
JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for “Application of the AI2

Climate Emulator to E3SMv2’s global atmosphere

model, with a focus on precipitation fidelity”
James P. C. Duncan1, Elynn Wu2, Jean-Christophe Golaz3, Peter M.

Caldwell3, Oliver Watt-Meyer 2, Spencer K. Clark2, Jeremy McGibbon2,

Gideon Dresdner2, Karthik Kashinath4, Boris Bonev4, Michael S. Pritchard4,

and Christopher S. Bretherton2

1University of California, Berkeley

2Allen Institute for Artificial Intelligence (AI2), Seattle, USA

3Lawrence Livermore National Laboratory, Livermore, California, USA

4NVIDIA, Santa Clara, California, USA

Contents of this file

1. Text S1 to S2

2. Figures S1 to S2

3. Tables S1 to S3

January 19, 2024, 11:03pm



X - 2 :

Introduction

In this Supporting Information, we give additional metrics related to ACE’s climatolog-

ical skill and supplementary figures which provide additional perspectives on the figures

of the main text. We also provide further details on the computational efficiency of ACE,

the vertical coarsening of raw EAMv2 simulations outputs, and the optimization hyper-

parameters employed during ACE training.

Text S1. Another perspective on ACE’s emulation biases

Figure S1 compares ACE’s emulation biases to EAMv2’s internal variability. The left

column labeled “EAMv2 reference vs. EAMv2” displays the bias patterns observed when

comparing EAMv2 to itself, which serves as an ‘oracle’ emulator with the highest climate

skill possible in terms of faithfulness to the original simulation, given natural variability

due to weather fluctuations. These biases are computed by comparing the unseen reference

set, years 64–73 of the EAMv2 simulation run, against the validation target years 54–63.

The column labeled “ACE vs. EAMv2” visualizes the same data as the right column of

Figure 3 of the main text. Table S1 provides additional bias and RMSE metrics for these

variables when evaluating ACE and EAMv2 internally (i.e., against EAMv2 simulation

outputs) as in Figure S1 and against historical observations as in the left column of

Figure 3.

Text S2. Computational efficiency of ACE

We carried out the 73 year EAMv2 simulation on the Chrysalis supercomputer at Ar-

gonne National Laboratory, which is a dedicated E3SM machine1. Using 30 CPU nodes on

Chrysalis, each of which has 2× 32-core AMD EPYC 7532 CPUs, the simulation achieved

24 simulated years per day, or about 10 seconds per simulation day. After training, we ran
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ACE inference using a single NVIDIA A100 40 GB GPU on Lawrence Berkeley National

Laboratory’s Perlmutter supercomputer with a wall clock time of 1 second per simulation

day, an approximate 10x speedup. The discrepancy with the 100x speedup found in Watt-

Meyer et al. (2023) is explained by the much larger number of cores used for the EAMv2

simulation compared to the FV3GFS simulation, which used a total of 96 cores across

two higher-efficiency AMD EPYC 7H12 CPUs. We estimate the energy consumption of

1 second on 1 A100 GPU at maximum power consumption of 400 W is 0.4 kJ, while 10

seconds on 60 total EPYC 7532 CPUs at 200 W is approximately 120 kJ. This amounts

to an approximate 300x energy savings when using ACE as a surrogate for EAMv2.
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Figure S1. Time average biases (predicted - target) for precipitation (top row) and top-of-

atmosphere outgoing shortwave (RSW , middle row) and longwave (OLR, bottom row) radiative

fluxes. The right column (“ACE vs. EAMv2”) shows the mean spatial distribution of ACE biases,

comparing the generated 6-hourly outputs to the corresponding targets for the same timestep.

The left column (“EAMv2 reference vs. EAMv2”) compares EAMv2 to itself by recalculating

biases using the final 10 years of the simulation set in the place of the predicted data, giving a

best-case scenario reference.
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Figure S2. Same as Figure 4 of the main text but zoomed in for a closer look

at the tropical spectra between wavenumbers -6 and 6 and frequencies smaller than 0.18.

In addition, the third panel displays relative errors within this region, calculated as:

100× predicted power−target power
target power %.

Table S1. ACE and E3SMv2 biases and RMSEs with respect to various references. ACEint:

ACE compared against EAMv2 outputs over the 10 year validation period. EAMv2int: EAMv2

outputs over the 10 year reference period compared against EAMv2 outputs over the 10 year

validation period. ACEobs: ACE compared against historical observations. EAMv2obs: EAMv2

outputs over the 10 year validation period compared against historical observations.

ACEint EAMv2int ACEobs EAMv2obs
Variable Bias RMSE Bias RMSE Bias RMSE Bias RMSE
P [mm/day] 5.7e-3 0.37 1.6e-3 0.21 0.20 0.93 0.20 0.96
RSW [W/m2] -0.95 4.17 6.7e-2 1.63 -0.38 8.87 0.57 9.19
OLR [W/m2] -0.59 2.83 8.5e-3 1.25 -0.77 5.64 -0.17 5.09
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Table S2. EAMv2 vertical interface coordinates that were used for vertical coarsening of the

raw 3D outputs, reducing the number of vertical levels from 72 to 8 for computational tractability.

As in Watt-Meyer et al. (2023), we chose the 9 vertical interfaces listed below that best align with

those of the SPEEDY model (Kucharski et al., 2013), in sigma coordinates, assuming a constant

reference surface pressure of pref8 = 1000 hPa. The coarsened interfaces are indexed starting from

the top of the atmosphere by k from 0 to 8, while the corresponding original EAMv2 interfaces

are indexed by Ik. In each grid column, the terrain-following interfacial pressures pk = ak + bkps

are computed from the hybrid coordinates ak and bk and the surface pressure ps. The original

model levels are vertically integrated by mass in order to preserve the total dry air and moisture

budget, using the true surface pressure at each point in space and time. For further details, see

Watt-Meyer et al. (2023).

k ak [Pa] bk [unitless] Ik prefk [hPa]
0 10.0 0.0 0 0.1
1 4943.694 0.0 19 49.4
2 13913.118 0.0 30 139
3 16254.503 0.10464 38 267
4 12435.282 0.31152 44 436
5 8945.939 0.50053 48 590
6 5115.018 0.70804 53 759
7 2027.536 0.87529 61 896
8 0.0 1.0 72 1000
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Table S3. Following Watt-Meyer et al. (2023), we employ the Adam optimizer (Kingma & Ba,

2017) with a cosine annealing learning rate schedule decaying to zero by the end of training and

use an exponential moving average of the model parameters across training steps. We conducted

a thorough hyperparameter search across 29 combinations of batch size, initial learning rate, and

number of epochs, arriving at the final choice of hyperparameters based upon a comparison of

10-year time-mean validation metrics, multiyear stability, and visual artifacts. See Watt-Meyer

et al. (2023) for additional details on training and SFNO architectural hyperparameters.

Name Value
Initial learning rate 3× 10−4

Number of epochs 50
Batch size 8
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