218 

generalize the data. Specifically, we used a repeated stratified k-fold method for cross-validation. 219 

The model performance associated with each split was then averaged, allowing for a more accurate 220 

estimate of the model’s performance. Additionally, since training machine learning models on 221 
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small datasets can cause the model to memorize all training examples, in turn leading to overfitting, 222 

our second step to prevent and evaluate overfitting was introducing varying levels of gaussian 223 

noise to the input data. Gaussian noise can lead to an improvement in the generalization of the 224 

model performance as it adds structured noise to the input data that is consistent with natural 225 

perturbations. Furthermore, when different levels are added, the robustness of each model can be 226 

evaluated by comparing the accuracy of the models with respect to each noise level.  227 

 228 

Results 229 

Age-Depth Modelling   230 

The age of the sediment cores was calculated using Bayesian statistics age-modelling with 231 

the R Bacon package (Supporting Information; Blaauw & Christen, 2011). Due to a paucity of 232 

plant debris in the sediment cores, the age model was calculated using radiocarbon ages derived 233 

from bulk OM from the sediments. All sediments were Holocene-aged with ages ranging from 234 

present-day to ~6.5 ka with the oldest sediments found at the base of the Salt Lake core. A coherent 235 

age model was found for Salt Lake, Basque Lake #1, and Basque Lake #2 whereas significant 236 

reversals were noted in the Last Chance Lake cores. Disrupted ages in the upper sediments were 237 

likely caused by mixing during coring or through mixing via salt growth and ice growth throughout 238 

the year. The radiocarbon age model of the Mel3 core is not reported here; however, preliminary 239 

chronologies derived from terrestrial plant macrofossils throughout the sediments indicate the 240 

record spans roughly 4.2 ka to present.  241 

 242 

Geochemical Sediment Analysis  243 

 The TOC for our samples showed a frequency distribution that had a high density around 244 

2.5 wt% TOC that decreased with increasing wt% TOC (Figure 2). Generally, sediments are 245 

classified as low in OC if the TOC is less than 1.0 wt% (Fox et al., 2017). Considering our 246 

distribution and sparsity of samples with less than 1.0 wt% TOC we considered samples less than 247 

2.5 wt% as low. Conversely, sediments are generally classified as organic rich when the TOC is 248 

greater than 10.0 wt% (Fuller et al., 2021; Fox et al., 2017). We used the distribution from our 249 

data and previously defined boundaries to determine our boundary conditions for the three-class 250 

model where low concentration is less than 2.5 wt% TOC, moderate concentrations are between 251 

2.5 and 10.0 wt%, and high concentrations are greater than 10.0 wt% TOC. 252 
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The TOC of our samples ranged from 0.3 wt% to 20.4 wt% (Figure 3). Overall, we 253 

observed the highest average TOC from Basque Lake #2 of 8.2 wt% with minimum and maximum 254 

values of 0.6 wt% and 20.4 wt%, respectively. Conversely, Last Chance Lake had the lowest 255 

average TOC of 1.5 wt% with minimum and maximum values of 0.3 wt% and 2.9 wt%, 256 

respectively. The remaining lakes including Basque Lake #1, Salt Lake, and Mel3 had similar 257 

average TOC values of 4.1 wt%, 5.0 wt%, and 6.0 wt%, respectively. We observed minimum TOC 258 

values of 0.8 wt%, 0.7 wt%, and 2.0 wt% for Basque Lake #1, Salt Lake, and Mel3, respectively. 259 

Conversely, we observe maximum TOC values of 9.8 wt%, 10.5 wt%, and 9.2 wt%.  260 

  261 

Figure 2. Histogram and Kernel Density Distribution of Organic Carbon Abundance. For 262 

this study, we divided OC into three classes: low, moderate, and high (dashed lines). This 263 

classification was based on a combination of the distribution of OC in our sediments and general 264 

classification of sediment OC concentration (Fuller et al., 2021; Fox et al., 2017) where low < 2.5 265 

wt%, 2.5 wt% < moderate < 10.0 wt%, and 10.0 wt% < High. We employed a Synthetic Minority 266 

Oversampling Technique (SMOTE) to address the issue of class imbalance prior to model 267 

construction. 268 
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 269 

 270 

 271 

Figure 3. Violin plot of the distribution of TOC by lake. Blue represents hypersaline Mars-272 

analog systems and orange represents the freshwater system. 273 

 274 

 Our XRF analysis shows that the most abundant elements on average were the light 275 

elements (LE, atomic mass < Mg); however, of the individual elements that can be resolved, the 276 

five most abundant were Mg, Fe, Si, S, and Ca (Figure 4). The average concentrations of the most 277 

abundant elements were 2.7 wt%, 1.3 wt%, 3.4 wt%, 3.8 wt%, and 2.4 wt%, respectively. The 278 

majority of the other elements had concentrations less than 0.01 wt%. 279 

 280 
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 281 

Figure 4. Box and whisker plot of the distribution of detected elements from XRF in our 282 

samples with respect to their concentrations in parts per million (ppm). Points represent 283 

outliers (points farther than 1.5 × interquartile range). The y-axis is plotted on a log10 scale. 284 

Additionally, there is an absence of a boxplot in a few elements due to extremely low abundances 285 

and little variance. 286 

 287 

Machine Learning 288 

Unsupervised Learning 289 

 We first employed unsupervised learning approaches to visualize the structure of the data. 290 

The two main approaches used were t-SNE and PCA. In our analysis, we observed that t-SNE 291 

showed 4 distinct clusters while PCA showed 3 distinct clusters (Figure 5). More specifically, in 292 

the t-SNE approach, each OC classification generally formed its own cluster. Conversely, with 293 

PCA, there are clear clusters of low and moderate OC classes, but there is more overlap with 294 
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respect to the high OC class. Overall, both methods were able to identify distinct clusters within 295 

the data, but t-SNE showed better structure in the clusters. 296 

 297 

 298 

Figure 5. Unsupervised Learning: Dimensionality Reduction. We applied two unsupervised 299 

learning methods including t-distributed stochastic neighbor embedding (t-SNE; left) and principal 300 

component analysis (PCA; right). Both methods clustered the data to some capacity; however, t-301 

SNE revealed more structure in the data as shown by the four distinct clusters representing the 302 

different OC classifications. 303 

 304 

Supervised Learning 305 

 The accuracies of our supervised models ranged from 80% to 94% (Table 1). More 306 

specifically, KNN performed with an accuracy of 90%, precision of 89%, recall of 90% and F1 307 

score of 89%. Random Forest (RF) performed with an accuracy of 94%, precision of 94%, recall 308 

of 95% and F1 score of 94%. SVM performed with an accuracy of 80%, precision of 81%, recall 309 

of 95%, and F1 score of 80%. Logistic regression performed with an accuracy of 91%, precision 310 

of 91%, recall of 91% and F1 score of 91%. We used cross-validation to evaluate the generalization 311 

capabilities of our models. The cross-validation accuracies of our RF, KNN, SVM, and LR were 312 

91%, 89%, 84%, and 88%, respectively. 313 

 314 
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Table 1. Model Performance Metrics.  315 

Model 
Training 

Accuracy 
Precision Recall F1 CV  

KNN 90 89 90 89 88 

RF 94 94 95 94 91 

SVM 80 81 81 80 84 

LR 91 91 91 91 88 

 316 

 To further interrogate the performance of our models, we computed a confusion matrix for 317 

each model (Figure 6). In short, a confusion matrix allows for the visualization of correctly labeled 318 

and mislabeled classifications. Generally, all models correctly labeled high and low OC abundance 319 

with high accuracy (~80%). Conversely, all models correctly labeled moderate OC abundance with 320 

a lower accuracy. The SVM and KNN models were more likely to misclassify moderate OC 321 

abundance (54% and 70%, respectively) than the RF and LR (79%). We computed feature 322 

importance calculations using mean decrease in impurity, permutation importance, and Shapley 323 

additive explanations to extract additional information from our models, (Figure 7). These 324 

calculations highlight that the top elemental abundances contributing to the classification of OC 325 

were Al, Fe, Si, Ti, U, and Zn.  326 

 327 
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 328 

 329 

Figure 6. Confusion Matrix. Visual representation of correctly labeled classes against mislabeled 330 

classes.  331 

 332 

 333 
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 334 
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Figure 7. Interpretation of Model Results. A.) Feature Importance Mean Decrease in Impurity 335 

(MDI), B.) Permutation Importance, C.) Shapley Additive Explanations.  336 

 337 

We also introduced three levels of gaussian noise (1%, 5%, and 10%) to improve 338 

generalization and evaluate overfitting for each model (Table 2). We observe that in general, the 339 

model performance decreases slightly with added gaussian noise. More specifically, there is a 340 

gradual decrease in overall model performance including accuracy, precision, recall, and F1 scores 341 

with each gaussian noise percentage step. Despite the performance of the models decreasing with 342 

respect to the original models with no added noise, we still obtain accuracies above 80% even at 343 

10% added gaussian noise. 344 

 345 

Table 2. Model Performances with Varying Levels of Gaussian Noise.  346 

Gaussian Noise Model Accuracy Precision Recall F1 

1% 

KNN 87 88 87 87 

RF 84 84 84 83 

SVM 85 86 85 85 

LR 90 90 89 90 

5% 

KNN 86 87 86 86 

RF 84 84 84 83 

SVM 82 83 81 81 

LR 89 89 88 88 

10% 

KNN 84 86 85 83 

RF 85 87 86 84 

SVM 83 85 84 82 

LR 84 84 85 84 

 347 

 In addition to constructing a classification model, we built three regression models 348 

including random forest regression (RF), support vector regression (SVR), and k-nearest neighbor 349 

regression (KNN) to examine OC prediction at a more granular level. Overall, our models show 350 

good performance across all metrics including coefficient of determination (r2), root mean squared 351 

error (RMSE), mean absolute error (MAE), and mean absolute percent error (MAPE; Table 3). Of 352 

the models, RF had the best metrics, followed by KNN, and then SVR (Table 3). We compute a 353 

moderate average r2 value of 0.63 across all models. Additionally, we compute an average RMSE 354 

value of 1.05 across all models. 355 
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Table 3. Statistic metrics for our regression models.  356 

Model r2 RMSE MAE MAPE 

RF 0.80 0.80 0.61 0.17 

SVR 0.51 1.24 0.95 0.37 

KNN 0.60 1.12 0.85 0.29 

 357 

Discussion 358 

Sediment Geochemistry 359 

On Earth, several competing mechanisms control the abundance of OC in sediments 360 

including mineral protection from clays and salts, selective preservation of refractory 361 

biomolecules, chemical speciation of trace metals and their affinity towards organic compounds, 362 

and redox conditions (Hemingway et al, 2019; Burdige, 2007; Aubrey et al., 2006; Bilali et al., 363 

2002; Hedges et al, 2001). Our feature extraction analysis converged on common elements that 364 

had the greatest effect on the model predictions for OC abundance. These elements included Al, 365 

Fe, Si, Ti, U, and Zn. The abundance of OC in sedimentary systems can be indirectly linked to 366 

elemental abundances (Evans et al., 2019; Bilali et al., 2002). For instance, the concentration of 367 

OC in lake systems often depends on aridity, salinity, and other hydrologic variations which can 368 

be captured by elements linked to phyllosilicates such as Al, Fe, and Si or detrital elements such 369 

as Ti and Zn (Evans et al., 2019; Zhang et al., 2019; Rothwell and Croudace, 2015; Bilali et al., 370 

2002). Conversely, OC may be directly linked to elements such as trace metals including U in 371 

which OC influences its mobilization within sediments (Bone et al., 2019; Bone et al., 2017; 372 

Cumberland et al., 2016; Bilali et al., 2002). These relationships can be complex and challenging 373 

to unravel in lake sedimentary systems as these elements and OC can show varying degrees of 374 

correlations due to their potential to become bound to the sediment or released into the water and 375 

removed from the system (Frings et al., 2014; Makinen et al., 2005; Bilali et al., 2002). Improving 376 

our understanding of these complex mechanisms will be key to understanding areas of interest for 377 

OC on the Martian landscape. 378 

Appropriately, we capture a wide range of OC concentrations from lean samples (<1 wt% 379 

TOC) to organic rich samples (>10 wt% TOC) in addition to varying levels of XRF-derived 380 

elemental abundances. The varying levels of TOC and elemental abundances, especially within an 381 

individual lake, highlight the dynamic nature of these lakes. In our analysis of the relationship 382 

between TOC and the top elements from our feature extraction analysis, we show that Al, Fe, Si, 383 
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Ti, and Zn have very strong positive correlations between each other (Figure 8). This strongly 384 

suggests that Al, Fe, Si, Ti, and Zn inputs are linked to weathering as they are generally associated 385 

with phyllosilicates and detrital elements (Evans et al., 2019; Zhang et al., 2019; Rothwell and 386 

Croudace, 2015). Conversely, TOC shows moderately positive correlations with U. This 387 

relationship between OC and U is potentially due to organic ligands forming stable complexes 388 

with U (Bone et al., 2019; Bone et al., 2017; Bilali et al., 2002). Bone et al., 2017 show that as 389 

OC increases, U increases proportionally as the U has a higher potential to adsorb to the surface 390 

of organic matter. Another potential mechanism controlling this relationship between OC and U 391 

is due to a redox effect. It is known that oxidized U (VI) is soluble whereas reduced U (IV) is 392 

insoluble. Organic matter acts as the reductant that immobilizes U through its reduction 393 

(Cumberland et al., 2016). Ultimately, both of these potential mechanisms influence the fate of U 394 

in subsurface sediments with the same behavior that we observe in the sediments in this study. 395 

On the other hand, we observe moderately negative correlations with Al, Fe, Si, Ti, and Zn 396 

(Figure 8). We suggest the following mechanisms for the observed correlation. As previously 397 

mentioned, the concentrations of Al, Fe, Si, Ti and Zn are controlled by hydrologic processes 398 

including weathering and aridity due to their association with phyllosilicates and detrital material. 399 

As weathering increases and aridity decreases, the loading of these elements to the sedimentary 400 

system increases as described by the chemical index of alteration (Wang et al., 2020). Considering 401 

the negative correlation that we observe with OC abundance with respect to Al, Fe, Si, Ti, and Zn 402 

we suggest that periods of increased lake desiccation and aridity are the primary driving forces for 403 

increased OC. It has been shown that the increasing desiccation of lakes drives an increase of 404 

nutrients and ions to the system, ultimately increasing OC productivity (Sarkar et al., 2023; Duarte 405 

et al., 2008; Jones and Decampo, 2003). Lake desiccation can also drive evaporite mineral dilution 406 

effects such that as the sediments fluctuate between low and high weight percentage of soluble 407 

evaporite minerals, the signal of the elements associated with phyllosilicates and detrital material 408 

are diluted out. This effect would also influence the negative correlation that we observe with OC. 409 

Additionally, an increase in salinity is known to slow remineralization rates of OC, resulting in a 410 

positive correlation of OC abundance with drier periods (Jellison et al., 1996).  411 
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 412 

Figure 8. Pairplot of relationship between TOC and the top elemental abundance features. 413 

Using the top five features from our model, we compute the pairwise relationship to evaluate their 414 

correlation with OM. Abundance is in ppm. 415 

 416 

Model Performance and Validation 417 

 PCA is widely used for visualization of high dimensional data and data pre-processing; 418 

however, while robust in some scenarios such as handling linearly separable data, it does not 419 

always perform well where the data has a non-linear structure. Additionally, the clustering of 420 
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points in a PCA is highly affected by outliers. In contrast, t-SNE has the ability to reveal more 421 

structure, underlying patterns, assess data separability, and better handles outliers. Despite these 422 

advantages, t-SNE is also limited in its use as a critical drawback of its approach compared to PCA 423 

is its inability to preserve the global structure of the data, thus, making it useful only for data 424 

visualization and not pre-preprocessing. As such, the tandem use of these methods allows for 425 

holistic exploratory data analysis.  426 

In this study, we show that t-SNE clustered the data more distinctly with respect to PCA. 427 

These results suggest that our data is complex and has a non-linear structure, as highlighted by our 428 

OC and elemental abundance data, rather than a linear structure. The supervised learning 429 

algorithms that we employed validates our results from the unsupervised learning as the highest 430 

performing algorithms for both classification and regression analysis were RF and KNN. 431 

Similarly, to t-SNE, RF and KNN are generally better with handling data with non-linearities 432 

compared to SVM or LR (Acito, 2023; Chauhan et al., 2019; Auret & Aldrich, 2012; Maalouf, 433 

2011). It is important to note that SVM can overcome non-linear challenges when different kernels 434 

are employed such as the radial basis function (RBF); however, it often does not perform as well 435 

algorithms specifically designed to handle non-linearities (Dong et al., 2014). Our results from our 436 

unsupervised and supervised learning approaches are promising as it is very likely when 437 

considering life detection beyond Earth, specifically Mars, the environments for which life may 438 

have thrived were likely in dynamic and non-linear states as the planet evolved. Subsequently, 439 

choosing the correct algorithms for predictions will require knowledge of the environment.  440 

Additionally, we used our trained models to predict the OC abundance of a new sediment 441 

core to validate the models and produce a probability map of the OC abundance within that core 442 

(Figure 9). This sediment core (Last Chance Lake 5) from British Columbia was relatively low in 443 

OC with the exception of the topmost point which was greater than 2.5% OC. All classification 444 

models showed good performance (~80% accuracy) with predicting the actual TOC classification 445 

of the sediment core. We then examine the predictive capability of our regression models for the 446 

same sediment core (Figure 10). Similarly, to our classification models, all three regression models 447 

were generally able to predict the TOC to within 1.0 wt% of the observed data. More specifically, 448 

~80% of the predicted samples were within 1.0 wt% TOC of the observed data. In general, RF and 449 

KNN outperformed SVR as they predicted TOC more closely to the real data. It is worth 450 

mentioning that all three of our models generally predicted slightly higher than the observed 451 
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values. This behavior is likely due to the tested core (Last Chance Lake 5) being exceptionally 452 

lean in TOC (mean = 1.8 wt%) with respect to the training data, thus overpredicting values.  453 

  454 

Figure 9. Model Validation. Area Plot of Classification Probabilities. To validate the models, 455 

we apply new data that the models have never seen. Similar to the training sets, all models 456 

classified the sediment organic carbon abundance with ~80% accuracy.  457 

 458 
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  459 

Figure 10. Regression Model Comparison to Real Data. We plot our modelled predictions 460 

(solid-colored lines) with respect to the observed data of Last Chance Lake 5 (black dashed line) 461 

to compare the accuracy of their predictions. Generally, all models predicted within 1.0% of the 462 

actual data. Additionally, RF and KNN outperformed SVR.  463 

 464 

Graphical User Interface: Organic Matter Abundance Predictor (OMAP) 465 

 To improve accessibility of the model and provide rapid prediction of OC abundance from 466 

XRF-derived elemental abundances, we have developed an open-source graphical user interface: 467 

Organic Matter Abundance Predictor (OMAP; Nichols, 2023). This application is an interactive 468 

data visualization tool and predictor for the constructed model (Figure 11). Due to the random 469 

forest algorithm having the best performance for our testing and validation, we use it as the primary 470 

algorithm for the application. The application consists of three main components including model 471 
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data and performance visualization, organic carbon probability predictor, and geographic 472 

distribution of samples that the model is based on. Additionally, this application serves as an open-473 

source database for others to add OC and XRF-derived elemental abundances from other 474 

sedimentary systems to improve and expand upon the model. 475 

 476 

Figure 11. Layout of the Graphical User Interface: Organic Matter Abundance Predictor 477 

(OMAP). A.) Model data and performance tab which allows the user to selectively choose the 478 

parameters to make OC predictions including specific elements and boundary conditions for OC 479 

classification. Additionally, once the elements and boundary conditions are chosen, the data 480 

dimensionality reduction and model performance metrics will be printed and B.) The make a 481 

prediction tab allows for the user to make a probability prediction of OC abundance based on the 482 
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elements and OC boundary conditions chosen in the Model data and performance data via 483 

uploading a CSV that includes a sample column and elements of interest. 484 

 485 

Transfer Learning: Mars Regolith 486 

As a proof-of-concept, we applied our model to the average elemental abundance 487 

composition from Mars regolith samples as determined by Perseverance’s Planetary Instrument 488 

for X-ray Lithochemistry (PIXL; Christian et al., 2023) (Table 4). Our model computes a 73.5% 489 

probability that the OC abundance is low ([OC] < 2.5 wt% TOC), a 17.8% probability that it is 490 

moderately abundant in OC (2.5 wt% < [OC] < 10.0 wt%), and an 8.2 % probability that OC is 491 

high in abundance (10.0 wt% < [OC]). These predictions corroborate OC analyses that have been 492 

done on Martian soils using resource intensive combustion methods from Curiosity in which they 493 

determined the sediment to contain ~0.1% OC (Stern et al., 2022). Importantly, this calculation is 494 

only for the average composition of Mars regolith. In addition, we also applied our model to 495 

elemental abundances from the Mars Odyssey Orbiter (which uses gamma-ray spectroscopy rather 496 

than XRF to determine elemental abundances) to make predictions for OC abundance. Unlike 497 

PIXL, Mars Odyssey determines elemental abundances at a much lower resolution. This lower 498 

resolution allows it to cover broader areas of the Martian surface. Hahn et al., 2007 determined 499 

the elemental abundance average for three different aged soils/rocks including Noachian, 500 

Hesperian, and Amazonian. We use this data to determine the probability of OC abundance as a 501 

comparison to PIXL. Interestingly, we compute very similar probabilities to those determined from 502 

PIXL elemental abundances (Table 4). On average, we calculate an 80.3% probability that OC 503 

abundance is low, a 19.7% probability that OC abundance is moderate, and a 0% probability that 504 

OC abundance is high. 505 

 506 

Table 4. Classification probability of Martian soils. 507 

Instrument/Sample High  Moderate Low  

PIXL 8.2 18.2 73.5 

Odyssey (Noachian) 0 17.7 82.2 

Odyssey (Hesperian) 0 17.8 82.3 

Odyssey (Amazonian) 0 23.7 76.3 
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Despite the overall good performance of our model, it is important to note that we cannot 508 

assume that OC behaves exactly the same on Mars as it does on Earth. As such, our model serves 509 

as a basis for transfer learning which in this instance is an algorithm that is trained using Earth-510 

based data sets after which that knowledge is “transferred” and applied to Mars (Theiling et al., 511 

2022). An advantage to the transfer learning concept is that the vast amounts of datasets on Earth 512 

can serve as a starting point to eventually adapt algorithms for Mars, which is currently necessary 513 

considering the paucity of data on Mars compared to Earth (Theiling et al., 2022).  514 

 515 

Potential Earth-Based Application  516 

Although our model was constructed with the goal of life detection beyond Earth, there are 517 

potential applications for Earth-based analysis. For instance, carbon flux through time in lake and 518 

marine sediments is an active area of research (Sarkar et al., 2023; Lee et al., 2019; Zhang et al., 519 

2018; Leach et al., 2008). More specifically, high quality, continuous, and high-resolution records 520 

are sought after (Leach et al., 2008). One of the limitations to continuous and high-resolution 521 

studies is that due to the time intensive nature of OC analysis, it is more challenging to achieve the 522 

same level of resolution as elemental abundances from XRF, ultimately resulting in a sparsity of 523 

OC data (Lee et al., 2019; Zhang et al., 2018). Our model potentially provides a useful screening 524 

tool to evaluate where to target biomarker work and/or assess necessary analytical amounts for 525 

TOC and biomarker work. 526 

Our model has the potential to be especially useful for hypersaline lakes as they are widely 527 

distributed across the globe; however, they are often neglected in climate models as they are 528 

assumed to be smaller in number and sparsely distributed (Sarkar et al., 2023; Marce et al., 2019). 529 

Contrary to this belief, hypersaline lakes contribute significantly to the global lake volume (85 x 530 

103 km3 to the total 190 x 103 km3; Sarkar et al., 2023; Williams, 2002). This assumption has 531 

created a blind spot in the global carbon cycle, which is estimated by the amount of primary 532 

production and long-term sediment storage of OC (Marce et al., 2019). Considering this, 533 

hypersaline environments have a great potential to influence the global carbon budget and 534 

ultimately global climate. Given their potential to strongly influence global climate, it is crucial 535 

that we identify a rapid way to identify the amount of potential carbon flux into the atmosphere. 536 

 537 

Conclusion 538 
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 This work provides a proof-of-concept application for leveraging machine learning models 539 

to aid in life detection efforts. More specifically, we use data that is relatively easy to collect (XRF-540 

derived elemental abundances) to make predictions about data that is more resource intensive (OC 541 

analysis). All models constructed in this study showed good performance (>80% accuracy) for 542 

predicting OC abundance in lake sediments from XRF data; however, the RF algorithm 543 

outperformed the others for both classification and regression predictions. Warren-Rhodes et al., 544 

2023 showed that a random biosignature search yielded only a 9.2% probability of detecting 545 

biosignatures. As such, our models improve the probability of detecting OC with varying levels 546 

by >70% compared to random searches. Ultimately, our model has the potential to be used to make 547 

predictions about OC abundance prior to sample analysis on high-resolution but narrow field of 548 

view Martian rovers to save time and resources for life detection. Additionally, it can be used to 549 

create a prediction map at the global scale using orbiters such as Mars Odyssey which are low-550 

resolution but have a broad field of view.  551 

Despite the overall good performance of our model, we recognize that a model is only as 552 

strong as its training set, and this model is most adapted to hypersaline, lacustrine sediments. 553 

Further efforts for broader classification tools will require more data from diverse environments 554 

and older sediments or rocks. Additionally, our model lacks an abundance of samples that are very 555 

lean in OC (<1 wt% [OC]), thus, it can also benefit from an addition of more samples lean in 556 

organic material. While the models constructed in this work have showed good performance, 557 

future work will focus on adding more data from diverse environments as described above in 558 

addition to extending the explanatory variables to mineralogy. Our work is expected to be critical 559 

for better understanding which samples and/or sites on Mars are most likely to harbor an 560 

abundance of OC and will further propel future life detection missions. 561 
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