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Abstract

Methods for experimental reconstruction of molecular frame (MF) photoionization dynamics, and related properties - specif-

ically MF photoelectron angular distributions (PADs) and continuum density matrices - are outlined and discussed. General

concepts are introduced for the non-expert reader, and experimental and theoretical techniques are further outlined in some

depth. Particular focus is placed on a detailed example of numerical reconstruction techniques for matrix-element retrieval

from time-domain experimental measurements making use of rotational-wavepackets (i.e. aligned frame measurements) - the

“bootstrapping to the MF” methodology - and a matrix-inversion technique for direct MF-PAD recovery. Ongoing resources

for interested researchers are also introduced, including sample data, reconstruction codes (the Photoelectron Metrology Toolkit,

written in python, and associated Quantum Metrology with Photoelectrons platform/ecosystem), and literature via online

repositories; it is hoped these resources will be of ongoing use to the community.

(For PDF version via arXiv: http://arxiv.org/abs/2209.04301, for other online resources see Sect. 7.)

1 Overview

1.1 Topical introduction

The main aim of this topical review is to discuss the determination of molecular frame (MF) photoionization
dynamics (and related properties) from laboratory frame (LF) measurements. This particular problem is a
subset of the larger topic of determining quantum mechanical properties of molecules (and general quantum
mechanical systems) which has been, of course, long at the heart of molecular physics, physical chemistry and
related disciplines. Spectroscopy, in particular, has the underlying goal of the determination of atomic and
molecular properties with high precision; the “inverse” problem of transforming ab initio (computational)
results, which naturally start in the MF, to the LF (in order to compare with experimental measurements
and phenomena), also has a long and storied history. In both cases the issue is, in very general terms,
one of complexity and averaging over unobserved quantities/properties/degrees-of-freedom of the system;
furthermore, in many cases, certain properties may be poorly understood, may fundamentally obscure other
properties of interest, and/or may not be readily computed. These issues are particularly relevant for the
specific case of photoionization dynamics, which is an inherently complicated scattering problem, and may
be strongly coupled to other molecular properties, i.e. electronic, vibrational and rotational dynamics.

While many of these issues are general in quantum state reconstruction problems 1, photoionization dynam-
ics is the focus of this review, and the determination of photoionization dynamics and correlated observables
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in the molecular frame the main topic of discussion. Historically this determination has been termed a “com-
plete” photoionization experiment, and has also recently been reframed in terms of quantum tomography
and metrology, which has essentially the same aims of complete system reconstruction - in the photoionzation
case the photoionization matrix elements fully describe the electron-molecule scattering event initiated by
photo-absorption, hence the continuum state populated by photoionization or, equivalently, the continuum
density matrix.

Herein, the problem of complexity is approached generally in terms of the dimensionality of the problem, and
the information content of the measurement; examples are built-up and discussed in these terms. However,
note that the aim here is not for a comprehensive review of the literature, but rather a topical introduction
(Sect. 2) and more detailed background (Sect. 3), including recent progress in this area, followed by a (reader-
extensible) tutorial overview of concepts, grounded in numerical examples (Sect. 4). Overall, the aims herein
are to introduce new researchers to this interesting topic, present realistic case-studies, and (attempt to)
build bridges between some historically disparate sub-topics/areas of the field, as well as emerging methods
in related fields.

In order to try and fulfill these aims, and to make a useful contribution to the community, this review
aims to provide a number of supplementary resources for researches, and engender discussion on this topic.
The numerical work follows open-science principles, with corresponding data and open-source code available
online; the underlying Quantum Metrology with Photoelectrons platform is introduced in Sect. 3.3.4, and a
full list of relevant online resources is given in Sect. 7. In particular the analysis routines demonstrated in
Sect. 4.1 - along with relevant data - are available online, as a set of Jupyter computational notebooks backed
by open-source python libraries (Sect. 3.3.4). It is hoped that, in this way, this manuscript will become a
living document, and a useful resource for interested researchers that will grow over time. It is also hoped
that this manuscript, and especially the online discussions, will serve to garner opinions from a cross-section
of interested researchers, and help to bridge the gaps between the various, historically somewhat disparate,
communities (e.g. spectroscopy, general AMO physics, quantum information etc.) interested in quantum
state reconstruction in various cases. With this in mind, references are only given sparingly in the main text,
and mainly provided as lists in Sect. 8; the full bibliography is also available online (via a Zotero group 2) -
this is very far from a comprehensive list: it is again hoped that this will be used, and grown, by interested
researchers.

1.2 Outline

This topical review is structured as follows:

• Sect. 2: general introduction and discussion of the topic in broad terms, suitable for a general reader.

• Sect. 3: discussion of experimental techniques (Sect. 3.1), and a more detailed introduction to theory,
specifically a tensor formulation (Sect. 3.2) and associated numerical methods for MF retrieval (Sect.
3.3).

• Sect. 4: worked examples for MF reconstruction for two retrieval protocols. This forms the main
substance of the review, in particular Sect. 4.1 provides a detailed case-study; note that figures are
interactive in HTML versions of the manuscript and also available in the data repository for the
manuscript 3.

• Sect. 5: Summary & outlook.

• Sect. 7: additional resources, including codes, data and notebooks pertaining to Sect. 4.

• Sect. 8: further reading.

• Sect. 9: extended theoretical details.
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2 Framing the problem

In this section some general introduction and discussion is provided, in rather broad terms, suitable for a
general reader. For a more detailed discussion of photoionization problems see Sect. 3.

2.1 Molecular properties

A very general problem in molecular physics is the determination of intrinsic molecular properties from exper-
imental measurements, and comparing such measurements with theoretical predictions. The key difficulty is,
usually, the averaging or integration over unobserved degrees-of-freedom (DOFs) in the measurements. The
exact nature of the DOFs will, naturally, be system and problem dependent, as will the coupling strength
of the unobserved DOFs to the system properties of interest. From a spectroscopic perspective, one usually
considers the DOFs in terms of a Born-Oppenheimer (BO) separation of the full molecular wavefunction,
i.e. in terms of electronic, vibrational and rotational DOFs. These BO DOFs are useful, since they provide
an intuitive separation of states, which can be regarded as uncoupled to a first approximation. These states
may then approximately correlate with the choice of spectroscopic methodology applied (in terms of charac-
teristic energy or time regimes), and often provide a good approximation to the fully-coupled system. One
can also consider this issue in terms of a general quantum mechanical language of eigenstates, wavefunctions,
wavepackets (more appropriate for dynamical systems), density matrices and so forth. Framing the problem
in this language perhaps highlights the generality of the molecular case as a many-body quantum mechanical
matter system, to which certain formal DOF separations are often applicable - but, regardless of the lan-
guage, the problem remains that many-body systems are analytically unsolvable and can be computationally
intractable. (For a tutorial-style introduction to some of these issues in the time-resolved case, see Ref. 4

and references therein.)

In favourable cases, careful experimental design can obviate the issue of DOF averaging in specific cases via,
for instance, state-selection of the system prior to measurement to reduce the complexity of the problem
at hand. This is typical in frequency-resolved spectroscopy, see, e.g., introductory spectroscopy textbooks
5,6,7. Similarly, preparing a specific “zeroth-order” wavepacket, viewed as a superposition of BO states, is
the typical target case in time-resolved spectroscopy experiments, see, e.g., Refs. 8,9,4. However, in many
(perhaps most) cases this is not feasible due to the inherent complexity of the system, and/or coupling
(non-separability) of states, and/or experimental issues or limitations. The problem becomes significantly
worse for larger systems as the number of DOFs (hence density of states) increases, and/or if the DOFs are
continuous - rather than quantised - properties, and/or if many states are populated. In general, then, this
is a problem which must ideally be addressed at a high level, by a combination of experiment and theory.
Happily, both are increasingly possible, and becoming more routine, as technology improves; of particular
relevance to the photoionization case at hand is the advent of photoelectron imaging 10, advances in short
laser pulses and control, and the ongoing march of available computational power and software.

In terms of photoionization studies, the aims can be viewed both in terms of control and in terms of mea-
surement and reconstruction. For instance, a basic photoelectron imaging experiment may seek to measure
photoelectron energy and lab-frame (LF) angular distributions from a given system. A more sophisticated
experiment may seek to control these observables in some way, e.g. via state-preparation or ionizing pulse
polarization, or may seek to use these measurements as a sensitive probe of some other DOF of interest,
e.g. vibrational motion. A yet more sophisticated methodology may aim to directly obtain molecular frame
information, or aim to obtain a “complete” quantum mechanical description of the photoionization process
from a set of measurements. This may be an end in itself, or serve as a more sensitive probe of DOFs of
interest. (For further discussion of experimental techniques, see Sect. 3.1; for further general discussion
along these lines, see for example Refs. 11,12,13,9.)
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2.2 Molecular frame observables

A very general issue, of fundamental interest, which falls in the latter categories - and lacks a general
solution - is the measurement of observables which depend on the orientation of the molecular frame (MF).
In general, this can be regarded as a geometric problem in the spatial (rotational) degrees of freedom, in
which the intrinsic MF properties are averaged (or smeared out) in a given measurement. For instance,
in a typical gas phase molecular spectroscopy measurement, the observables in the molecular frame are
averaged over all possible molecular orientations in a laboratory frame (LF) measurement. The inverse
problem is also difficult, i.e. simulating specific experimental observables starting from ab initio calculations
in the molecular frame. In this case, to simulate LF results, knowledge of the degree and type of geometric
averaging is generally required. In more complex cases ab initio calculations may need to be carried out
for various molecular orientations, or coupled DOFs such as vibrational motions. Of particular interest in
the current case will be the aligned frame (AF), which signifies a measurement frame with some degree of
spatial preparation (alignment or orientation of the molecular axis ensemble) of the sample via, for instance,
photon absorption (see Sect. 3.1.1 for further discussion of the AF).

Despite, or perhaps because of, the inherent difficulties, obtaining MF measurements remains a topic of great
interest, and much progress in experimental methodologies has been made in recent decades 14,15,13,12,16,11.
These methodologies can be classified, approximately, as sitting somewhere on the spectrum between (1)
relatively direct and (2) indirect methodologies. In the limit of (1), the methodologies are designed to
enable control and reconstruction of the MF, hence measure MF observables (somewhat) directly, with
minimal data processing requirements. Another avenue to MF observables is the limiting case of indirect
methodologies (2), which involve more simulation and have less stringent (or at least different) experimental
requirements. In the current context, this can be defined as techniques which make use of detailed theory and
analysis procedures to reconstruct MF properties from LF measurements. Broadly speaking, one can also
consider indirect methods as a post-processing or analysis-based approach, with a significant theoretical and
computational requirement (akin to computational imaging techniques, as well as many traditional energy-
domain spectroscopy techniques). In contrast, direct methods are, conceptually, closer to purely experimental
methods, with more emphasis placed on detection techniques and capabilities, although significant numerical
data analysis may still be required.

There is, naturally, significant overlap between these extreme case definitions, and most methodologies and
extant demonstrations fall somewhere on the spectrum between direct (“purely” experimental) and indirect.
In particular, indirect approaches will typically still require some degree of (potentially sophisticated) exper-
imental control, and a set of associated measurements, to be useful. For example, a set of LF measurements
with different polarization geometries or with an optically-prepared aligned ensemble may be required. Di-
rect measurements usually require specific molecular behaviour(s) and/or preparation in order to measure
suitable observables, due to experimental restrictions. A typical requirement in multi-particle coincidence
imaging techniques may be, for example, molecular fragmentation following photoionization, since it is mea-
surement of the fragments that allows for MF reconstruction in these methodologies. Historically different
methods have typically been pursued by experimental communities making use of either laser-based (LF, AF
and control type schemes) or synchrotron-based (direct MF measurements) experimental methods. Whilst
the underlying photoionization and molecular physics is shared, the different classes of experiment typically
suit soft or hard photon energies, for valence photoionization and multi-photon techniques, or core ionization
and dissociative photoionization based techniques, respectively, although the split is not rigorous. However,
there is increasingly overlap between the communities, particularly in the last decade or two. In particular,
the advent of time-resolved hard photon sources and strong-field and emergent attosecond laser techniques
has pushed developments on the “tabletop” side (for a broad review of techniques in attoscience, see Ref.
17). Meanwhile, the advent of free-electron lasers (FELs), and the increasing availability of modern ultrafast
lasers at synchrotron and FEL facilities, has enabled multi-source experiments in the time or frequency
domain spanning optical and X-ray wavelengths and methods. (For recent perspectives covering many of
these topics, including recent ultrafast and X-ray developments, see, for instance, Refs. 18,19.)
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It is also noteworthy that in the context of ultracold physics a number of sophisticated techniques have
been developed to coherently populate individual molecular eigenstates 20. While these techniques have yet
to be applied to molecular photoionization, recent examples exist of similar techniques applied to atomic
photoionization 21.
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Figure 1: Conceptual outline for retrieval of MF properties for “bootstrapping to the MF“, via a set of
time-resolved measurements and suitable post-processing scheme. In the LF, a set of laser pulses creates
and probes an aligned distribution of molecules, and photoelectron images are measured. The experimental
data is analyzed through a multi-step “bootstrap” protocol to obtain matrix elements, which constitute a
complete description of the photoionization event. These can further be used to obtain MF observables, for
any polarization geometry. Note the coordinates shown will be used throughout the manuscript, with the
LF z-axis defined relative to the laser field (E) polarization, and the MF defined with the molecular axis
aligned along the z-axis (and polarization geometries for the laser field (E) referenced to this axis).

2.3 Photoionization observables, properties and dimensionality

Fundamentally, experimental observables depend on intrinsic molecular properties. In the context of molecu-
lar physics, such properties are naturally expressed in the molecular frame - for instance: bond lengths, bond
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angles, polarisabilities, absorption cross-sections, dipole matrix elements and so on. Whilst it is often the
case that such properties may be viewed as stationary, and possibly approximated semi-classical, ultimately
the dynamics of the system are also of great interest. For instance, in a stationary state the equilibrium or
average bond-lengths of a system are often viewed as a well-defined molecular property, but really it is the
associated vibrational wavefunction that defines this. However, in a state-resolved experiment, the averaging
over the vibrational DOF may be small (i.e. the wavefunction is localised), so this approximation holds. More
generally this may not be the case, and will not be the case in a time-resolved experimental methodology
wherein a superposition of vibrational states - a wavepacket - may be prepared. In this sense, the observ-
ables in a given case may also be affected by experimental conditions and methods, and degrees-of-freedom
or dynamics, all of which may affect what are viewed as fundamental molecular properties.

As well as MF observables, one may also be interested in determining the underlying intrinsic molecular
properties which govern the observable, and/or exploring extrinsic properties which modify or control the
observable. For instance, the response to application of different laser field(s) (wavelength, intensity, po-
larization...), preparation of specific molecular states, or wavepacket dynamics in time-resolved studies. In
some cases the mapping between observable(s) and property/ies of interest may be relatively direct, in other
cases much less so!

To mitigate these issues, one generally seeks a “maximum information” measurement to try and understand,
untangle or even quantitatively determine the various effects at play. Clearly, the amount of information
required will depend on the type of analysis, and complexity of the problem. This concept is expanded below
in terms of a fundamental 1D example (Sect. 2.3.1), and the discussion is extended to the more complex
(higher dimensionality) case of the measurement of photoelectron angular distributions in the remainder
of this section (Sect. 2.3.2). An important caveat to this is that, for analysis or retrieval of phases, the
measurements must have some degree of phase-sensitivity and coherence - this may be inherent to the
observables or DOFs chosen, or imparted experimentally via interferometric (coherent multi-path) schemes.

2.3.1 A brief discussion of rotation: 1D problems and beyond

A basic, traditional, example - at least for simple molecules - is the determination of bond lengths from
LF measurements of rotational energy spectra. In this case, the intrinsic molecular properties (equilibrium
bond lengths and geometry) map relatively cleanly to the observable energy levels; one can thus uniquely
determine the properties of interest via a suitable data analysis methodology (for a general introduction,
see ref. 7). For instance, in the simplest case of a rigid homonuclear diatomic system, the problem can be
regarded as 1-dimensional, with a single bond length to be determined from a 1D experimental measurement
made in the LF. A measurement of the rotational energy spectrum is sufficient to provide bond-length
information. In this case, there is no issue with orientational averaging, since the position of features in
the energy spectrum are invariant to orientation, although their magnitudes are not. (In a more precise
description, the observed spectrum is determined by the (rotational) transition moments, which are tied to
the molecular symmetry axes. The magnitudes are the projection into the LF of these transition moments,
but their energy eigenstates are invariant to orientation; an angle-integrated measurement will thus provide
a sufficient information content.) In this case, the intrinsic molecular properties can therefore be mapped
to the LF observable relatively clearly, and the retrieval of these properties from a measurement is similarly
direct. However, for more complicated systems, additional information may be required, either in terms of
a richer ND (N-dimensional) measurement technique and/or a series of simple measurements with different
“control” parameters, which are chosen to affect the observable but not the intrinsic molecular properties.

More generally, one can regard a hierarchy of difficulty in the determination of molecular properties, based
on the complexity or dimensionality of the system and observable(s).

• Simple systems, “1D” methods, where a dataset of a single variable (e.g. rotational energy spectrum)
is measured. For simple cases, e.g. rigid diatomic molecules, the determination of molecular properties
- the rotational energy levels and, hence, the bond length - is relatively direct. (See, for example, Chpt.
5 in Ref. 7.)
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• Intermediate cases, e.g. larger, but fairly rigid, molecules (for instance, formaldehyde (H2CO) and
aniline (C6NH7), as discussed in Ref. 7), possibly with congested spectra. In such cases the “di-
rect” determination of molecular properties may not be possible without more sophisticated mod-
elling and ab initio computations. Additional information from higher-dimensionality observables, e.g.
polarization-dependent energy spectra, may also be required. An interesting example, and relevant to
latter discussion herein, is the use of rotational coherence spectroscopy (RCS) in such cases 24 - this can
be considered as the narrow-wavepacket limit of more general (non-adiabatic) rotational wavepacket
based methods (Sect. 3.1.1).

• For the most complex cases, e.g. large, floppy molecules or complexes 5,25, determination of molecular
properties in an absolute sense may be impossible or, rather, may be a poorly posed question since
DOFs may become strongly coupled, and simplifying approximations such as fixed point-group sym-
metry and the BO separation break down 5. High level computational results (if possible/tractable)
may be required to understand the spectrum, and associated dynamics, along with multi-dimensional
observables (e.g. temperature dependent spectra, dependence on isotopically-substituted species and
so on). Such cases remain at the cutting-edge of research in molecular spectroscopy 25.

Whilst this discussion may seem a little arbitrary initially, aside from the general concepts, there is a strong
link between traditional rotational spectroscopy and modern molecular alignment techniques (as will be
discussed later, Sect. 3.1.1). Furthermore, control of the averaging over rotational (geometric) DOFs is a
key to stepping into the MF in time-domain experiments.

2.3.2 Photoelectron flux in the LF and MF

A (generally) more complicated example is the topic of this article, i.e. the determination of MF photoelectron
distributions, and the intrinsic molecular photoionization dynamics which underlie the observables. The
former may involve direct or indirect techniques; the latter is usually defined as the retrieval of the (complex
valued) ionization dipole matrix elements, hence is indirect by definition (since phase information may not
be directly measured).

A broad conceptual overview for a time-dependent measurement scheme and associated observables is illus-
trated in Fig. 1; although the figure shows a specific experimental scheme, the concepts are general. In this
example - which forms the basis for the case study of Sect. 4.1 - a multi-pulse experimental scheme is used
to prepare an aligned molecular axis distribution, and AF photoionization measurements are made.

The preparation (or pump) step in this case is impulsive molecular alignment, in which one or more laser
pulses, of short duration as comparted to the characteristic rotational timescale, are used to create a ro-
tational wavepacket in the system. The evolution of this wavepacket corresponds to different ensemble
alignments (LF projections), as a function of time. A probe-pulse of similar pulse-duration, and with con-
trollable time-delay ∆t, can then probe specific alignments as a function of time. In general, pulses in the
femto-second regime are suitable for this type of experimental scheme, and the technique is quite widely
applicable; further discussion can be found in Sect. 3.1.1.

The type of measurements shown are photoelectron images, which provide the angle and energy resolved
photoelectron flux. Since the molecular axis distribution is time-dependent in this case, a set of time-
dependent measurements provide a set of observables with different spatial averaging at each measurement
time t. These observables can be parametrized as a set of time-dependent parameters as shown in the lower
right panel. The observables of interest - the photoelectron flux as a function of energy (ε), ejection angles
(θ, φ), and time (t) - can be written generally as an expansion in spherical harmonics:

Ī(ε, t, θ, φ) =

2n∑
L=0

L∑
M=−L

β̄L,M (ε, t)YL,M (θ, φ) (1)
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Here the flux in the laboratory frame (LF) or aligned frame (AF) is denoted Ī(ε, t, θ, φ), with the bar signifying
ensemble averaging, and the molecular frame (MF) flux by I(ε, t, θ, φ). Similarly, the expansion parameters
β̄L,M (ε, t) include a bar for the LF/AF case. These observables are generally termed photoelectron angular
distributions (PADs), often with a prefix denoting the reference frame, e.g. LFPADs, MFPADs, and the
associated expansion parameters β̄L,M (ε, t) are generically termed “anisotropy” parameters. The polar co-
ordinate system (θ, φ) is referenced to an experimentally-defined axis in the LF/AF case (usually defined
by the laser polarization), and the molecular symmetry axis in the MF, as indicated in the corresponding
panels of Fig. 1.

The spherical harmonic rank and order of the observables, (L,M), are constrained by experimental factors
in the LF/AF, and n is typically limited by the molecular alignment, which is correlated with the photon-
order for gas phase experiments. Generally, this can be considered in terms of conservation of total angular
momentum in the LF 26, and each photon imparts one unit of angular momentum. For basic cases these
limits may be low: for instance, a simple 1-photon photoionization event (n = 1) from an isotropic ensemble
(zero net ensemble angular momentum) defines Lmax = 2; for cylindrically or axially symmetric cases (i.e.
D∞h symmetry) M = 0 only.

In the MF n is constrained only by the maximum continuum electron angular momentum n = lmax imparted
by the scattering event 27 (note lower-case l for the electron angular momentum). For these cases, lmax = 4
is often given as a reasonable rule-of-thumb for the continuum - hence Lmax = 8 - although in practice
higher-l may be populated. Further details are discussed below, with a realistic example case forming the
basis of Sect. 4.1. (For further introductory discussion and examples of LF and MF PADs, see Refs. 15,11;
a recent review article can be found in Ref. 28.)

Returning to Fig. 1, note, in particular that the LF measurements (top panel) involve averaging over an
ensemble of molecules with different orientations, leading to averaging over the molecular frame observables.
The β̄L,M (ε, t) parameters in this case are shown in the lower right panel (and in more detail in Fig. 6), and
are constrained to Lmax = 6 and M = 0 (cylindrical or axial symmetry). Two examples of the corresponding
AFPADs Ī(ε, t, θ, φ) are also shown, as simple polar plots, in the panel. These AFPADs display fairly
simple, albeit time-dependent, angular structure. The corresponding MFPADs (lower left panel) are highly
structured, time-independent, quantities I(ε, θ, φ) in this case. The difference in the complexity of the
MFPADs and AFPADs is typical of spatial averaging, and indicative of why one wishes to obtain MF results
if possible. Crucially, these types of process are coherent, and the PADs are sensitive to the (relative) phases
of the continuum electrons. PADs may also respond to other phase contributions depending on the type of
experiment, for example the spatial averaging in an AF measurement is a coherent process. In cases - such
as this example - where the time-dependence is purely geometric, and is separable from the ionization matrix
elements, the total information content can be broadly viewed as the number of sets of {L,M} at a given ε.
This represents a rich dataset for retrieving matrix elements and reconstruction of the MFPADs, and this
fairly general case is explored in detail herein (Sect. 2.5 introduces the concepts, and Sect. 4.1 presents a
full numerical case-study).

2.4 Photoionization dynamics

The core physics of photoionization has been covered extensively in the literature, and only a very brief
overview is provided here with sufficient detail to introduce the MF reconstruction problem; the reader is
referred to the literature listed in Appendix 8.2 for further details and general discussion. Technical details
of the formalism applied for the reconstruction techniques discussed herein can be found in Sect. 3.2.1.

Photoionization can be described by the coupling of an initial state of the system to a particular final state
(photoion(s) plus free photoelectron(s)), coupled by an electric field/photon. Very generically, this can be
written as a matrix element 〈Ψi|Γ̂(E)|Ψf 〉, where Γ̂(E) defines the light-matter coupling operator (depending
on the electric field E), and Ψi, Ψf the total wavefunctions of the initial and final states respectively.

There are many flavours of this fundamental light-matter interaction, depending on system and coupling;
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the discussion here is confined to the simplest case of single-photon absorption, in the weak field (or purtur-
bative), dipolar regime, resulting in a single photoelectron. (For more discussion of various approximations
in photoionzation, see Refs. 31,32.)

Underlying the photoelecton observables is the photoelectron continuum state |k〉, prepared via photoion-
ization. The photoelectron momentum vector is denoted generally by k = kk̂, in the MF. The ionization
matrix elements associated with this transition provide the set of quantum amplitudes completely defining
the final continuum scattering state,

|Ψf 〉 =
∑∫

|Ψ+; k〉 〈Ψ+; k|Ψf 〉 dk, (2)

where the sum is over states of the molecular ion |Ψ+〉. The number of ionic states accessed depends on the
nature of the ionizing pulse and interaction. For the dipolar case,

Γ̂(E) = µ̂ ·E (3)

Hence,

〈Ψ+; k|Ψf 〉 = 〈Ψ+; k|µ̂ ·E|Ψi〉 (4)

Where the notation implies a perturbative photoionization event from an initial state i to a particular ion
plus electron state following absorption of a photon hν, |Ψi〉 + hν→|Ψ+; k〉, and µ̂ · E is the usual dipole
interaction term 33, which includes a sum over all electrons s defined in position space as rs:

µ̂ = −e
∑
s

rs (5)

The position space photoelectron wavefunction is typically expressed in the “partial waves” basis, expanded
as (asymptotic) continuum eignstates of orbital angular momentum, with angular momentum components
(l,m) (note lower case notation for the partial wave components),

Ψk(r) ≡ 〈r|k〉 =
∑
lm

Ylm(k̂)ψlm(r, k) (6)

where r are MF electronic coordinates and Ylm(k̂) are the spherical harmonics.

Similarly, the ionization dipole matrix elements can be separated generally into radial (energy-dependent
or ‘dynamical’ terms) and geometric (angular momentum) parts (this separation is essentially the Wigner-
Eckart Theorem, see Ref. 34 for general discussion), and written generally as (using notation similar to
35):

〈Ψ+; k|µ̂ ·E|Ψi〉 =
∑
lm

γl,mrk,l,m (7)

Provided that the geometric part of the matrix elements γl,m are known, knowledge of the so-called radial (or
reduced) dipole matrix elements, at a given k, thus equates to a full description of the system photoionization
dynamics (and, hence, the observables). The γl,m includes the geometric rotations into the LF arising from
the dot product in Eq. 7, as well as all other angular-momentum coupling terms.
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For the simplest treatment, the radial matrix element can be approximated as a 1-electron integral involving
the initial electronic state (orbital), and final continuum photoelectron wavefunction:

rk,l,m =

∫
ψlm(r, k)rΨi(r)dr (8)

As noted above, the geometric terms γl,m are analytical functions which can be computed for a given case -
minimally requiring knowledge of the molecular symmetry and polarization geometry, although other factors
may also play a role (see Sect. 3.2.4 for details).

The photoelectron angular distribution (PAD) at a given (ε, t) can then be determined by the squared
projection of |Ψf 〉 onto a specific state |Ψ+; k〉 (see Sect. 3.2), and therefore the amplitudes in Eq. 7 also
determine the observable anisotropy parameters βL,M (ε, t) (Eqn. 1). (Note that the photoelectron energy ε
and (scalar) momentum k are used somewhat interchangeably herein, with the former usually preferred in
reference to observables.) Note, also, that in the treatment above there is no time-dependence incorporated
in the notation; however, a time-dependent treatment readily follows, and may be incorporated either as
explicit time-dependent modulations in the expansion of the wavefunctions for a given case, or implicitly
in the radial matrix elements. Examples of the former include a rotational or vibrational wavepacket, or a
time-dependent laser field. The rotational wavepacket case is discussed herein (see Sect. 3.2.4). The radial
matrix elements are a sensitive function of molecular geometry and electronic configuration in general, hence
may be considered to be responsive to molecular dynamics, although they are formally time-independent in
a Born-Oppenheimer basis. For further general discussion and examples see Ref. 4. Discussions of more
complex cases with electronic and nuclear dynamics can be found in Refs. 36,32,37,9.

Typically, for reconstruction experiments, a given measurement will be selected to simplify this as much
as possible by, e.g., populating only a single ionic state (or states for which the corresponding observables
are experimentally energetically-resolvable), and with a bandwidth dk which is small enough such that the
matrix elements can be assumed constant. Importantly, the angle-resolved observables are sensitive to the
magnitudes and (relative) phases of these matrix elements, and can be considered as angular interferograms
(Fig. 1 top right).

2.5 MF photoionization measurements and matrix element retrieval: approach-
ing the problem and accounting for complexity

As discussed in Sect. 2.2, MF observables may be sought via (1) direct or (2) indirect methods. Following
Sect. 2.4 the difficulty of both methods may begin to become apparent - both require sophisticated measure-
ments and data analysis, and the underlying photoionization dynamics may be very rich. For (1) the aim is
to obtain highly-structured βL,M (ε, t) from “fixed-in-space” molecules, whilst for (2) sufficient measurements
must be made to either reconstruct these observables and/or the underlying matrix elements from β̄L,M (ε, t)
measurements. In both cases experimental measurements are designed, ideally, to avoid averaging over any
correlated DOFs which map into the observables (or otherwise account for them in some manner) - specific
methods are discussed further in Sect. 3.1.

For indirect methods, the MF observables and/or matrix elements are reconstructed or retrieved from the
LF measurements, via inversion or fitting methodologies, and these techniques are the main focus of Sect.
4. The difficulty in matrix element reconstruction in general arises from the fact that there are typically
many component partial waves (matrix elements) for even a simple system, and that determination of
both magnitudes and phases is required. Hence this can be viewed as a form of quantum tomography, or
a specific class of (quantum) phase-retrieval problems. In terms of the MF observable, these properties
result in a quantity that may be highly structured and, hence, is (in general) particularly susceptible to
orientational averaging (Fig. 1). Furthermore, it may be particularly sensitive to averaging over other DOFs
(e.g. vibronic states) and/or molecular dynamics, due to inherent sensitivity of the scattering process to
molecular structure. Whilst a number of direct and indirect techniques have been used to obtain the relevant
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MF observables and/or dipole matrix elements, many outstanding questions remain, and this is an ongoing,
interesting and challenging area of research 11,38.

Although the core physics is complicated, relatively high-dimensionality observables are possible for photo-
electron measurements (Sect. 3.2.5), hence experimental progress can be made to understand these light-
matter interactions. The PAD is the key observable, which may be measured in the LF or MF (see Sect. 2.3),
and additionally interrogated as a function of other experimental parameters: of particular interest (and read-
ily amenable to experimental control) are the ionizing field properties (polarization, intensity, wavelength,
duration), the axis distribution of the molecular ensemble in the LF (alignment), and orientation in the MF.

As a reasonable first approximation, photoionization can be treated as a single active electron (SAE) problem,
and one in which the remainder of the system is static during the photoionization process (impulsive, or
sudden, approximation): this allows the problem to be defined in terms terms of three key components:

1. the initial (ionizing) state (electronic) wavefunction Ψi (and the final ion state is assumed to be identical
in character, minus the ionizing electron Ψ+ = Ψi(N − 1), hence the hole created has the same orbital
structure as the ionizing electron),

2. the structure of the continuum (free electron) wavefunction Ψk(r),

3. the dipole matrix elements coupling these (single electron) wavefunctions.

However, this problem still remains rather complicated (hence interesting), since the structure of the initial
and continuum states depends sensitively on the molecular geometry (atomic positions and electron distri-
bution, i.e. the full vibronic wavefunction) of the ionizing system. Nonetheless, significant progress can be
made in both experimental analysis and ab initio theory in this reduced case, and the approximations are
valid for many interesting real cases (e.g. small, relatively rigid, polyatomics). Naturally, this zero-order
treatment also provides a framework within which other effects can be recognised and understood, in terms
of which physical assumptions are broken. Certain types of experiment may be sensitive to certain effects
and DOFs - for instance, time-resolved observables may map the vibrational dependence, and pulse-intensity
studies may indicate if and when the weak-field approximation breaks down.

3 Concepts & techniques

In this section a more detailed discussion of photoionization is provided, which underpins the quantum state
and MF reconstruction presented in Sect. 4.

3.1 Experimental techniques

Following the above discussions, experimental methodologies for the determination of MF observables can
be viewed from the perspective of direct and indirect techniques.

In the direct case, access to the MF is sought via essentially one of two schemes:

1. Alignment/orientation of the molecular frame (Sect. 3.1.1).

2. Post-hoc reconstruction of the molecular frame from a suitable measurement (Sect. 3.1.2).

Indirect techniques are the main focus of this manuscript, and experimental implications are briefly intro-
duced in Sect. 3.1.3.
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3.1.1 Molecular alignment and control: conforming the MF to the LF

The first category covers a range of techniques. For gas phase experiments, the most common methods
involve creating some form of alignment or orientation 1 in the gas phase molecular ensemble, which defines
a relationship between the LF and MF. In general, measurements made from such an ensemble can be
termed as corresponding to “the aligned frame (AF)”, and may still involve averaging over some DOFs; in
the classical limit of perfect orientation, the AF and MF are conformal/indistinguishable.

Perhaps the simplest AF technique is the creation of alignment via a single-photon pump process (as used in
many resonance-enhanced mulit-photon ionization (REMPI) type experimental schemes, which may even be
rotational-state selected); in this case a parallel or perpendicular transition moment will create a cos2(θ) or
sin2(θ) distribution, respectively, of the corresponding molecular axis. Any such axis distribution, in which
there is a defined arrangement of axes created in the LF, can be discussed, and characterised, in terms of
the axis distribution moments (ADMs). ADMs are coefficients in a multipole expansion, in terms of Wigner
D-Matrix Elements (see Sect. 3.2.4), of the molecular axis probability distribution. These are spherical
tensors, equivalent to density matrix elements 39. Many authors have address aspects of this problem in
the past in frequency-domain work, see, for instance, the textbooks of Zare 34 and Blum 39, treatments for
various experimental cases in Refs. 40,41,42, and application in complete photoionization experiments in Refs.
43,44.

Further control can be gained via a single, or sequence of, N-photon transitions, or strong-field mediated
techniques. Of the latter, adiabatic and non-adiabatic alignment methods are particularly powerful, and
make use of a strong, slowly-varying or impulsive laser field respectively. (Here the “slow” and “impulsive”
time-scales are defined in relation to molecular rotations, roughly on the ps time-scale, with ns and fs
laser fields corresponding to the typical slow and fast control fields.) In the former case, the molecular
axis, or axes, will gradually align along the electric-field vector(s) while the field is present. In the latter,
impulsive case, a broad rotational wavepacket (RWP) can be created, initiating complex rotational dynamics
including field-free revivals of ensemble alignment. Both techniques are powerful, but multiple laser fields are
typically required in order to control more than one molecular axis, leading to relatively complex experimental
requirements. The absolute degree of alignment obtained in a given case is also dependent on a number of
intrinsic and experimental properties, including the molecular polarisability and moment of inertia tensors,
rotational temperature and separability of the rotational degrees of freedom from other DOFs (loosely
speaking, this can be considered in terms of the stiffness of the molecule). Recent studies of molecules
embedded in Helium droplets have addressed some of these issues, achieving stronger and longer lived 3D
alignment. These studies also examined several complications associated with coupling between molecular
and droplet DOFs. Therefore, although general in principle, in practice not all molecular targets are amenable
to “good” (i.e. a high degree of) alignment. For more general details, see, for example, Refs. 45,46,47, and
for applications in photoionization see Sect. 8.2.

Whilst gas phase alignment experiments can become rather complex, multi-pulse affairs, they are increasingly
popular in the AMO community for a number of possible reasons. Conceptually and experimentally, they
are a relatively tractable extension to existing techniques. They are interesting experiments in their own
right, and, practically, they are usually feasible with existing high-power pulsed laser sources in the ns to fs
regime. Alignment techiques have been combined with a range of different probes, including non-linear and
high-harmonic optical probes, as well as photoionization-based methods - for recent reviews see 48,45.

An alternative, very different, technique of orientational control is via embedding the target species in a
matrix, or via deposition on a surface, which defines a spatial orientation. This approach has been taken
primarily by the surface science community, and the required methods may often be readily applied to a range
of targets using existing experimental apparatus and techniques (hence their ready adoption, analogous to the

1In the technical sense, alignment retains inversion symmetry in the LF, while orientation typically implies reduction of
the LF symmetry to match the molecular point group symmetry. The term ”orientation” is used herein as synonomous with
the MF for an arbitrary molecular system, but in some cases - e.g. homonuclear diatomics - alignment may be sufficient for
observation of MF observables.
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ready adoption of multi-pulse laser schemes in the gas phase community), combined with suitably-prepared
surfaces. Although not the topic of this manuscript, there is certainly work in this vein conceptually related
to the discussions herein, including ARPES (angle-resolved photoemission spectroscopy) and SERS (surface-
enhanced, coherent anti-Stokes Raman scattering) studies. In these techniques, molecular orientation is well-
defined, but at the expense of interactions with the bulk - although the latter may also be of interest and/or
probed by the measurement. Examples include ARPES studies in which orbital densities of adsorbed species
are reconstructed (“orbital tomography”) 49,50, and SERS work making use of functionalised nano-particles
for “single molecule” fluorescence studies of vibrational wavepackets 51.

3.1.2 Fixed-in-space molecules: MF via axis reconstruction

The second category covers methodologies which make use of experimental information to reconstruct, post-
facto, molecular alignment at the time of a light-matter interaction. This usually involves making a “kine-
matically complete” class of measurement, which provides the full energy or momentum partitioning of the
products of a light-matter interaction. In order for the alignment of a given axis to be defined in this case,
there must be a clear energy partitioning defining it - typically dissociation is required, although some axes
in a given problem may be inferred from related or proxy measurements. The simplest example is the dis-
sociation of a diatomic molecule, in this case measuring the momentum of just one product atom/ion will
enable the original orientation of the molecule to be determined provided the molecule does not rotate while
dissociating (i.e. photodisociation is also sudden/impulsive, or equivalently geometrically-uncoupled - oth-
erwise this remains a DOF to be averaged over, resulting in “recoil-frame” (RF) measurements!). Combined
with measurement of an electron, in coincidence, the MF photoelectron distribution can be recovered from
a set of such measurements. Recent discussions and reviews of this area can be found in refs. 52,13,53,16,54,
and some (representative) examples from the literature are given in Sect. 8.1.

Further extensions to such a measurement can probe additional dynamics in the MF, for instance electron-
electron correlation effects in double ionization 55. For larger molecules this becomes more complicated, and
additionally requires that axial-recoil conditions are fulfilled (i.e. energy is not partitioned into other DOFs
during dissociation). Such measurements are, therefore, well-suited to diatomics, and small polyatomics,
and light-matter interactions involving core-ionization(s) events. For valence studies these techniques are
less directly applicable, since dissociative events are less common (and may be slow/complex), although
potentially can be applied in Coulomb-explosion imaging (CEI) type scenarios. In CEI methods, intense
fields are used to strip multiple electrons from the target system, causing the molecule to (Coulombically)
explode. Provided the intense pulse is short (relative to time-scales of atomic motion), measurement of
multiple ionic fragments yields a map of the geometry of the system at the instant of the interaction 56,57,58.

Another caveat for this class of measurement is the requirement for coincidence (or covariance) data collec-
tion, which typically limits count rates significantly, as well as the total number of products which may be
feasibly measured - although the requirements may be somewhat relaxed for covariance studies. For these
various reasons, amongst others, these experiments have typically been performed at synchrotons (and,
recently, at FELs) with high repetition rates (high KHz, MHz) and at hard photon energies. However, laser-
based experiments are also relatively common, particularly in the strong-field community, and may become
more so as sources with high-repetition rates and high peak intensities become commercially available.

Recent state-of-the-art MF measurements have successfully measured 4-fold coincidences, and 5-particle
covariance maps, in order to map polyatomic molecules and vibrational dynamics. For a recent example,
illustrating the power of such a technique for CEI imaging of iodopyridine and iodopyrazine, see Ref. 59.
However, to date these techniques have mainly been used as structural (nuclear) probes. In terms of MFPAD
measurements, these techniques remain very challenging, since the CEI schemes required produce many
secondary electrons which cannot typically be distinguished.
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3.1.3 Post-processing & “complete” photoionization studies: MF via reconstruction

A significant issue with “direct” experimental approaches to the MF is the difficulty of the measurement,
and the degree of MF fidelity obtained, particularly in more complex systems. (Related to this is the issue
of whether the free system is measured, or whether it is purturbed in some way, e.g. by an alignment laser
field or a coupled system.) A complementary approach is to employ a post-processing approach in which
underlying MF properties, possibly even the full set of photoionization matrix elements, are sought from
LF or AF measurements, as already introduced in Sect. 2.5. Such schemes are potentially demanding and
complex in terms of the computational effort required to post-process the experimental data, but may also
be significantly less demanding experimentally than direct MF measurements. Such schemes additionally
have the potential to provide more fundamental information on photoionization dynamics.

Experimental techniques to generate suitable datasets for analysis are many and varied. These include
the direct analysis of MF measurements to obtain the underlying photoionization dynamics, the use of
frequency-resolved methods, and the use of molecular alignment techniques. Some representative examples
of such “complete” photoionization studies from the literature are given in Sect. 8.3. The main focus of Sect.
4 is the analysis of time-resolved data from an aligned system with a prepared RWP, although retrieval from
the MF is also investigated herein (Sect. 4.3). Whilst the RWP case is experimentally similar to the “direct”
MF measurement case outlined above, the requirements on the degree of alignment are much reduced,
since the fidelity arises from the analysis, rather than the absolute maximum degree of alignment obtained.
Specifically, the fidelity of the reconstruction can be considered as a result of the total information content
of the time-domain measurement (related to the number of distinct molecular axis distributions probed),
as distinct from the “direct” case which is constrained by a single measurement at the best alignment
or orientation obtained. In practice this alignment needs to be extremely good to truly approach MF
information in general, and this may not be possible in many cases. It will also be constrained in general
by the symmetry of the problem. For an example case study, see Ref. 63, which suggests 〈cos2(θ)〉 > 0.9 as
a minimum requirement, for measurements of relatively simple, cylindrically-symmetric, MFPADs; another
illustrative example of the loss of information in the MF to LF transformation can be found in Ref. 64.

This implies that reconstruction methods may be rather more general, and the RWP case in particular is
expected to be applicable to any molecular system, although outstanding questions on the required and
obtainable information content remain (see Sect. 3.2.5). Questions of fidelity of reconstruction are also
a matter of ongoing research. This will, again, depend on both the type and nature of the experimental
measurements, and the reconstruction methodology, both of which may involve or assume certain additional
DOFs or physical behaviours which are required for tractable theory but may not hold in practice. Examples
include cases with multiple conformers, floppy systems and the presence of additional (e.g. vibrational) dy-
namics. In all cases progress may be possible, but will require additional experimental and/or computational
effort to control, isolate, simulate or reconstruct the additional DOFs. (See Ref. 65 for a “basic” theoretical
vibrational wavepacket example in Na2, and for a more complex case in CS2 Ref. 66.)

A benchmark example is the retrieval of the photoionization dynamics of N2, since this is a simple, fairly rigid,
system amenable to experimental control (NO has also been investigated by a number of authors, see Sect.
8.3). The authors of this manuscript, with a number of collaborators, demonstrated that photoionization
matrix elements can be retrieved for one-photon ionisation of N2 by time resolved measurements of LFPADs
from a rotational wavepacket. The experiments did achieve a relatively high degree of alignment via a
two-pulse pump scheme, with a maximum 〈cos2(θ)〉 of ∼ 0.8, and 11 temporal data-points (obtained over
the half and full RWP revivals) were found to be sufficient for full matrix element retrieval and MFPAD
reconstruction. This methodology, “bootstrapping to the molecular frame”, is the focus of Sect. 4.1 below,
with additional details and results provided for the case of radial matrix element extraction for N2. In follow
up work, it was shown that for molecules with Dnh point group symmetry the retrieval of the MFPAD is
possible directly via a matrix inversion methodology, bypassing the difficulty of extracting the radial matrix
elements, and this is discussed in Sect. 4.2.
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3.1.4 Technology and outlook

A final note on experimental methods is the possibilities afforded by technological (rather than conceptual)
developments. Naturally, the techniques above rely on a certain degree of experimental and technological
sophistication, and this, of course, generally increases over time as a technique matures and “enabling”
technologies develop. Examples, in this context, are the development of, and gradual improvements in,
particle imaging detectors. Such progress allows for more sophisticated experiments with, e.g. multi-particle
coincidence detection, higher detection rates, energy-multiplexed measurements and so on. In short, the
experimental dimensionality or information content can be increased. For developing general methods,
which can be applied in complex cases, this becomes increasingly important (as do related technological
capabilities, such as data storage and processing, to handle the enhanced complexity).

Historically, photoionization measurement capabilities have gone from 1D (flux) and 2D (flux and kinetic
energy) in the early days, advanced to sequential or parallel measurements at different angles for various
flavours of angle-resolved studies, and to full 3D or 4D capabilities in modern “imaging” type systems (flux
and 2D or 3D kinetic energy vector resolution). This is expanded by the possibility of additional experimental
measurement dimensions such as time, polarisation, laser power, wavelength and so forth. Advances in
experimental methods, in particular the development of high count-rate 3D detectors, is ongoing (see, for
examples and historical context, 67,61,68,69,70).

As well as detector technology, general developments in experimental methods, system integration, compu-
tational power and so forth further enable novel techniques and/or fusion of existing methodologies. For
instance, it is of note that with the advent of more sophisticated laser-based techniques, and short-pulse
FELs, the combination of laser alignment techniques with dissociative photoionization measurements is also
now increasingly common. Other examples include increasingly sophisticated multi-pulse measurements and
measurements with shaped laser pulses. An illustrative example of the rich data available from a modern,
sophisticated, experimental scheme - CEI with a pixel-imaging mass-spectroscopy (PImMS) camera and co-
variance analysis - see 58. Further examples of experimental developments from the literature, with respect
to matrix element retrieval, can be found in Sect. 8.3.

3.2 Theoretical techniques

3.2.1 Tensor formulation of photoionization

A number of authors have treated MFPADs and related problems, see Appendix 8.2 for some examples.
Herein, a geometric tensor based formalism is developed, which is close in spirit to the treatments given by
Underwood and co-workers 74,9,64, but further separates various sets of physical parameters into dedicated
tensors. This allows for a unified theoretical and numerical treatment, where the latter computes properties
as tensor variables which can be further manipulated and investigated. Furthermore, the tensors can readily
be converted to a density matrix representation 39,34, which is more natural for some quantities, and also
emphasizes the link to quantum state tomography and other quantum information techniques. Much of
the theoretical background, as well as application to aspects of the current problem, can be found in the
textbooks of Blum 39 and Zare 34.

Within this treatment, the observables can be defined in a series of simplified forms, emphasizing the quan-
tities of interest for a given problem. Some details are defined in the following subsections, and further
detailed in Appendix 9.1.

3.2.2 Channel functions

A simple form of the equations, amenable to fitting, is to write the observables in terms of “channel functions”,
which define the ionization continuum for a given case and set of parameters u (e.g. defined for the MF, or
defined for a specific experimental configuration). Here we briefly introduce the notation, which expresses

the observables βuL,M (Eq. 1) as a tensor product of channel functions (Υu,ζζ
′

L,M ), which collect all of the
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geometric parameters, and ionization matrix elements Iζζ′ . At a basic level, the channel functions can be
viewed simply as defining all of the analytical parameters in a given case; further theoretical details are
unpacked below (Sect. 3.2.4 and Appendix 9.1), and specific cases in Sect. 4.1.7.

Making use of the channel functions, the observables can be written as:

βuL,M =
∑
ζ,ζ′

Υu,ζζ
′

L,M Iζζ
′

(9)

where ζ, ζ ′ collect all the required quantum numbers, and define all (coherent) pairs of components. The
term Iζζ′ denotes the coherent square of the ionization matrix elements:

Iζ,ζ = Iζ(ε)Iζ
′∗(ε) (10)

This is effectively a convolution equation (cf. refs. 74,75) with channel functions, for a given “experiment” u,
summed over all terms ζ, ζ ′. Aside from the change in notation (which is here chosen to match the formalism
of Refs. 76,77,78), see also Sect. 9.1.5), these matrix elements are essentially identical to the simplified (radial)
forms rk,l,m defined in Eqn. 7, in the case where ζ = k, l,m. These complex matrix elements can also be
equivalently defined in a magnitude, phase form:

Iζ(ε) ≡ rζ ≡ rζeiφζ (11)

This tensorial form is numerically implemented in the ePSproc codebase 79. This is in contradistinction to
standard numerical routines in which the requisite terms are usually computed from vectorial and/or nested
summations, and typically implement the full computation of the observables in one computational routine.
The standard approach can be somewhat opaque to detailed interpretation. The PEMtk codebase 80 imple-
ments matrix element retrieval based on this formalism, with pre-computation of all the geometric tensor
components (channel functions) prior to a fitting protocol for matrix element analysis. This is essentially
a fit to Eqn. 9 given a set of βuL,M , with Iζ(ε) as the unknowns (in magnitude, phase form). The main
computational cost of a tensor-based approach is that more RAM is required to store the full set of tensor
variables.

3.2.3 Density matrix representation

The density operator associated with the continuum state in Eq. 2 is easily written as ρ̂ = |Ψc〉〈Ψc|. In the
channel function basis, this leads to a density matrix given by the radial matrix elements:

ρζζ
′

= Iζ,ζ
′

(12)

Since the matrix elements characterise the scattering event, the density matrix provides an equivalent char-
acterisation of the scattering event. An example case is discussed in Sect. 4.1.5 (see Fig. 11); for more
details, and further discussion, see Sect. 9.3. Further discussion can also be found in the literature, see, e.g.,
Ref. 39 for general discussion, Ref. 35 for application in pump-probe schemes.

3.2.4 Full tensor expansion

In more detail, the channel functions can be given as a set of tensors, defining each aspect of the problem.

For the MF:
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β
µi,µf
L,−M (ε) = (−1)M

∑
P,R′,R

(2P + 1)
1
2EP−R(ê;µ0) (13)

×
∑
l,m,µ

∑
l′,m′,µ′

(−1)(µ′−µ0)ΛR′,R(Rn̂;µ, P,R,R′)BL,−M (l, l′,m,m′) (14)

× I
piµi,pfµf
l,m,µ (ε)I

piµi,pfµf∗
l′,m′,µ′ (ε) (15)

And the LF/AF as:

β̄
µi,µf
L,−M (E, t) = (−1)M

∑
P,R′,R

[P ]
1
2EP−R(ê;µ0) (16)

×
∑
l,m,µ

∑
l′,m′,µ′

(−1)(µ′−µ0)ΛR′(µ, P,R′)BL,S−R′(l, l′,m,m′) (17)

× I
piµi,pfµf
l,m,µ (ε)I

piµi,pfµf∗
l′,m′,µ′ (ε)

∑
K,Q,S

∆L,M (K,Q, S)AKQ,S(t) (18)

In both cases a set of geometric tensor terms are required, which are fully defined in Appendix 9.1; these
terms provide details of:

• EP−R(ê;µ0): polarization geometry & coupling with the electric field.

• BL,S−R′(l, l′,m,m′): geometric coupling of the partial waves into the βL,M terms (spherical tensors).

• ΛR′(µ, P,R′): frame couplings and rotations.

• ∆L,M (K,Q, S): alignment frame coupling.

• AKQ,S(t): ensemble alignment described as a set of axis distribution moments (ADMs).

And I
piµi,pfµf
l,m,µ (ε) are the (radial) dipole ionization matrix elements, as a function of energy ε. These matrix

elements are essentially identical to the simplified forms rk,l,m defined in Eqn. 7, except with additional
indices to label symmetry and polarization components defined by a set of partial-waves {l,m}, for polariza-
tion component µ (denoting the photon angular momentum components) and channels (symmetries) labelled
by initial and final state indexes piµi, pfµf . The notation here follows that used by ePolyScat 76,77,78, and
these matrix elements again represent the quantities to be obtained numerically from data analysis, or from
an ePolyScat (or similar) calculation.

Note that, in this case as given, time-dependence arises purely from the AKQ,S(t) terms in the AF case,
and the electric field term currently describes only the photon angular momentum coupling, although can
in principle also describe time-dependent/shaped fields. Similarly, a time-dependent initial state (e.g. a
vibrational wavepacket) could also describe a time-dependent MF case.

It should be emphasized, however, that the underlying physical quantities are essentially identical in all
the theoretical approaches, with a set of coupled angular-momenta defining the geometrical part of the
photoionization problem, despite these differences in the details of the theory and notation.

3.2.5 Information content

As discussed in ref. 38, the information content of a single observable might be regarded as simply the
number of contributing βL,M parameters. In set notation:

M = n{βL,M} (19)
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whereM is the information content of the measurement, defined as n{...} the cardinality (number of elements)
of the set of contributing parameters. A set of measurements, made for some experimental variable u, will
then have a total information content:

Mu =
∑
u

n{βuL,M} (20)

In the case where a single measurement contains multiple βL,M , e.g. as a function of energy ε or time t, the
information content will naturally be larger:

Mu,ε,t =
∑
u,ε,t

n{βuL,M (ε, t)} (21)

= Mu ×Mε,t (22)

where the second line pertains if each measurement has the same native information content Mε,t per energy
and time point, independent of any other experimental parameters u. It may be that the variable ε is
continuous (e.g. photoelectron energy), but in practice it will usually be discretized in some fashion by the
measurement.

In terms of purely experimental methodologies, a largerMu clearly defines a richer experimental measurement
which explores more of the total measurement space spanned by the full set of {βuL,M (k, t)}. However, in this
basic definition a larger Mu does not necessarily indicate a higher information content for quantum retrieval
applications. The reason for this is simply down to the complexity of the problem (cf. Eqn. 9), in which
many couplings define the sensitivity of the observable to the underlying system properties of interest. In
this sense, more measurements, and larger M , may only add redundancy, rather than new information.

A more complete accounting of information content would, therefore, also include the channel couplings,
i.e. sensitivity/dependence of the observable to a given system property, in some manner. For the case of a
time-dependent measurement, arising from a rotational wavepacket, this can be written as:

Mu = n{ΥuL,M (ε, t)} (23)

In this case, each (ε, t) is treated as an independent measurement with unique information content, although
there may be redundancy as a function of t depending on the nature of the rotational wavepacket and channel
functions. This is explored further in Sect. 4.1.7. (Note this is in distinction to previously demonstrated
cases where the time-dependence was created from a shaped laser-field, and was integrated over in the
measurements, which provided a coherently-multiplexed case, see refs. 81,82,83 for details.)

3.3 Retrieval & reconstruction techniques

Following the tensor notation presented above, a “complete” photoionization experiment can be characterized
as recovery of the matrix elements Iζ(ε) from the experimental measurements or, equivalently, the density
matrix ρζζ

′
. (For further discussion, see refs. 15,12,11.) This may be possible provided the channel functions

are known, and the information content of the measurements is sufficient. (Note here that the matrix
elements are assumed to be time-independent, although that may not be the case for the most complicated
examples including vibronic dynamics 38.)

Additionally, for schemes making use of molecular alignment, the molecular axis distributions must also be
characterised. For the rotational wavepacket case, this is discussed in Sect. 3.3.1. This can actually be
considered as a reduced-dimensionality MF signal retrieval problem, and also forms the first step in both
the generalised “bootstrapping” method (Sect. 4.1) and matrix inversion techniques (Sect. 3.3.3).
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Of particular import for matrix element retrieval is the phase-sensitive nature of the observables, which
is required in order to obtain partial wave phase information. PADs can also be considered as angular
interferograms, and reconstruction can be considered conceptually similar to other phase-retrieval problems,
e.g. optical field recovery with techniques such as FROG 84, and general quantum tomography 85.

3.3.1 Freely rotating molecules: MF via time evolution

The efforts to align and orient molecules discussed in the previous sections necessarily led to detailed studies
of the rotational dynamics of molecules after interaction with a non-resonant femtosecond laser pulse. A sig-
nificant outcome of these studies has been the development of a reliable model capable of accurate simulations
of rotational wavepacket dynamics that quantitatively agree with experimental results. By measurement of
a signal from a time evolving rotational wavepacket, this ability to accurately simulate the wavepacket dy-
namics can be used to reconstruct the measured signal in the molecular frame. Since in this case the time
resolved measurement constitutes a set of measurements of the same quantity from a variety of molecular
axes distributions, it is reasonable to conclude that if the axes distributions are known, and provided a large
enough space of orientations is explored by the molecule over the experimental time window, the molecular
frame signal should be extractable.

This is relatively straight forward for a signal that is a single number (scalar) in the MF for a given po-
larization of the light, such as the photoionisation yield. Such a signal may, in general, be expressed as an
expansion,

S(θ, χ) =
∑
jk

CjkD
j
0k(θ, χ), (24)

where θ and χ are the MF spherical polar and azimuthal angles of the linearly polarized electric field vector
generating the signal; Cjk are unknown expansion coefficients; and Dj

0k are the Wigner D-Matrix elements,
a basis on the space of orientations. A time resolved measurement of S from a rotational wavepacket is the
quantum expectation value of this expression,

〈S〉(t) =
∑
jk

Cjk〈Dj
0k〉(t). (25)

Since the rotational wavepacket can be accurately simulated, the 〈Dj
0k〉(t) are considered known. The time

resolved signal 〈S〉(t) being measured, the unknown coefficients Cjk can be determined by linear regression,
and the molecular frame signal in Eq. 24 constructed. In this form the method was initially applied to
strong field ionization and dubbed Orientation Reconstruction through Rotational Coherence Spectroscopy
(ORRCS) 86,87. It has since been applied to strong field ionization of various molecules 88,89,90, strong
field dissociation 91 and few-photon ionization 92. (As hinted at in Sect. 3.1.1, a large range of other
experimental methods have also addressed alignment and orientation dependence and retrieval, other recent
examples include Coulomb-explosion imaging 57, high-harmonic spectroscopy 93,94, optical imaging 95 and
rotational echo spectroscopy 96, see Refs. 97,45 for further discussion.)

The case of PADs is a more challenging one, since they are not generally described by Eq. 24. Instead, both
LFPADs and MFPADs are determined by the radial dipole matrix elements as described above (Sects. 2.4,
3.2.2). However, the correspondence of the problem with an equation of the form of Eqn. 25 - essentially a
convolution - can be made. This is discussed in detail in Ref. 64. In the current case Eqns. 9, 18 can be
rewritten in a similar form to Eqn. 25 by explicitly separating out the axis distribution moments AKQ,S(t)
and collapsing all other terms. The case of photoionization from a time-dependent ensemble can then be
reparametrized as:

β̄uL,M (ε, t) =
∑
K,Q,S

C̄LMKQS(ε)AKQ,S(t) (26)
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Here the set of axis distribution moments can thus be viewed as modulating all observables βuL,M (t). The

unknowns, C̄LMKQS and axis distribution moments AKQ,S(t), can be retrieved in a similar manner to that
discussed for the simpler scalar observable case above, i.e. via linear regression with simulated rotational
wavepackets.

In practice this equates to (accurately) simulating rotational wavepackets, hence obtaining the corresponding
AKQ,S(t) parameters (expectation values), as a function of laser fluence and rotational temperature. Given
experimental data, a 2D uncertainty (or error) surface in these two fundamental quantities can then be
obtained from a linear regression for each set of AKQ,S(t). The closest set of parameters to the experimental
case is then determined by selection of the best results (smallest uncertainty) from such a parameter-space
mapping, which constitutes determination of both the rotational wavepcket (hence AKQ,S(t)) and C̄LMKQS(ε).
Optimally, the corresponding physical properties can be cross-checked with other experimental estimates for
additional confirmation of the fiedelity of the protocol, although this may not always be possible. Note that,
in this case, the photoionization dynamics are phenomenologically described by the real parameters C̄LMKQS ,
but details of the matrix elements are not obtained directly; however, these parameters can be further used
for the matrix inversion method (Sect. 3.3.3), and are formally defined therein (Eqn. 30).

3.3.2 Fitting methodologies

The nature of the photoionization problem suggests that a fitting approach can work, in general, which can
be expressed (for example) in the standard way as a (non-linear) least-squares minimization problem:

χ2(Iζζ
′
) =

∑
u

[
βuL,M (ε, t; Iζζ

′
)− βuL,M (ε, t)

]2
(27)

where βuL,M (ε, t; Iζζ′) denotes the values from a model function, computed for a given set of (complex) matrix

elements Iζζ′ , and βuL,M (ε, t) the experimentally-measured parameters, for a given configuration u. Implicit
in the notation is that the matrix elements are independent of u (or otherwise averaged over u). Once the
matrix elements are obtained in this manner then MF observables, for any arbitrary u, can be calculated.
An example of such a protocol - specifically one based on time-domain measurements and making use of
a rotational wavepacket - is shown in Fig. 1, and the practical realisation of such a methodology is the
topic of Sect. 4.1 (see also refs. 38,98 for further discussion). As discussed in Sect. 3.1.3, other choices of
experimental measurements may also be made, for instance direct MF measurements or frequency-domain
measurements, some representative examples from the literature are given in Sect. 8.3.

Although in principle a very general approach, outstanding questions with such protocols remain, in partic-
ular fit uniqueness and reproducibility, the optimal measurement space u - or associated information content
Mu - for any given case or measurement schema, and how well they will scale to larger problems (more
matrix elements/partial waves). (Again, see refs. 38,98 for further discussion.)

3.3.3 Matrix inversion methodologies

An alternative methodology has recently been demonstrated, in which the MF observables are determined
via a matrix inversion protocol 75. This method does not require - potentially time-consuming - numerical
fitting, although still requires knowledge of the channel functions. A full outline of the matrix inversion
method is given in Appendix 9.4, and a brief overview below.

For the matrix-inversion approach, the relationship between the LF/AF and MF is considered in terms of a
matrix transform:

Cmol = GClab, (28)
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where C are a set of coefficients that can be used to construct the βLM in the LF and MF. Explicitly,

CLMPR (ε,∆q) =
∑
ζζ′

Iζζ
′
(ε)Γζζ

′LM
PR∆q (29)

for the MF (Cmol), and:

C̄LMKQS(ε) =
∑
ζζ′

Iζζ
′
(ε)Γζζ

′LM
KQS (30)

for the LF (Clab). We refer to Γ as the “reduced” channel functions - similar to the channel functions
defined previously (Sect. 3.2.2), but without the inclusion of alignment (Clab) or frame rotation effects
(Cmol). These are explicitly indexed by all required quantum numbers for the LF and MF definitions (as
previously, ζ denotes all other required indices). Again, full details can be found in Appendix 9.4. Given
these, it can be shown for molecules with Dnh point group symmetry that a transformation matrix can be
written as:

GLMP∆q
L′M ′KS = Γζζ

′LM
P0∆q (Γζζ

′L′M ′

K0S )+ (31)

Here ()+ indicates the Moore-Penrose inverse matrix of a reduced channel function, which can be computed
numerically. Significantly, the matrix elements are not required for inversion, provided that Clab is known
(e.g. from a measurement), and that the reduced channel functions are computed. Therefore, this method
does not provide a route to reconstruction of a full set of matrix elements, but can be used to obtain
MFPADs, and has been demonstrated to work for linear (N2, D∞h symmetry) and asymmetric top (C2H4,
D2h symmetry) examples. Although not as powerful as a complete experiment methodology, this technique
is expected to scale more readily to larger problems (more matrix elements), for which a complete matrix
element retrieval via fitting may be impossible.

3.3.4 Numerical implementations

The numerical implementation of the methodologies defined above has been variously implemented in the
past, including code in Fortran, C and Matlab, often for specific cases only. Recently a unified Python
codebase/ecosystem/platform has been in development to tackle various aspects of photoionization problems,
including ab initio computations and experimental data handling, and (generalised) matrix element retrieval.
The “Quantum Metrology with Photoelectrons” platform is briefly introduced here, and is used for the
analysis in Sects. 4.1 and 4.3. Fig. 2 shows some of the main tools and tasks/layers.

The two main components of the platform used herein are:

• The Photoelectron Metrology Toolkit (PEMtk) codebase 99,80 aims to provide various general data
handling routines for photoionization problems. At the time of writing, simulation of observables and
fitting routines are implemented, along with some basic utility functions. Further implementation
details can be found in Sect. 9.5, and the PEMtk documentation 99.

• The ePSproc codebase 100,79,101 aims to provide methods for post-processing with ab initio radial dipole
matrix elements from ePolyScat 77,76,78,102, or equivalent matrix elements from other sources, including
computation of AF and MF observables. Manual computation without known matrix elements is also
possible, e.g. for investigating limiting cases, or data analysis and fitting. These routines also provide
the backend functionality for PEMtk fitting routines. See Sect. 9.5 for additional notes.

Note that, at the time of writing, rotational wavepacket simulation is not yet implemented in the PEMtk
suite, and these must be obtained via other codes.
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A Docker-based distribution of various codes for tackling photoionization problems is also available from the
Open Photoionization Docker Stacks project, which aims to make a range of these tools more accessible to
interested researchers 103.

Figure 2: Quantum metrology with photoelectrons platform outline.

4 Reconstruction examples & recent developments in time-
domain measurements

In this section/the remainder of the manuscript, reconstruction of MFPADs from time-domain measurements
are considered using two methodologies:

1. “Bootstrapping” to the MF 11,38,98. The protocol outline is shown in Fig. 3, and discussed in Sect.
4.1.

2. Matrix reconstruction with Moore-Penrose inversion 75. The protocol outline is shown in Fig. 4, and
discussed in Sect. 4.2.

The techniques are closely related, and both make use of rotational wavepackets (geometrical coherences)
to mediate the LF/AF information content of a set of measurements in the time-domain, but differ in the
“directness” of the reconstruction. In the former case, the aim is full matrix element retrieval (Sect. 4.1.4) or,
equivalently, continuum density matrix reconstruction (Sect. 4.1.5), and the MFPADs can then be computed
from these “complete” results (Sect. 4.1.6). In the latter case of matrix reconstruction the MFPADs are
determined, essentially, via a transformation matrix (Sect. 4.2), and full matrix element retrieval is not
necessary. The former is therefore a full quantum state retrieval or quantum tomography, whilst the latter
represents a reconstruction of the MF observables which is more akin to classical tomographic methods,
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albeit with some phase information retained. However, the matrix reconstruction method does not require
time-consuming data fitting, and should also scale more readily to larger systems (with some caveats), so
should be advantageous in problems where only the MFPADs are sought.

Additionally, matrix element retrieval from MF observables is briefly addressed, the protocol is outlined
in Fig. 5, and discussed in Sect. 4.3. This protocol is essentially identical to the level 2 bootstrapping
case, but with different geometric parameters and input dataset. This provides a route to quantum state
reconstruction from direct MF measurements, or reconstructed MF observables, hence provides a protocol
which can be used to extend the matrix inversion method if desired, albeit with associated information
content restrictions.

Finally, it is of note that the MF matrix element retrieval protocol of Fig. 5 is rather generic, and also
forms the basis for other similar methods, e.g. cases where LF measurements are obtained as a function
of polarization geometry. The difference in general is the exact form and information content of the input
dataset, and the geometric parameters required for the given case (model).

The PEMtk python package 99,80 currently implements the level 2 bootstrapping routines (Fig. 3), and MF
retrieval (Fig. 5), and full computational notebooks, including source data and numerics, for these examples
are available online 3. The matrix inversion technique will be implemented soon, examples shown herein are
reproduced from ref. 75. It is hoped that interested readers will make use of these materials, and that this
presentation will encourage other readers to try (and build upon) what has - up until quite recently - been
a rather challenging and involved numerical analysis task. A full list of resources is given in Sect. 7, and
additional numerical notes in Sect. 9.5.
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Bootstrapping protocol outline

Bootstrap level 1:
Alignment retrieval

(linear regression + uncertainty surface map)

Bootstrap level 2:
Matrix element retrieval

(non-linear fitting)

Matrix elements MF observables

Linear regression
(Determine C params)

Iterate/map trial
ADMs(fluence, temp)

Uncertainty surface map

Alignment (ADMs)

Compute model observables
for trial matrix elements

Calculate residuals

Check convergence

Iterate trail
matrix elements

Alignment calculations
ADM(fluence, temp)

AF/LF measurements

Geometric parameters
(Channel functions)

Figure 3: Basic bootstrap protocol outline. (See also Fig. 1.) Filled shapes indicate (upper) required inputs
to the fitting stages (experimental measurements, trial ADMs, and geometric parameters), (lower) the final
outputs (ADMs, matrix elements and MF observables).
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Matrix inversion protocol outline

Alignment retrieval
(linear regression + uncertainty surface map)

MF retrieval
(matrix inversion)

MF observables Matrix elements?

Linear regression
(Determine C params)

Iterate/map trial
ADMs(fluence, temp)

Uncertainty surface map

Alignment (ADMs) C params

Compute Moore-Penrose inverse

Compute MFPADs

Alignment calculations
ADM(fluence, temp)

AF/LF measurements

Geometric parameters
(Reduced channel functions)

Figure 4: Matrix inversion protocol outline. Filled shapes indicate (upper) required inputs to the fit-
ting stages (experimental measurements, trial ADMs, and geometric parameters), (lower) the final outputs
(ADMs, and MF observables), matrix elements may also be obtained via further treatment of the MF ob-
servables (Sect. 4.3). Note that the ADM retrieval step is the same as the level 1 bootstrapping stage
(Fig. 3).
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MF fitting protocol outline

Matrix element retrieval
(non-linear fitting)

Matrix elements

Compute model observables
for trial matrix elements

Calculate residuals

Check convergence

Iterate trail
matrix elements

MF measurements

Geometric parameters
(Channel functions)

Figure 5: MF matrix element retrieval protocol outline. Filled shapes indicate (upper) required inputs to
the fitting stages (experimental measurements and geometric parameters), (lower) the final outputs (matrix
elements). Note that this is essentially identical to the level 2 bootstrapping protocol (Fig. 3), except with
MF observables as the input. This can also be viewed as a generic model protocol, subject to the given set
of measurements and associated channel functions.
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4.1 Bootstrapping to the MF example case

The “generalised bootstrapping” methodology proceeds via a multi-stage fitting protocol to obtain both the
AF axis distribution (level 1 of the bootstrap, linear fit), and the photoionization matrix elements (level
2 of the bootstrap, non-linear fit). A general overview is given in Fig. 1, and a more detailed schematic
overview is given in Fig. 3. In the simplest case (as illustrated), this proceeds in a direct manner, and a final
set of results are obtained. However, further bootstrapping - in the statistical sense - can also be employed
to probe the fidelity of the reconstruction with different samples from the source data (typically sub-sets
from the measured time-steps and/or βLM parameter sub-sets), to further test the robustness of the results,
and estimate uncertainties and/or improve upon them. Some of these possibilities are explored below, and
further details may also be found in Refs. 11,38,98 (and references therein).

4.1.1 Bootstrapping basics: dataset and setup

For the example case, synthetic data was used, although the dataset was inspired by ref. 98. In that case,
experimental results were obtained via a (dual) pump-probe scheme, where the IR pump pulses prepared
a rotational wavepacket in N2, and a time-delayed XUV probe pulse ionized the sample - this scheme is
illustrated in Fig. 1. Multiple channels were probed in this manner, for a range of time-delays, to provide
a dataset of AF-βLM (E, t) parameters. Here the focus is on the photoionization step, information content
and further investigation of the retrieval routines; this is facilitated by the following choices and data:

1. The same rotational wavepacket & molecular axis distribution as obtained experimentally is assumed.
Consequently, the 1st (linear) stage of the bootstrapping protocol is not investigated herein. Although
this may seem like a drastic omission, in general this stage of the methodology is expected to be
quite robust, and this has been demonstrated in various investigations of rotational wavepackets and
molecular alignment techniques, see discussion in Sect. 3.3.1.

2. To simulate the observables, photoionization matrix elements from ePolyScat 77,76,78,102 calculations
were used. The calculations made use of N2 electronic structure input, computed with Gamess 105,106

(RHF/MP2/6-311G, bond length 1.07 Å). In the example illustated herein, matrix elements for Eke =
1 eV were used, and are given explicitly in Table 1. This, naturally, also provides a means for direct
comparison and fidelity analysis of the retrieval protocol (Sect. 4.1.4); the density matrix can also be
used for analysis (Sect. 4.1.5). In the current study only ionization of the 3σg orbital (HOMO) is
investigated, corresponding to formation of X2Σ+

g ionic ground-state, i.e. N2(X1Σ+
g ) → N+

2 (X2Σ+
g ),

generically denoted as the X-channel, or via the ionizing orbital as N2(3σ−1
g ), for a more compact

notation.

3. To investigate limitations of the numerical routines, noise and other artifacts can be added to the
simulated data. Different sub-sets of the data can also be readily analysed and compared.

4. Finally, it is of note that the numerical implementations are structured as a set of tensors, as close as
possible to the formalism given above (Sect. 3.2.1). This provides a means to further investigate the
information content of various parts of the problem, and investigate their influence on the retrieval.
In particular, these can indicate aspects of the data which may be most sensitive to particular matrix
elements, most susceptible to noise and so forth. This is explored in Sect. 4.1.7

The sample dataset used for the results presented herein is illustrated in Figure 6 and, as mentioned previ-
ously, full numerical data can be accessed online (Sect. 7). In this case only a 1 ps subset of the simulation
data was used, over the main revival feature. Figure 6 shows both the full simulation results and the sub-
selected points (13 data points) with random noise added (up to 10%), the latter is used as the input dataset
for matrix element retrieval in the following sections.
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Figure 6: Simulated data for N2: (Upper pair) (a) Axis distribution moments (ADMs, AKQ,S(t)) and (b)
corresponding axis distribution maps P (θ, t). (Lower pair) (c) Calculated observables, βL,M parameters
(solid lines) and sub-selected data points (dashed lines) with random noise added (up to 10%) as used for
the reconstruction protocol, (d) full theoretical I(θ, t) maps (ideal case with no added noise).
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Figure 7: Sample results from 1000 fits with noisy data, showing all fits with χ̄2 < 2.4× 10−4.
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Figure 8: Statistics for the 349 best fit results (χ̄2 < 2.3 × 10−4). Plots show magnitudes (top) and phase
(bottom) parameters, labelled by (l,m), with spread proportional to the number of results and colour-
mapped by χ̄2 . Note the clustering by χ̄2, where each cluster constitutes a viable set of matrix elements
(particularly in φ3,±1 terms) , and the lack of variation for φ1,−1, which was fixed as a reference.
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Figure 9: Best fit results (minimum χ̄2 only) with uncertainty estimation. Plots show original simulation
(solid lines), simulation with noise used for fitting (dashed lines with ‘+’ markers) and mean values ±1σ
(filled bands). Note that (spurious) β3,0 data is present in the input noisy data, but not in the outputs, as
defined by symmetry.

4.1.2 Bootstrapping basics: fit setup

To fit the simulated data, a set of fitting parameters were defined in (magnitude, phase) form. In this case,
the parameter set was simply defined from the input matrix elements, resulting in 6 complex radial matrix
elements defining the problem. This equates to 2n parameters to determine in magnitude-phase form, or,
if only relative phases are to be obtained, 2n − 1 parameters, where the remaining phase is defined as a
reference, either pre or post fit. Similarly, if only relative magnitudes are obtained, the total number of
parameters is reduced to 2n − 2. In general this step in the protocol may require manual configuration for
the problem at hand, based on the symmetry of the system. The input matrix elements are listed in Table
1. Of particular note in this case is that only l = 1, 3 partial-waves are present, and the two continuum
symmetries - σu and πu - which correlate with m = 0 and m = ±1 respectively, and correspond to parallel
and perpendicular polarization geometries in the molecular frame. Furthermore, the m = ±1 pairs are
identical in this case. Because the l,±m indices are unique, they will be used generally as short-hand labels
for the matrix elements, e.g. |1,±1〉 corresponds to the |ζ〉 = |πu, 1,±1,∓1〉 continuum component (full
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matrix element), and φ1,±1 corresponds to the phase of this component.

In the current demonstration case:

• A standard Levenberg-Marquardt least-squares minimization was used.

• 11 of the 12 parameters were allowed to float freely (i.e. no symmetry relations were imposed a priori),
with phases bounded to −π ≤ φ ≤ π.

• φ1,−1 was set as a reference phase.

• To gain insight into the efficiency of the fitting routine, the validity of the methodology and the
uniqueness of the fit results (Sect. 4.1.4), 1000 fits were performed on the same dataset, each seeded
with randomised parameter values.

• Convergence criteria were set as a minimum gradient reduction of 1× 10−8, but fits were also capped
by the total number of function evaluations. Whilst this prevents run-away cases, it also constitutes a
second convergence criteria.

• Results herein are categorized by reduced χ̄2 values (χ̄2 = χ2/(N −Nvars), where N is the number of
data points, and Nvars the number of parameters) unless otherwise noted.

• Further details of the codebase and numerical implementation can be found in Sect. 9.5.

This methodology amounts to a statistical sampling of the solution hyperspace, which may be expected to
contain some local minima in general high-dimensional cases. Running in parallel on 20 (logical) cores of an
AMD Threadripper 2950X based workstation, this required 5GB of RAM and took on the order of 2 hours
(note that the time per fit cycle had large variance, since convergence time depends on the start parameters);
further benchmarks for the current codebase can be found in the PEMtk documentation 99.

4.1.3 Bootstrapping basics: fit results

Results are summarised broadly in Fig. 7, which shows the best fit results over the fits. A few (tentative)
conclusions can be quickly drawn from this:

1. The results appear to indicate a well-defined, single global minima was found, with χ̄2 = 2.291× 10−3,
and 203 fits (20%) obtained this value.

2. There are additional close-lying bands with χ̄2 < 2.3× 10−3. In the test case, 349 fits (35%) obtained
this region of the fitting space. These results may be due to local minima, or simply fits which didn’t
quite converge for numerical reasons (e.g. reached the upper limit of iterations in fitting protocol); fur-
ther exploration to identify whether these sub-sets of parameters are significantly different is therefore
required.

3. There are multiple bands of fits which converged to higher χ̄2; since there is a large step to the first of
these (χ̄2 = 2.312×10−3), and they appear with much lower frequency, these are most likely indicative
of local minima.

4.1.4 Bootstrapping basics: retrieved parameter sets & fidelity

To drill down into the results, the values and clustering of the retrieved parameter sets can be investigated,
as well as the overall quality of the fitting. Fig. 8 illustrates the spread in retrieved parameters over the
best fit region, and Fig. 9 shows the overall quality of the fits in this region. For the purposes of discussion,
each band observed in Fig. 7 will be described as a χ̄2 cluster or group, assumed to equate to a viable set
of retrieved parameters, and the best such set should equate to the ”true” values, i.e. the photoionization
matrix elements, if the methodology is successful and there is a well-defined global minima. Again, some
tentative conclusions can be drawn:
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1. The results for the magnitudes show very little difference within each χ̄2 cluster, and closer inspection
reveals that values between clusters are typically within 5%, with the exception of the |3,±1〉 case
which shows a larger spread. This indicates a good agreement in all results.

2. The phase results broadly fall into two classes, (a) cases which show good agreement within a χ̄2

cluster, and (b) cases which have two values per χ̄2 cluster. Additionally there is a larger spread in
the values between clusters in phase space, and this is again most apparent for the |3,±1〉 case, which
spans the full −π ≤ φ ≤ π phase range. Note that there is no spread in the φ1,−1 (phase) parameter,
this was fixed as a reference phase in the current case, with φ = −0.861.

3. The well-defined grouping here indicates that the retrieved parameter sets are unique for each χ̄2

cluster, and each case can be regarded as a distinct, viable, parameter set to be futher investigated; a
priori it is expected that the lowest χ̄2 should be the true result, but in practice this may not always
hold depending on the data.

4. The parameters with split/pairs of values are indicative of cases where there is an insensitivity in the
fit. In this case, the |3,±1〉 case shows an insensitivity to the sign of the phase, which appears as a
splitting due to the mod (π) nature of the result. There is a slight bias in the results towards one of
the pair in each case, though this may be a statistical artiefact. (This type of effect will be discussed
further below.)

To further investigate the parameter sets, a correlation pair/matrix representation can be used. For the
phases, an example is shown in Fig. 10. In this plot each parameter is shown as a function of all other
parameters for each set (fit), and coloured by χ̄2. This results in a rather complex, but informative, rep-
resentation. In this example the phases were “corrected”, with the reference value set to zero in order to
illustrate general trends (i.e. as would typically be the case when an absolute reference value is not known
a priori), which results in a zero spread for this parameter (top left panel in Fig. 10). Additionally, the
ranges are wrapped to mod (π), keeping positive values only, thus collapsing the ± pairs observed in Fig.
8 for φ3,±1. The bottom row and final column on the right of Fig. 10 show patterns of the parameters
with χ̄2 value. Of particular note here are the curves visible in most cases: these indicate the curvature
of the χ̄2 hypersurface with respect to the given coordinate (parameter), where a steeper curve indicates
how well defined a given parameter is. The remaining correlation plots indicate the spread of individual
parameters (diagonal panels), and parameter-paramter correlations (off-diagonal panels). In general good
clustering is observed for the lowest χ̄2 values, consistent with the expectations from Fig. 8, with more
spread apparent in higher-valued results. For the phases with ± pair splittings - for example the 2nd column
in Fig. 10 - characteristic V shapes are observed, fanning out from the best-fit cluster as a function of χ̄2;
these correspond to cases where the ± pairs are not wrapped (corrected) to the same value, hence indicate
larger uncertainties in these parameter sets. Some outlier parameter sets can also be seen in this plot, for
instance the single points visible to the right of the panels in the 2nd column of Fig. 10, which are correlated
with larger χ̄2 values (bottom panel of the column).

To investigate the fidelity of the results in this test case the best parameter set(s) can be compared with
the input matrix elements, and results are presented in Table 3. In this comparison, uncertainties on the
retrieved parameters were estimated statistically, based on the standard deviation in the best fit results for
the lowest χ̄2 group; in this case it is of note that no “experimental” uncertainties were included in the
fitting, so the estimates herein indicate purely the error in the retrieval procedure with noisy data (without
noise, essentially perfect results are found in this case).

• The final results are generally quite close to the inputs. In this case, the 10% random noise essentially
translates to a similar retrieval uncertainty in the magnitudes, although there is also a notable decrease
in accuracy with the |3,±1〉 case, and significant increase in accuracy for the σu cases.

• The absolute phase values appear to be quite far off in some cases, but the phase corrected values
typically look quite reasonable; this is consistent with a lack of sensitivity in the test dataset to the
sign of the phases (as discussed elsewhere), but the remapped phases (0 : π) are generally precise.

33



Additionally, the “absolute” phases given are averaged over all ± pairs, hence end up quite close to
zero, whilst the “corrected” phases are remapped before averaging. In general the former is, of course,
not desirable, but serves to illustrated the type of issue that may arise in a retrieval protocol.

• With the exception of |3, 0〉 and |1 − 1〉, all remapped parameters are within 10% of the reference
values.

• For the φ3,0 it appears that the value is not well-defined in the data, and is different from the reference
value by ∼ π/4.

• For φ1−1 the absolute error is, indeed, small, but since this is close to zero, and should be defined as
zero in the phase corrected case, the percentage error appears large, although the absolute value is
close to the true value.

• The doubly-degenerate |πu, l,±1〉 cases are found to have approximately the same magnitudes and
phases in the free fit. In this case this is expected from the input values, hence indicates a good fit
result. In general, if known a priori, such constraints can also be included in the fitting protocol, and
should result in faster and more precise results where there are significant symmetry constraints on
the results.

• The differences between the data and reference values are much larger than the standard deviation of
the fits. This is indicative of a good (close/singular) batch of fits, with a unique global minimum, but
reveals that the results obtained are not perfect - as expected for noisey data. Adding more data-points
to the fit, and/or using higher fidelity data would help in this case.

• Alternative uncertainty estimations can be obtained from the individual parameter set results, based
on the curvature of the χ2 hyperspace w.r.t. each parameter, or w.r.t. to all other parameters 107,108.
In testing, only the first approach was considered, making use of values returned by the lmfit library
routines 109 from inversion of the Hessian matrix (see Sect. 9.5); however, this value was not found to
be useful in many cases here, with relative errors into the thousands of %, likely due to the strongly-
correlated nature of the fit. The 2nd approach has been used previously, but is significantly more
time-consuming (each test value necessitates a refitting of all other parameters), hence statistical
uncertainties may represent the best approach for fast and robust estimations.

• As noted above, although noise was added to the simulated data prior to fitting, experimental/data
uncertainties were not included in the fitting. In general these may be expected to be relatively small
for β parameters obtained via imaging-type experiments with good S:N (for instance, the results of
Refs. 107,98), but may remain significant for absolute count-rates (i.e. β0,0), and consequently are
expected to map to larger uncertainties in the absolute magnitudes. However, fitting to count-rate
normalised data (angular distributions only) can mitigate this effect, as was explored in the original
demonstration of the technique 98, which returned accurate relative magnitudes and MFPADs for the
X-state with experimental uncertainities typically < 10%.
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comp m p labels
Cont l m µ

PU 1 -1 1 1.163-1.354j 1.785 -0.861 1,-1
1 -1 1.163-1.354j 1.785 -0.861 1,1

3 -1 1 -0.803-0.017j 0.803 -3.120 3,-1
1 -1 -0.803-0.017j 0.803 -3.120 3,1

SU 1 0 0 -2.317+1.359j 2.686 2.611 1,0
3 0 0 1.106-0.087j 1.109 -0.079 3,0

Table 1: Input matrix elements for the simulated data, from ePolyScat calculations for N2 at 1 eV, (comp)lex
values, and in (m)agnitude and (p)hase form. Note that the continuum symmetry is split into PU and SU
components, correlated with µ = ±1 and µ = 0 respectively, i.e. perpendicular and parallel MF components;
for brevity the matrix elements will be labelled simply by |l,m〉 in the text in general.

Type m p pc labels
Cont l m

PU 1 -1 1.614 -0.859 0.000 1,-1
1 1.614 -0.861 0.005 1,1

3 -1 1.143 0.144 2.059 3,-1
1 1.142 0.143 2.059 3,1

SU 1 0 2.653 2.357 2.987 1,0
3 0 1.144 -0.785 0.154 3,0

Table 2: Retrieved values for (m)agnitudes, (p)hases and “corrected” phases (pc).

Figure 10: Example correlation (pair) plot for retrieved phases. Note in this case the reference phase (top
left panel) has been set to 0 to illustrate general patterns in the retrieved parameter sets. In general, the
curvature indicates how well-defined a given parameter is, whilst V-patterns indicate cases with ±φ pairs.
The bottom row and final column on the right show patterns of the parameters with respect to χ̄2.
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l,m 1,-1 1,1 3,-1 3,1 1,0 3,0
Type Source dType

m mean num 1.614 1.614 1.143 1.142 2.653 1.144
ref num 1.785 1.785 0.803 0.803 2.686 1.109
diff % 10.581 10.600 29.733 29.715 1.264 3.030

num -0.171 -0.171 0.340 0.339 -0.034 0.035
std % 0.129 0.136 0.267 0.265 0.002 0.007

num 0.002 0.002 0.003 0.003 0.000 0.000
diff/std % 8190.232 7766.406 11153.884 11193.713 79089.050 44706.225

p mean num -0.859 -0.861 0.144 0.143 2.357 -0.785
ref num -0.861 -0.861 -3.120 -3.120 2.611 -0.079
diff % 0.193 0.000 2264.893 2274.558 10.797 89.979

num 0.002 0.000 3.265 3.264 -0.254 -0.706
std % 1.636 0.000 1249.292 1255.151 5.709 17.101

num 0.014 0.000 1.801 1.801 0.135 0.134
diff/std % 11.803 inf 181.294 181.218 189.126 526.167

pc mean num 0.000 0.005 2.059 2.059 2.987 0.154
ref num 0.000 0.000 2.259 2.259 2.811 0.782
diff % nan 100.000 9.740 9.737 5.893 407.124

num 0.000 0.005 -0.201 -0.200 0.176 -0.628
std % nan 243.707 0.257 0.461 0.227 4.433

num 0.000 0.013 0.005 0.010 0.007 0.007
diff/std % nan 41.033 3791.665 2109.989 2599.980 9183.815

Table 3: Retrieved values and statistics for (m)agnitudes, (p)hases and “corrected” phases (pc). For each type
and parameter the mean result from the fits is given, along with the standard deviation, and a comparison
to the (ref)erence computational data, with absolute numeric (‘num’) and percentage differences as defined
by the ‘dType’ column. Finally, the value of the difference/standard deviation is given as a rough metric for
veracity.
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Figure 11: Density matrix representations for the continuum. (top row) From reference matrix elements,
(middle row) from the retrieved matrix elements, (bottom row) differences. Each row shows the elements
for the (imag)inary and real components. Density matrix values (complex) were renormalised to unity by
the maximum before plotting (|1, 0, 0〉〈1, 0, 0| element), and these representations show the case for unsigned
phases; note also the rescaled colourmap for the difference plots.
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4.1.5 Bootstrapping basics: density matrix representation

An alternative test of fidelity can be investigated via a density matrix representation of the results, this
is shown in Fig. 11. These plots show the real and imaginary components of the density matrices for the
ionization continuum (as defined in Sect. 3.2.3, Eqn. 12), normalised to the maximum (complex) value.
Overall the agreement is good for the real values (right column of Fig. 11), as expected from the values in
Table 3, and the differences (bottom row) are typically < 10 %. Similar results are observed for the imaginary
values (left column), which are shown for the unsigned phase case only (corresponding to phases set ‘pc’
as per Table 3). For the signed phase case (not shown, but corresponding to phases set ‘p’ as per Table
3) the loss of signs leads to larger differences in the off-diagonal density terms, and the possibility of phase
flips, which can result in inverted patterns visible in the imaginary part of the density matrix. However, as
discussed elsewhere (e.g. Sect. 4.1.4), symmetry constraints may render the continuum insensitive to the
sign of the phases, and the retrieved matrix elements may therefore still present a high-fidelity reconstruction
of the continuum.

Perhaps more interesting/useful in the density matrix representation is the visualisation of the phase relations
between the photoionization matrix elements (the off-diagonal density matrix elements), and the ability to
quickly check the overall pattern of the elements, hence confirm that no phase-relations are missing and
orthogonality relations are fulfilled, or that very different patterns/sets of matrix elements were retrieved.
Furthermore, the density matrix elements also provide a complete description of the photoionization event,
and makes clear the equivalence of the “complete” photoionization experiments (and associated continuum
reconstruction methods) with quantum tomography schemes 85. It can be used as the starting point for
further analysis based on density matrix techniques - this is discussed, for instance, in Ref. 39, and can
also be viewed as a bridge between traditional methods in spectroscopy and AMO physics, and more recent
concepts in the quantum information sciences (e.g. Refs. 110,111).

4.1.6 Bootstrapping basics: obtaining MFPADs

With the matrix elements to hand, the MFPADs can also be computed, for any arbitrary molecular alignment
and polarization. Some examples are shown in Fig. 12, which shows results for the two sets of retrieved
matrix elements discussed above (raw, and with phase-correction), along with the reference computational
results (as used to originally generate the simulated data) and the differences between the phase-corrected
case and the reference results.

A number of points are illustrated by the figure:

• The original/input matrix elements produce the MFPADs shown in the top row of the figure, which
provide a reference for the fidelity of the reconstructed MFPADs.

• Polarization geometries are illustrated for four cases (see Fig. 1 for the MF reference coords), labelled
z, x, y, d, where z is parallel to the bond axis, x, y perpendicular and d “diagonal” relative to the z-axis
(θz = π/4). In this case symmetry dictates that z (σu continuum) is cylindrically symmetric, the x, y
cases are a conjugate πu pair, and that the diagonal case mixes these components, hence breaks the
symmetry and is sensitive to the relative phase between the continua.

• The 2nd row illustrates the results from the phase-corrected parameters. These show generally good
agreement with the reference case, apart from slightly exaggerated off-diagonal lobes for the x, y results,
consistent with the larger magnitudes for |3,±1〉 in the reconstructed matrix elements.

• The 3rd row shows difference plots between the reference and phase-corrected results. This emphasizes
the differences in the |3,±1〉 component magnitudes. The z case shows very good agreement with
the reference case (note the smaller magnitudes), whilst the d case indicates some differences, again
attributable to the differences in |3,±1〉 component magnitudes.

• The bottom row illustrates the case of the phase-averaged (but not “corrected”) parameters. This
serves to highlight the sensitivity of the PADs to the relative phases of the matrix elements - here the
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x, y results show poor agreement with the reference case due to averaging over the ±φ pairs, and this
also affects the d case.

Overall, with careful treatment of the phases, it is clear that high-fidelity MFPADs can be recovered in the
current case. Although the difference plots indicate some differences between the reconstructed and reference
case, the absolute changes in the form of the MFPADs are fairly minor. The lack of an absolute phase is
not an issue in general for MFPAD recovery, although this does constitute a loss of relative phase in the
continuum wavefunctions as a function of energy.
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Figure 12: Reconstructed MFPADs for N2. Columns show results for polarization geometries (z, x, y, d) and
rows the results for difference sets of matrix elements: retrieved mean case, phase-corrected case, reference
(computational) results and difference between phase-correct and reference case. Note the colour-scale is
rescaled per row, thus emphasizing the changes in form of the MFPADs (but obfuscating relative magnitudes),
particularly for the difference case. See main text for further details.

4.1.7 Further bootstrapping: information content & sensitivity

As well as considering the results from full fits of the data, the inherent sensitivity of various aspects of
the problem can also be investigated. In general, this will depend on the details of the problem at hand
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(symmetry, ADMs etc.), but can in essence be considered independently of the matrix elements themselves
via “channel functions” or equivalent (see Sect. 3.2.2 and Sects. 9.1, 9.2 for full definitions). In the PEMtk
routines, the various component tensors are computed and packaged as a basis set prior to fitting, and can
be further examined independently. (For full details see the PEMtk docs.)

Fig. 13 illustrates the geometric coupling term BL,M (Eqn. 33), hence the sensitivity of different (L,M)
terms to the matrix element products. This term incorporates the coupling of the partial wave pairs, |l,m〉
and |l′,m′〉, into the term BL,M , where {L,M} are observable total angular momenta, hence indicates which
terms are allowed for a given set of partial waves - in the current test case, l = 1, 3 only (as defined by the
known matrix elements). This is essentially a way to visualize the general selection rules into the observable:
for instance, only terms l = l′ and m = −m′ contribute to the overall photoinoization cross-section term
(L = 0,M = 0). However, since these terms are fairly simply followed algebraically in this case, via the
rules inherent in the 3j product, this is not particularly insightful. These visualizations will become more
useful when dealing with real sets of matrix elements, and specific polarization geometries, which will further
modulate the BL,M terms. For example, in the AF M is further restricted by M = S − Rp (Eqn. 36); in
the current case with S = 0, Rp = 0 (this is typically the case for a cylindrically-symmetric experimental
configuration), only M = 0 terms will contribute.

Fig. 14 is more complicated, and illustrates the tensor product ΛR ⊗ EPR(ê) ⊗ ∆L,M (K,Q, S) ⊗ AKQ,S(t),
expanded over all quantum numbers. This term, therefore, incorporates all of the dependence (or response)
of the AF-βLM s on the polarisation state, and the axis distribution. In this case, it’s clear that there’s
a significant response to the alignment in the L = 0, 2 terms, some response in L = 4 and - for the
most part - no significant contribution from higher-order terms (threshold of 0.01), for the selected set of
ADMs. This visualisation is potentially useful for planning measurements sensitive to certain properties, for
example, in this case the L = 6 term is significant only over a small t-range, so this region could be targeted
experimentally to obtain data more sensitive to higher-order l-wave term couplings (per Fig. 13). Conversely,
the L = 0, 2 response terms are quite symmetric over the half-revival, so making experimental measurements
at t-points symmetrically over this feature will provide redundant, but not additional, information content
to the dataset for matrix-element retrieval. Also of note is the opposite response of the µ = µ′ = 0 terms
and µ 6= µ′ (with µ = ±1, µ′ = ∓1) to the alignment, indicating different response and sensitivities in the
polarization projections. This is particularly apparent in the L = 6 term, where the µ 6= µ′ terms drop below
threshold.

Finally, Fig. 15 illustrates the full AF channel (response) function Υu,ζζ
′

L,M (Eqns. 9, 43), which is essentially
the complete geometric basis set, hence equivalent to the AF-βLM (Eqn. 18) if the ionization matrix elements
were set to unity. This illustrates not only the coupling of the geometric terms into the observable L,M ,
but also how the partial wave |l,m〉 terms map to the observables. A few observations in this case:

• The largest reponse is in the total cross-section (β0,0), which is 2 times larger than any other term;

• this response is similar for both the l = 1 and l = 3 contributions, and all m, hence we expect similar
sensitivity to both partial cross-sections (continua) in this case.

• For L > 0, l 6= l′ are present, indicative of the sensitivity of the PADs to cross-terms (interferences).

• The response is, as might be expected, distinct for terms with l = l′ and l 6= l′, and as a function of
L, l, l′.

• The parameters indicate enhanced sensitivity to higher-order terms (L = 6) just after the main revival
feature. This was already apparent in Fig. 14, and is a consequence of the larger K = 4, 6 terms in the
ADMs in this region (see Fig. 6). In the current case this is not particularly important for the matrix
element retrieval, but in general may be significant in more complex cases with larger l present.

These results demonstrate the high level of detail that can be obtained from a set of channel functions, and
how such a basis set can aid in both planning and interpretation of experimental measurements in terms of
the sensitivity to given channels. Many outstanding questions remain, in particular general metrics of total
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information content are not yet defined, nor are general methods for determination of a sufficient information
content for retrieval in a given case. Such exploration is currently a topic of ongoing research, although it is
also of note that some authors have previously explored related issues (see, for example, Refs. 112,113).

Figure 13: Matrix element geometric coupling term BL,M . (Terms ≥ 0.001 only.)
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Figure 14: Polarisation & ADM product term, tensor product ΛR ⊗ EPR(ê) ⊗ ∆L,M (K,Q, S) ⊗
AKQ,S(t). (Terms ≥ 0.001 only.)
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Figure 15: Full channel (response) functions Υu,ζζ
′

L,M . (Terms ≥ 0.001 only.)

4.1.8 Further bootstrapping: sub-sample size & fidelity

In cases with noisy data, and/or where uncertainties in fitted parameters remain large, fitting to larger
and/or alternative sub-sets of the data may be pursued. An obvious route to improvement of the retrieved
matrix elements is via the inclusion of additional data points. In the original experimental demonstration
98, after an initial 10-point fit, further data was included, up to 89 data points, to minimise uncertainties in
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the retrieved matrix elements.2 Another, similar, route is via traditional statistical bootstrapping, in which
fitting is tested for various randomly-selected sub-sets of the data (but the size of the fitted data set is not
varied). Additionally, if the channel functions (fitting basis set) are investigated (see Sect. 4.1.7), additional
data points may be selected to enhance the sensitivity to certain partial wave components.

In the current case, work is ongoing, but some effort has been made to investigate sampling strategies. In
particular, preliminary work using different sample sizes plus additional statistical weightings (statistical
bootstrapping) has yielded very promising results. For example, a dataset of 30 t-points equally spaced
over the range 3.5 - 4.5 ps (as compared to 4 - 5 ps in the previous demonstration above), with random
(Poissionian) statistical weightings additionally applied, yielded:

• 30 % convergence (best χ2) in 100 test fits.

• Standard deviations on the retrieved parameters of < 10−4 (cf. Table 3).

• Fideleities on retrieved parameters typically < 10%.

However, whilst this appears promising, it is of note that the trends in the fidelity of the retrieved matrix
element remained similar to those shown in Table 3, with the l = 3 cases less well-defined. This indicates
that a more fundamental information-content limitation remained. Additionally, other tests with the same
initial dataset but different statistical weightings did not yield the same high percentage of converged fits
with low standard deviation (hence retrieval quality), indicating that more careful and methodical work is
required here, perhaps with more sophisticated statistical techniques applied.

4.1.9 Bootstrapping technique outlook & future directions

In the current case, it is clear that the bootstrapping methodology for obtaining full photoionization matrix
elements from time-domain, AF datasets, works well. The current numerical routines in the PEMtk package
(and back-end libraries) are relatively stable and fast, and amenable to detailed inspection. However, a range
of outstanding questions and routes of investigation remain, for instance:

• Scaling to larger problems (larger molecules, more matrix elements). This is currently under investi-
gation, but - based on previous work 44,38 - it is anticipated that small polyatomic molecules should
be tractable to the basic approach.

• More sophisticated approaches, for instance careful sub-selection of data based on the channel func-
tions, data obtained for additional polarization geometries or with shaped laser pulses 81,83,82,11. Such
approaches may be expected to yield higher fidelity reconstructions for small polyatomic systems, and
may be required for more complex cases.

• Faster numerical routines, in particular via GPU-based numerics.

• Implementation of additional fitting routines, both from standard numerical methods, and also from
related specialised domain problems, for example phase-retrieval methods developed for optical inter-
ferograms and spectrograms (e.g. general FROG-type retrieval methods 84, ptychography/holographic
techniques 114,115) and homotopy 116 approaches may be applicable.

• Correlations and overlaps with other related/emerging photoionization techniques may also prove
fruitful. For instance, photoionization matrix elements are of interest in high-harmonic spectroscopy
schemes 117, angle-resolved RABBITT 118,119 and general attosecond “clocking” and time-delay mea-
surement techniques. In many cases these methods are also directly sensitive to the energy-dependence
of the matrix elements, thus providing additional information relative to a basic 1-photon ionization
study (albeit with additional complexity), and have recently been of great theoretical interest in the
ab initio photoionization community 120,121.

2This procedure was only tested for the X-state in the experimental case, not for the A or B-state datasets. and especially
the supplementary materials for more details.
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Machine learning (ML), and particularly recent “deep learning” techniques (often also generically referred
to as AI), are currently in vogue and evolving rapidly. Such approaches may also present interesting op-
portunities for MF retrieval problems. Perhaps the main strength of these methods is that, in favourable
cases, very complex problems may be treated without complete computation and/or understanding of the
underlying physics (e.g. the recent success of DeepMind/AlphaFold in protein folding 122,123); the use of
ML/AI may, therefore, be particularly interesting for cases which are otherwise intractable to a full ab initio
analysis, e.g. complicated molecular dynamics or strongly-coupled light-matter systems, where the step-wise
and separable approaches detailed herein will currently fail, and closed-form equations/solutions do not exist.
A secondary use may be as fast fitting algorithms for cases of the type discussed herein, where the physics is
understood, albeit complicated. This is much less interesting scientifically since it does not present a “new”
capability, although may still prove fruitful if the increase in speed (or robustness) is significant compared to
current methods, e.g. to allow for real-time analysis during experimental runs. Furthermore, use in this vein,
but with the aim of solving a fully coupled problem without the necessity of a bootstrapping or multi-step
type of analysis (i.e. combining the various stages illustrated in Figs. 3, 4 into a single ML-based routine)
is certainly worth pursuing, with the potential to create a method that simultaneously retrieves both the
alignment and photoelectron properties from experimental data without additional researcher intervention.
The difficulty in all cases will likely be the generation of a suitable data set for the ML/AI training proce-
dure, which is required before the routines can be deployed on new problems. Significant introductory and
general discussion to the (rapidly evolving) topic can be found online and, for example, in Refs. 124,125,126.
Some recent use of ML/AI in the AMO context has proved successful, e.g. Refs. 127,128 tackle specific data-
analysis and reconstruction type problems; Refs. 129,130 examine ML for ab initio computation of potential
energy surfaces; Ref. 125 provides a broad review of ML in the physical sciences, including quantum state
reconstruction, as well as particle physics, cosmology and materials science.

4.2 MF reconstruction via matrix inversion

The key aspects of this method involve first fitting out the ADMs AKQS(t) from measured β̄uLM (t) in Eq. 26

to retrieve the C̄LMKQS (the vector Clab), and construction of the matrix GLMP∆q
L′M ′KS which facilitates the

extraction of the molecular frame coefficients CLMP∆q (the vector Cmol). The steps in the process are depicted

in Fig. 4, which label’s primary inputs as the ‘AF/LF measurements’, referring to the β̄uLM (t), and the ADMs
AKQS(t) calculated for a grid of fluence and temperature values by solving the TDSE using the appropriate

Hamiltonian for impulsive alignment 48,45. The ‘Alignment Retrieval’ process requires solving the linear
equations Eq. 26 for the C̄LMKQS using these primary inputs over the entire gird of ADMs, and comparing

to the measured data to find the bets fit solution. This provides the vector Clab needed for the next step
- solving the linear equations Eq. 28. This also requires that the matrix GLMP∆q

L′M ′KS be invertable. This
matrix therefore encodes the uniquely accessible MF information in the experiment. Specifically, rows in the
matrix link the LF parameter β̄uLM (t) to an MF beta parameter βLM (θ, χ) that can be used to construct
the MFPADs, θ and χ being polar and azimuthal angles of the laser polarization in the MF. Specifically, a
particular row, or set of rows, being entirely zero may indicate that certain MF βLM are inaccessible by
the set of LF measurements. For instance, in 75 the GLMP∆q

L′M ′KS matrix for the N2(X1Σ+
g ) → N+

2 (X2Σ+
g )

ionization of N2 with a single photon, from a RWP excited by a linearly polarized pulse was computed.
The results are reproduced herein for reference, see Fig. 16, and this can be considered as an indicator of
sensitivity in a somewhat analogous fashion to the channel functions shown in Figs. 13 - 15. Rows with
M = 1 were all determined to be identically zero, therefore only allowing the retrieval of MFPADs with
the ionizing field parallel and perpendicular to the molecular axis. In this case, the partial wave analysis
involved in the previously described method, along with the non-linear fitting necessarry to retireve the
radial dipole matrix elements is avoided. However, only two of the MFPADs shown in Fig. 4 extracted by
bootstrapping are retrieved by this method.

The utility of this method is better demonstrated by application to a polyatomic molecule of Dnh symmetry.

47



Gregory et al. 75 also compute the GLMP∆q
L′M ′KS matrix for C2H4(1Ag) → C2H

+
4 (2B3u) ionization of C2H4,

with D2h symmetry, from a RWP excited by linearly polarized light. In contrast with N2, all rows of the
GLMP∆q
L′M ′KS are non-zero for C2H4, but the system of linear equations is inconsistent since there are more

MF parameters (in the vector Cmol) than LF measurements (in the vector Clab). Nonetheless, the solution
selected by Gregory et al. minimizes the retrieved vector Cmol and correctly reproduce the MFPADs for
any orientation. The basic (x, y, z) cases are reproduced herein as Fig. 17, indicating the high fidelity of
the reconstructions (for arbitrary polarization geometries see Fig. 5 of Ref. 75). This ‘extra’ information
available in the LF measurement for C2H4 compared to N2 can be traced back to the fact that the RWP is
2D for an asymmetric top excited by linearly polaized light(cf. Eq. 24). While this method does not directly
provide radial dipole matrix elements, the MFPADs produced can potentially be used as a constraint, along
with additional experimental data, to determine these from a non-linear fit (see Sect. 4.3).

Figure 16: Values of GLMP∆q
L′M ′KS for N2(X1Σ+

g )→ N+
2 (X2Σ+

g ). Figure reproduced from Ref. 75.
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Figure 17: Calculated (a,b,c) and Retrieved (d,e,f) MFPADs for C2H4(1Ag) → C2H
+
4 (2B3u) for (x, y, z)

polarization geometries. Figure reproduced from Ref. 75.

4.3 Matrix element retrieval from MFPADs

To complete the circle, one can also consider whether MFPADs - either directly measured or reconstructed
via matrix inversion - contain sufficient information to retrieve the underlying matrix elements. The former
case has already been the subject of several studies, for instance refs. 131,132,133,52, and shown to work well
for at least homo and hetero nuclear diatomics. In a sense the latter case can be considered as (yet another)
bootstrapping-type scheme - MFPADs are obtained via a minimum effort/information route, then leveraged
to obtain underlying properties.

Fitting for MFPADs is currently implemented in the PEMtk suite in a similar manner to the AF fitting
detailed in Sect. 4.1, based on the tensor formalism detailed in Sect. 3.2.1. An extensive numerical example
is not presented herein, but in testing for the N2 example case, e.g. using MFPADs as shown in Fig. 12,
matrix element retrieval was found to be possible in general. However, in line with previous observations for
other methods (and the underlying physics), the fidelity and retrievable relations again depend on the exact
nature and quality - generally the information content - of the MFPAD dataset (or, equivalently, the set of
measured βL,M ). In testing, a number of different datasets were trialed, and some notes and observations
are given below.

• MFPADs were tested at single ε only, as a function of polarization geometry, cf. the MFPADs as shown
in Fig. 12.

• Data for fitting therefore consisted of parameters βL,M (ε, Rn̂), with Lmax = 6.

• For fitting intensity-normalised MFPADs (i.e. β0,0 = 1), for single or multiple polarization geometries
from the (x, y, z) set:

– This was found to be sufficient to determine the corresponding continuum matrix elements in this
case, i.e. z polarization corresponds to the σu continuum, and x, y to the πu continuum. (This
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separation may not be so clean in other cases, depending on the symmetry of the system.)

– Matrix elements were constrained as expected, with only relative magnitudes and phases obtained
(per continuum) in this manner.

– Similarly, due to a lack of cross-terms between continua in this case, the phase relations between
the σu and πu continua were also undefined in this case.

– In line with the AF reconstruction procedure, the sign of the phases was also undefined in this
case.

– Similarly, the fidelity on the retrieved matrix elements (for defined relations), was on the order of
the uncertainties in the fitted dataset.

• For determination of additional matrix element relations, additional data can be incorporated in the
fitting.

– Incorporating absolute magnitudes (β0,0 = σ) allows for the relative magnitudes of the continua
to be determined.

– Incorporating additional suitable interferences, e.g. diagonal polarization (cf. Fig. 12), in the
dataset allows for additional relative phase relationships to be determined, e.g. between the σu
and πu continua.

• Retrieval of matrix elements vs. ε is also possible; however, it is again constrained by the presence (or
otherwise) of interferences. In the basic case, each energy is treated independently, and relative phases
as a function of energy are undefined. However, these may be approximately defined by imposing an
energy constraint, e.g. defining that the phases are smooth vs. energy or follow a certain functional
form (see, for an example, Ref. 52).

In general, an MF fitting procedure, whether from directly measured MFPADs, or reconstructed MFPADs,
may be expected to work generally in principle, with similar caveats to the full AF-bootstrapping method-
ology of Sect. 4.1 (and the existing literature, see Sect. 8.3). Both methodologies are constrained by the
symmetry of the system, and general information content. Notable differences are the implicit presence of
cross-terms between continua in the AF case (Eqn. 18), which may be missing in the MF case (Eqn. 15),
depending on the choice of polarization geometries. Outstanding questions remain similar for both cases,
namely the fidelity of reconstruction, and the ability to scale-up to more complex cases (larger molecules,
dynamic systems) and concomitant information content requirements, and are a subject of ongoing research.

5 Summary & Outlook

From this topical review, it is hoped that the reader has gained a solid grounding in photoionization physics,
and general reconstruction methods, for both MF observable reconstruction and full matrix element retrieval
(“complete” photoionization or quantum tomography treatments), and that a suitable toolkit and platform
for interested researchers has been developed.

Over the last decade or two, such experiments, as well as theoretical treatments and unified data-analysis
techniques have developed significantly, and become more accessible to non-specialists. It is our hope that the
new platform and tools discussed herein (Sect. 7) will prove useful, and help photoionization (and related)
studies involving MF and full matrix element retrieval to (continue to) become more routine and successful.
Whilst significant new work has been presented herein, development work is ongoing, with aims to make the
code-base more robust and user-friendly, test new cases - particularly for more complex molecular systems,
and dynamical cases - and implement new features, such as metrics for information content for a given basis
set that will aid experimental planning, and further density-matrix based analysis methods. As well as
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publication in the literature, new developments and results will also be made available via the open-source
platform, and it is hoped that other researchers will also contribute to grow these efforts over time.

Meanwhile, experimental methodologies continue to improve and grow in sophistication, allowing more
routes, and often more direct routes, to high information-content observables, whether in the lab or molecular
frame, in a range of interactions and scenarios, including for larger molecules and probing dynamical effects.

Recent work in this vein from the current authors and coworkers includes (atomic) matrix element re-
trieval from photoelectron imaging measurements with polarization multiplexing (via shaped laser pulses)
81,134,83,82, (hyperfine) quantum beat spectroscopy from time-resolved photoelectron imaging experiments
135, and quantum tomographic determination of (LF) density matrices including electronic dynamics - theory
(missing citation) and application to NH3 (manuscript in preparation). These types of investigations indicate
the potential for further general developments, and the utility of the MF retrieval and reconstruction tech-
niques discussed herein as a foundation for a broader range of problems in molecular photoionization and
dynamics, ultimately building to a class of molecular quantum state retrieval methods from photoelectron
measurements 11,38.
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7 Resources

The following online resources are available, and it is hoped that interested readers will find these useful,
and contribute.

• Manuscipt text, live on Authorea (includes interactive figures) and Github. Post-publication reader
comments & suggestions can be added directly via the web.

• Full bibliography, via a Zotero group “Molecular Frame PADs Measurements and Reconstruction” 2.
Additional references and suggestions can be added to the group, and it is hoped that this will grow
to provide a useful community resource.

• Code for AF computation and matrix element retrieval, as illustrated in Sect. 4.

– Full Jupyter notebooks and source data are available on Figshare, DOI:
10.6084/m9.figshare.20293782. This also includes a complete archive of the python soft-
ware releases and environment used during this work 3.

– The open-source python libraries ePSproc 100,79,101 and PEMtk 99,80 developed for these problems.
(See Sects. 3.3.4, 9.5 for further discussion.)

• Discussion forum at AMO Open Science. We hope interested readers will use this forum for general
discussion on the topic, if only to suggest other venues for discussion.

• A Docker-based distribution of various codes for tackling photoionization problems is also available
from the Open Photoionization Docker Stacks project, which aims to make these tools more accessible
to interested researchers 103.
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8 Appendix A - Further reading

The following sections provide further reading on specific topics for interested readers. In line with the aims
of this manuscript, these sections are (very) far from comprehensive, but aim to provide a jumping-off point
for the topics; it is hoped that a more comprehensive, crowd-sourced and ongoing listing will be generated
via the “Molecular Frame PADs Measurements and Reconstruction” online bibliography on Zotero 2.

8.1 MF experimental literature sample

Reviews covering this class of experiment can be found in 52,13,53,16,54,28; some (representative) examples
from the literature include:

• MFPADs for N2 core ionization 71

• MFPADs from various diatomics with coincidence velocity-map imaging 137 73

• MFPADs from CO K-shell photoionization 138 and matrix element retrieval 72.

• MFPADs and matrix element retrieval for N2 131

• MFPADs and matrix element retrieval for NO inner-valence ionization 139,132 (this makes use of a
general FLN (θe) parametrized treatment of the MFPADs (see also ref. 140), which provides a suitable
reduction method for experimental data analysis for RF and MFPADs, and the potential for matrix
element retrieval, in a somewhat similar manner to the tensor approach discussed herein).

• NO2 RFPADs 141.

• NO MFPADs (1s channels) 142.

• Interference and entanglement in H2 double ionization in the MF 55.

• General discussion of multi-particle imaging with COLTRIMS 143.

• Imaging methane MFPADs with electron-ion-ion coincidences 144,145.

• MFPADs from naphthalene (C10H8) via alignment and tomographic imaging 146.

• MFPADs from H2 and D2 at 30eV photon energies (HHG source) 147.

• MFPADs via alignment for Auger-Meitner electrons 148,149.

• MFPADs from core ionization of carbon tetrafluoride (CF4), ethane (C2H6) and 1,1-difluoroethylene
(C2H2F2)151.

8.2 Theory literature sample

A number of authors have developed relevant theory for photoionization problems. Whilst the fundamentals
are similar, different formalisms have been derived for various specific cases, or to emphasize particular
aspects of the problem. A few notable examples are listed here.

• Early derivations for atomic PADs 152,153,154

• Early derivations for molecular (LF)PADs 155, rotationally-resolved cases 156, and optically-active cases
157

• Angular momentum transfer in LF and MFPADs 158

• General MFPAD (“fixed-molecule”) derivation 27

• Atomic PADs and spin polarization 159
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• Resonant multiphoton PADs 160

• Molecular orbital continuum decomposition 161

• A simple-model description for MFPADs, including FLN function decomposition 162

• Matrix element retrieval from time-resolved photoelectron imaging experiments 163.

• Time-resolved PADs and dynamics (including molecular alignment) 64,32,9

• LF, RF and MFPADs theory and determination (review article) 53

• Photoionization with a focus on alignment/RWP effects, including numerical studies 113,97,164, and
MFPAD case-study 63.

• LF and MFPADs theory review and tutorials (with numerical examples) 11

8.3 Complete experiments literature sample

The topic of complete photoionization experiments has been recently reviewed in 12,38, see also older review
articles 14,15,165. Some representative and noteworthy examples are also listed below (see also Sect. 8.1 above
for cases involving MF measurements).

• First experimental demonstration for photoionization of an atomic target by Berry and coworkers 166,
who studied Na(2P1/2,

2P3/2).

• First molecular demonstration for NO, from the Zare group, with state-resolved LF measurements
including linear and circularly polarized fields 167 (see also prior work 168,43,35).

• General theoretical discussion on complete experiments in atoms and molecules 133.

• Time-resolved rotational-wavepacket methods applied to NO (narrow wavepacket) 169,170, see also
Refs. 171 (review) and 163 (theory & analysis).

• Non-linear polyatomic demonstration with state-resolved LF measurements (NH3) 44.

• Theoretical investigation of matrix element retrieval for photoelectron imaging experiments 113 (see
also 97 for rotational wavepacket reconstruction from complementary methods including high-harmonic
generation).

• Complete experiments with polarization shaping 81,82.

• Time-resolved rotational-wavepacket method applied to N2 (broad wavepacket) and bootstrap tech-
nique development 98 (as per Sect. 4.1 herein.)

9 Appendix B - Further formalism

A complete accounting of the formalism used herein is given in the following sections, expanding on the brief
introduction of Sect. 3.2.1, along with some additional notes for interested readers.

9.1 Full Photoionization Formalism

The equations for the βLM parameters, in the molecular and lab frames (MF & AF respectively), written in
terms of geometric tensor parameters, are given in Sect. 3.2.4. The necessary tensor components are further
detailed below. For further discussion and derivations see Refs. 74,64,9, and Ref. 11 for a summary including
various different formalisms; further examples can also be found in the ePSproc documentation 101. For
general discussion on tensor methods in atomic and molecular spectroscopy and related problems, see Refs.
39,34.
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Note, also, that several equivalent formalisms have been presented in the literature (Sect. 8.2), often spe-
cialised to a particular problem or choice of phase conventions. In the following the equations are general,
although the phase conventions are chosen to match those used in ePolyScat (Sect. 9.1.5), hence the numer-
ics for the analysis presented herein. In practice the ePSproc codes allow the user to set these conventions
as desired.

9.1.1 Electric field term

The coupling of two 1-photon terms can be written as a tensor contraction 39,34:

EP,R(ê) = [e⊗ e∗]PR = [P ]
1
2

∑
p

(−1)R
(

1 1 P
p R− p −R

)
epe
∗
R−p (32)

Where ep and eR−p define the field strengths for the polarizations p and R − p, which are coupled into the
spherical tensor EPR. For the simplest case of a linearly-polarized field, p = 0, and only terms P = 0, 2 with
R = 0 (i.e. E0,0 and E2,0) are non-zero.

Note this notation implicitly describes only the time-independent photon angular momentum coupling, but
time-dependent/shaped laser fields can be readily incorporated by allowing for time-dependent fields ep(t)
(see, for instance, Ref. 82).

9.1.2 BL,M term

The coupling of the partial wave pairs, |l,m〉 and |l′,m′〉, into the observable set of {L,M} is defined by a
tensor contraction with two 3j terms 34.

BL,M = (−1)m
(

(2l + 1)(2l′ + 1)(2L+ 1)

4π

)1/2(
l l′ L
0 0 0

)(
l l′ L
−m m′ M

)
(33)

Note for the AF case the terms may be reindexed by M = S − R′ (see below). This allows for all MF
projections to contribute, rather than a single specified polarization geometry.

9.1.3 Λ Term

A general geometric projection term can be defined in the MF and AF. For the MF projection term,
ΛR′,R(Rn̂):

ΛR′,R(Rn̂) = (−1)(R′)

(
1 1 P
µ −µ′ R′

)
DP
−R′,−R(Rn̂) (34)

This is similar to the EP,R term, and essentially rotates the field defined in the LF into the MF by a set of
rotations (Euler angles) defined by Rn̂ = {χ,Θ,Φ}.

For the AF case, a simplified form can be used, since there is no single orientation/rotation defined in relation
to the MF, and the relations are defined by the molecular axis distribution (see below).

Λ̄R′ = (−1)(R′)

(
1 1 P
µ −µ′ R′

)
≡ ΛR′,R′(Rn̂ = 0) (35)

The notation here implies that the electric field and axis distributions are expanded about the same axis
(Rn̂ = 0), which corresponds to the simplest parallel align-probe field geometry. Additional frame rotation(s)
may be applied in some cases (e.g. for crossed-polarization of the alignment and probe fields).
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9.1.4 Alignment term

The axis distribution moments (ADMs) define the LF in this case, and are given above as a set of parameters
AKQ,S(t). These give rise to couplings which can be written as:

∆L,M (K,Q, S) = (2K + 1)1/2(−1)K+Q

(
P K L
R −Q −M

)(
P K L
R′ −S S −R′

)
(36)

Hence the coupling between the LF and MF is, effectively, defined by the final term in the AF observable
(Eqn. 18):

∑
K,Q,S

∆L,M (K,Q, S)AKQ,S(t) (37)

And the observable is restricted to Lmax = |P + K|, and M = 0 only if Q = S = R = 0 (the usual
cylindrically symmetric case).

9.1.5 Dipole matrix elements and conventions

Herein the numerical form of the dipole matrix elements is chosen to match the definitions used by ePolyScat
76,78,141. In the notation of Ref. 141:

I
piµi,pfµf
l,m,µ (ε) = 〈Ψpi,µi

i |d̂µ|Ψ
pf ,µf
f ϕ

(−)
klm〉 (38)

T
piµi,pfµf
µ0 (θk̂, φk̂, θn̂, φn̂) =

∑
l,m,µ

I
piµi,pfµf
l,m,µ (ε)Y ∗lm(θk̂, φk̂)D1

µ,µ0
(Rn̂) (39)

Iµ0
(θk̂, φk̂, θn̂, φn̂) =

4π2ε

cgpi

∑
µi,µf

|T piµi,pfµfµ0 (θk̂, φk̂, θn̂, φn̂)|2 (40)

In this formalism:

• I
piµi,pfµf
l,m,µ (ε) is the radial part of the dipole matrix element (as per Eqns. 7, 10 herein), determined

from the initial and final state electronic wavefunctions Ψpi,µi
i and Ψ

pf ,µf
f , and the radial part of the

photoelectron wavefunction ϕ
(−)
klm (cf. φlm(k) in Eqn. 7, and where (−) denotes outgoing wave nor-

malisation) and dipole operator d̂µ. Here the wavefunctions are indexed by irreducible representation
(i.e. symmetry) by the labels pi and pf , with components µi and µf respectively; l,m are angular mo-
mentum components, µ is the projection of the polarization into the MF. Each energy and irreducible
representation corresponds to a calculation in ePolyScat.

• T
piµi,pfµf
µ0 (θk̂, φk̂, θn̂, φn̂) is the full matrix element (expanded in polar coordinates) in the MF, where

k̂ denotes the direction of the photoelectron k-vector, and n̂ the direction of the polarization vector n
of the ionizing light. This is equivalent to the full photoelectron wavefunction denoted Ψe(k) in Sect.
2.4.

• Y ∗lm(θk̂, φk̂) is a spherical harmonic. Note the conjugate form here.

• D1
µ,−µ0

(Rn̂) is a Wigner rotation matrix element, with a set of Euler angles Rn̂ = (φn̂, θn̂, χn̂), which
rotates/projects the polarization into the MF .
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• Iµ0(θk̂, φk̂, θn̂, φn̂) is the final (observable) MFPAD, for a polarization µ0 and summed over all symmetry
components of the initial and final states, µi and µf . Note that this sum can be expressed as an
incoherent summation, since these components are (by definition) orthogonal.

• gpi is the degeneracy of the state pi.

As noted previously, in general there are multiple equivalent definitions for these terms used by different
authors; the ePolyScat definitions above apply to the test matrix elements used herein (e.g. Table 1), which
lists I

piµi,pfµf
l,m,µ (ε) for continuum symmetry components pf = σu, πu. These matrix elements are normalised

to the total cross-section (in Mb), and include symmetrization.

For cases where symmetrization is not included in the matrix elements directly, it can be addressed via the
use of symmetrized (or generalised) harmonics, which essentially provide correctly symmetrized expansions
of spherical harmonics for a given irreducible representation, Γ. These can be defined by linear combinations
of spherical harmonics (see Refs.177,178,179 for more):

XΓµ∗
hl (θ, φ) =

∑
λ

bΓµhlλYl,λ(θ, φ) (41)

where:

• Γ is an irreducible representation,

• (l, λ) define the usual spherical harmonic indicies (rank, order)

• bΓµhlλ are symmetrization coefficients,

• index µ allows for indexing of degenerate components,

• h indexs cases where multiple components are required with all other quantum numbers identical.

The exact form of these coefficients will depend on the point-group of the system, see, e.g. Refs. 179,180; for
numerical implementation notes in PEMtk see Sect. 9.5.

9.2 Channel functions expansion

Following the tensor components detailed above, the full form of the channel functions can be written as:

Υu,ζζ
′

L,M = (−1)M (2P + 1)
1
2EP−R(ê;µ0)(−1)(µ′−µ0)ΛR′,R(Rn̂;µ, P,R,R′)BL,−M (l, l′,m,m′) (42)

Ῡu,ζζ
′

L,M = (−1)M [P ]
1
2EP−R(ê;µ0)(−1)(µ′−µ0)Λ̄R′(µ, P,R′)BL,S−R′(l, l′,m,m′)∆L,M (K,Q, S)AKQ,S(t) (43)

9.3 Final state density matrix

As introduced in Sect. 3.2.3, the (radial) density matrix can be expressed as the outer-product of the (radial)
matrix elements. Following the channel function notation, it is also trivial to write the radial matrix elements
in density matrix form in the ζζ ′ representation:

ρζζ
′

= |ζ〉〈ζ ′| ≡ Iζ,ζ
′

(44)
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And the full final continuum state as a density matrix in the ζζ ′ representation (with the observable dimen-
sions L,M explicitly included in the density matrix), which will also be dependent on the choice of channel
functions (u):

ρu,ζζ
′

L,M = Υu,ζζ
′

L,M Iζ,ζ
′

(45)

Here the density matrix can be interpreted as the final, LF/AF or MF density matrix (depending on the
channel functions used), incorporating both the intrinsic and extrinsic effects (i.e. all channel couplings and
radial matrix elements for the given measurement), with dimensions dependent on the unique sets of quantum
numbers required - in the simplest case, this will just be a set of partial waves ζ = (l,m). Note that this
final state is distinct from the “radial” density matrix (Eqn. 12), which encodes purely intrinsic (molecular
scattering) photoionization dynamics (thus characterises the scattering event). The L,M notation indicates
here that these dimensions should not be summed over, hence the tensor coupling into the βuL,M parameters
can also be written in terms of the density matrix:

βuL,M =
∑
ζ,ζ′

ρu,ζζ
′

L,M (46)

In fact, this form arises naturally since the βuL,M terms are the state multipoles (geometric tensors) defining
the system, which can be thought of as a coupled basis equivalent of the density matrix representations (see,
e.g., ref. 39, Chpt. 4.).

In a more traditional notation (cf. Eqn. 2, see also Refs. 75 ), the density operator can be expressed as:

ρ(t) =
∑
LM

∑
KQS

AKQS(t)
∑
ζζ′

Υu,ζζ
′

L,M |ζ,Ψ+〉〈ζ,Ψ+|µqρiµ∗q′|ζ ′,Ψ+〉〈ζ ′,Ψ+| (47)

with ρi = |Ψi〉〈Ψi|. This is, effectively, equivalent to an expansion in the various tensor operators defined
above, in a state-vector notation.

9.4 Matrix inversion formalism

As discussed in Sect. 3.3.3, and following Gregory et. al. 75, the general formalism can also be rewritten
with the ADMs separate (see also Reid & Underwood convolution form, 74), and the LF/AF given as per
Eqn. 26 (cf. Eqn. 18). Herein, the notation from Gregory et. al. 75 is rewritten slightly, as per Eqns. 28 -
31.

In the current notation, the full expressions are written as per Eqn. 26 for the LF/AF (cf. Eqn. 18):

β̄L,M (E, t) =
∑
K,Q,S

CL,MK,Q,S(E)AKQ,S(t) (48)

And for the MF (cf. Eqn. 15):

βL,M (E,Ω) =
∑

P,R,∆q

CL,MP,R (E,∆q)DP
R,∆q(Ω) (49)

And the required coefficients defined as:

C̄LMKQS(ε) =
∑
ζζ′

IΓ,Γ
′

ζζ′ (ε)Γζζ
′LM

KQS (50)
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Γζζ
′LM

KQS = (−1)M [P ]
1
2EP−R(ê;µ0)(−1)(µ′−µ0)Λ̄R′(µ, P,R′)BL,S−R′(l, l′,m,m′)∆L,M (K,Q, S) (51)

= Ῡu,ζζ
′

L,M /AKQ,S(t) (52)

CLMPR (ε,∆q) =
∑
ζζ′

IΓ,Γ
′

ζζ′ (ε)Γζζ
′LM

PR∆q (53)

Γζζ
′LM

PR∆q = (−1)M (2P + 1)
1
2EP−R(ê;µ0)(−1)(µ′−µ0)Λ̄∆q(µ, P,∆q)BL,−M (l, l′,m,m′) (54)

Where it is assumed that R′ = ∆q, and that the rotational matrix element DP
R,∆q(Ω) is computed indepen-

dently (note that the current numerical function ΛR′,R(Rn̂;µ, P,R,R′) could possibly be used directly here,
but this version keeps the angle-dependence separate as per the matrix inversion formalism).

Note also that Q = 0 only for the derivations in Gregory et. al. 75, and the the inverse matrix as given in
Eqn. 31, although the results should generalise - see discussion in Ref. 75 for details, particularly Sect. 3.2
and the appendices.

9.5 Numerical implementation in ePSproc and PEMtk

9.5.1 Photoionizaion calculations with ePSproc

The ePSproc codebase 100,79,101 aims to provide methods for post-processing with ePolyScat matrix ele-
ments (or equivalent matrix elements from other sources), including computation of AF and MF observ-
ables. The numerical implementation thus follows the conventions of ePolyScat, as given in Sect. 9.1.5.
Additionally, various switches can also be set to define alternative choices, e.g. conjugate forms, use of real
harmonics etc., for computation of observables. Since the code is open-source Python, users may also swap
libraries/conventions to their preference. By default the following conventions/libraries are used:

• Angular momentum functions (Wigner D and 3js) are currently implemented directly, or via the
Spherical Functions library 172, and have been tested for consistency with the definitions in Zare
(for details see the ePSproc docs 101).101).101).

• Spherical harmonics are defined with the usual physics conventions: orthonormalised, and includ-
ing the Condon-Shortley phase. Numerically they are implemented directly or via SciPy’s sph_harm

function (see the SciPy docs for details 174. Further manipulation and conversion between different
normalisations can be readily implemented with the SHtools library 175,176.

• General tensor handling and manipulation makes use of the Xarray library 183,184.

9.5.2 Data handling and fitting with PEMtk

The Photoelectron Metrology Toolkit (PEMtk) codebase 99,80 aims to provide various general data handling
routines for photoionization problems. At the time of writing, only fitting routines are implemented, along
with some basic utility functions, and backend functionality from ePSproc. Further details can be found in
the PEMtk documentation 99.

The results presented in Sect. 4.1 make use of PEMtk routines, including functions provided to wrap matrix
elements and ePSproc observable calculations for fitting, and analysis routines for identifying candidate
matrix elements. The full analysis notebooks are available in the Figshare repository for this article 3.

Non-linear optimization (fitting) is handled via the lmfit library, which implements and/or wraps a range
of non-linear fitting routines in Python 109,185; for the Levenberg-Marquardt least-squares minimization
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method used herein this wraps Scipy’s least squares functionality, which therefore constituted the core
minimization routine 174 for the demonstration case.

Although not demonstrated herein, computation of XΓµ∗
hl (θ, φ) (Eqn. 41) is also currently implemented in

the PEMtk codebase, making use of libmsym 181,182 (symmetry coefficients) and SHtools 175,176 (general
spherical harmonic handling and conversion). For worked examples, see the PEMtk docs 99. It is hoped that
this will be a useful tool for tackling photoionization problems more generally, without a priori knowledge
of the matrix elements for a given system.
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