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Abstract: The foundations of nonlinear optics are revisited, and the formalism is applied
to waveguide modes. The effect of loss and dispersion are included rigorously along with the
vectorial nature of the modes, and a full derivation of a new version of the nonlinear Schrödinger
(NLS) equation is presented. This leads to more general expressions for the group index, for the
group-index dispersion (GVD), and for the Kerr coefficient. These quantities are essential for the
design of waveguides suitable for e.g. the generation of optical frequency combs and all-optical
switches. Examples are given using the silicon nitride material platform. Specifically, values are
extracted for the coefficients of the chi-3 tensor based on measurements of Kerr coefficients and
mode simulations.

1. Introduction

The nonlinear Schrödinger (NLS) equation has been a fundamental tool in photonics for
decades [1], offering insights into dispersion and the behavior of light in nonlinear optical media.
Its applications, spanning optical communications [2], frequency metrology [3], spectroscopy [4],
ultrafast science [5], and quantum optics [6, 7], underscore its paramount importance in modern
optics. Today, the NLS equation is indispensable for modeling devices like all-optical switches
[8, 9] and optical parametric oscillation (OPO) [10, 11]. These advancements in nonlinear optics
have not only revolutionized chip-scale photonic capabilities but have also paved the path for
breakthroughs in frequency synthesis [12], precision timing for positioning and navigation [13],
frequency conversion of mid-infrared [14] to deep-UV [15] and a myriad of spectroscopic
techniques [16].

Using the NLS equation, one can simulate how dispersion and nonlinearities affect the shape of
an optical pulse as it propagates in a nonlinear medium [17]. The NLS equation is conventionally
derived phenomenologically, inherited from bulk optics, and makes simplifying assumptions
such as a lossless system and purely transverse fields [18, 19]. However, for a guided mode in a
material with loss, these assumptions may not necessarily be valid [20].

The NLS equation is here derived from first principles of Maxwell’s equations in the special
case of degenerate four-wave mixing [21]. The presented model avoids assumptions about
polarization and the plane-wave approximation while accommodating discontinuities in the
permittivity. This makes it universally applicable to all waveguides and especially well-suited for
heterogeneous structures [22–24]. The NLS equation is typically derived assuming the existence
of the optical Kerr effect [25], whereas in this work the Kerr effect follows directly from the NLS
derivation. The bright soliton solution of the NLS equation is presented, from which a more
general expression for the group index is found. The presented derivation of the Kerr effect differs
from existing literature in the nonlinear phase shift being proportional to the optical power instead



of the intensity. This is a more relevant and convenient quantity in integrated photonics where the
optical intensity in waveguides varies significantly over the cross-section. The presented model
leads to a compact expression for the Kerr coefficient given by the third-order nonlinear tensor
and the mode profile. As the waveguide modes are readily simulated in available software, it
provides a powerful tool for optical engineers to better design nonlinear phase shifts. To indicate
how the presented model differs from a conventional one, the third-order tensor element is found
in silicon nitride using both models.

With the NLS equation being used as a tool to describe complicated optical effects and systems,
we have included a detailed derivation in Supplement 1 to better be able to see where different
terms and variables originate from. It also includes an example where the derived model is used
to calculate Kerr coefficients in heterogeneous waveguides.

2. Chief equation and NLS equation

The complex wavenumber is expressed as:

𝑘 = 𝛽 + 𝑖𝛼/2 = 𝑛𝜔/𝑐 , (1)

where 𝛽 is the wavenumber, 𝛼 the attenuation coefficient, 𝑛 the effective refractive index of the
relevant mode at the carrier frequency 𝜔/(2𝜋) , and 𝑐 is the speed of light in vacuum.

The complex electric field is decomposed as [26]:

®E = 𝑒𝑖𝜑A (𝑧, 𝑡) ®𝔢 (𝑥, 𝑦) , (2)

where 𝜑 = 𝑘𝑧 − 𝜔𝑡. The complex vector ®𝔢 is the electric mode profile, which is independent
of the longitudinal 𝑧-direction. The complex function A is unitless and accounts for coupling
between modes, as well as additional time dependencies. The fields are decomposed is terms of
Fourier decomposition with the different Fourier frequencies Ω/2𝜋 , not to be confused with the
carrier frequency 𝜔/(2𝜋) .

The modes are normalized with the following parameter [27]:

𝑁 ≡ 1
2

∬
R2

(
®𝔢 × ®𝔥∗

)
· 𝑧 d𝑥 d𝑦 , (3)

where ®𝔥 is the magnetic mode profile and the integration extends over the transverse plane of
the waveguide. The mode profiles and the effective index are found by solving the dispersion
relation [28], derived in Supplement 1, section 3. The chief equation involves the following
quantity which depends on dispersion and the electric mode profile:

𝐾 (Ω) ≡ 1
4𝜇0𝜔𝑁

∬
R2
𝛾2 (Ω) ®𝔢 · ®𝔢∗ d𝑥 d𝑦 , (4)

where 𝜇0 is the vacuum permeability, and the gamma factor 𝛾 is related to the material refractive
index 𝑛mat via:

𝛾(Ω) = Ω 𝑛mat (Ω)/𝑐 . (5)

To explore how the 𝐾 parameter relates to dispersion, it is Taylor expanded around 𝜔:

𝐾 (Ω) ≈ 𝐾 (𝜔) + (Ω − 𝜔)𝑘1 +
∞∑︁

𝑚=2

(Ω − 𝜔)𝑚
𝑚!

𝑘𝑚, (6)

with:
𝑘1 ≡ d𝐾

dΩ

����
𝜔

, 𝑘𝑚 ≡ d𝑚𝐾
dΩ𝑚

����
𝜔

. (7)



In the presence of dispersion, nonlinearity, and a finite value of attenuation, the A function is
found by solving the chief equation:

𝜕𝑧A + 𝑘1𝜕𝑡A = 𝑇 + 𝑖
∞∑︁

𝑚=2
𝑘𝑚

(𝑖𝜕𝑡 )2

𝑚!
A. (8)

The chief equation is derived directly from Maxwell’s equations in Supplement 1, sections 2, 3
and 4. In the special case of continuous-wave (cw) operation, (8) reduces to the equation reported
in [29].

The nonlinear interaction is accounted for in the term 𝑇 :

𝑇 ≡ 𝑖𝑒−𝑖𝜑

4𝜔𝑁

∫ ∞

−∞
Ω2𝑒−𝑖Ω𝑡

∬
R2

[ ®̃P (NL) (Ω) · ®𝔢∗ d𝑥 d𝑦
]

dΩ , (9)

where ®̃P (NL) is the Fourier component of the nonlinear polarization which depends on the
nonlinear effects of interest. Looking at the self-induced effect of degenerate four-wave mixing,
®̃P (NL) is found in Supplement 1, section 5 to be:

®̃P (3) (Ω) = 3𝜀0𝛿(Ω − 𝜔)𝑒−𝛼𝑧𝑒𝑖𝑘𝑧A |A|2 𝐶®𝑣. (10)

𝜀0 is the vacuum permittivity, 𝐶 is the third-order nonlinear tensor that has been reduced
by assuming Kleinmann symmetry [30] and ®𝑣 is a complex 10-row vector that involves the
components of the electric mode profile. Both quantities are expanded on further in Supplement
1, section 6.

These quantities are used in the definition of a unitless coupling coefficient:

𝜅 ≡ 𝑐𝜀0
4𝑁

∬
R2
(𝐶®𝑣) · ®𝔢∗ d𝑥 d𝑦 . (11)

For amorphous materials, the 𝐶 tensor contains only one independent coefficient (𝑐11), resulting
in a simplified integrand [31]:

(𝐶®𝑣) · ®𝔢∗ = 𝑐11
3

[ (
®𝔢 · ®𝔢

)2 + 2
(
®𝔢 · ®𝔢∗

)2
]
. (12)

Using (10) and (11) the nonlinear term (9) simplifies to:

𝑇 = 𝑖Γ𝑒−𝛼𝑧A |A|2 , (13)

where:
Γ ≡ 3

𝜔

𝑐
𝜅, (14)

is defined to simplify notation and have units of m−1. Inserting (13) into (8):

𝜕𝑧A + 𝑘1𝜕𝑡A = 𝑖Γ𝑒−𝛼𝑧A |A|2 + 𝑖
∞∑︁

𝑚=2
𝑘𝑚

(𝑖𝜕𝑡 )𝑚
𝑚!

A. (15)

Relation (15) is a more general version of the nonlinear Schrödinger equation [32] that rigorously
includes loss and the full vectorial nature of the modes. This contrasts with derivations found
in textbooks where the longitudinal component of the electric field is neglected, and where the
system is assumed lossless.



2.1. Temporal solitons

In the case where 𝑘𝑚 = 0 for 𝑚 > 2, the following function is an exact solution to (15):

A(𝑧, 𝑡) = A0𝑒
𝐺𝑧

/
cosh ( 𝜏/𝜏0 ) , (16)

with the retarded time 𝜏 ≡ 𝑡 − 𝑘1𝑧, a complex amplitude A0, a characteristic time 𝜏0 and a
complex phase 𝐺. These parameters must satisfy the following conditions:

|A0 |2 = − 𝑘2

Γ𝜏2
0
, (17)

and:
𝐺 = −𝑖 𝑘2

2𝜏2
0
. (18)

A pulse given by (16) does not vary in shape and is known as a temporal soliton [33–35].
The group velocity is defined as the speed of a pulse envelope. From (16) and the definition of

𝜏, it is clear that 𝑘1 is related to the group velocity 𝑣g by:

𝑘1 = 1/𝑣g. (19)

From (7) it is seen that 𝑘2 then relates to the group-velocity dispersion (GVD). Equation (17)
imposes that the sign of 𝑘2 should be opposite to the sign of 𝜅 (seen from (14)). For bright
solitons, a negative 𝑘2 results in anomalous dispersion, and a positive 𝜅 [36]. If there is zero
attenuation, these conditions also imply that 𝜏0 is real. Hence, 𝜏0 represents the temporal width
of the pulse. Relation (16) is shown to solve (15) in Supplement 1, section 8.
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Fig. 1. Equation (16) plotted at different 𝑧 as it propagates through a ridge waveguide
with an attenuation of 5 dB/cm. The shape of the soliton doesn’t change as it propagates
but its intensity decreases due to loss.

2.2. Group index

From (7) and (19), the group index can be found from:

𝑛g ≡ 𝑐/𝑣g = 𝑐
d𝐾
dΩ

����
𝜔

. (20)



This expression seems to be more general than the common expression [37]:

𝑛̄g = 𝑛 + 𝜔 d𝑛
d𝜔

. (21)

To compare 𝑛g and 𝑛̄g, simulations were made of Si3N4 and GaAs waveguides enclosed in SiO2
cladding. The relative error:

𝜖 ≡ (𝑛̄g − 𝑛g)
/
𝑛̄g , (22)

is then found and can be seen in Figure 2. As the waveguide thickness increases, so does the
mode confinement, converging towards a homogeneous waveguide. The simulations are made
with a 2 µm wide waveguide and a varying thickness (the Si3N4 waveguide is not simulated
with a thickness below 100 nm, as the mode becomes highly unconfined). Values found from
(21) are in general higher with a finite difference found in the third digit, showing an excellent
match between the two expressions. The common expression (21) has been found to match well
experimentally [38], giving us confidence in the validity of the presented formalism.
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Fig. 2. Relative error (22) between the general expression (20) and the common
expression (21) for the group index. Simulations are performed for a Si3N4 waveguide
(in red) and a GaAs waveguide (in blue) as a function of the core thickness. Dashed
lines show the confinement factor.

3. Optical Kerr effect

An important implication of the NLS equation is the optical Kerr effect. Under continuous-wave
(cw) excitation, the NLS equation (15) reduces to:

𝜕𝑧A = 𝑖Γ𝑒−𝛼𝑧A |A|2 . (23)

The complex A function can be expressed as:

A = 𝑒𝑖𝜙𝐴, (24)

with a phase 𝜙 and a norm 𝐴, such that:

𝜕𝑧A = 𝑒𝑖𝜙 (𝜕𝑧𝐴 + 𝑖𝐴𝜕𝑧𝜙). (25)

It can be deduced that 𝜕𝑧𝐴 = 0 (see Supplement 1, section 9). Using the expression for the
optical power:

𝑃 = 𝑁𝑒−𝛼𝑧𝐴2, (26)



one finds:
𝜕𝑧𝜙 =

Γ

𝑁
𝑃, (27)

with Γ from (14). The third-order nonlinearity induces a phase change known as the optical Kerr
effect. One further defines a change of effective index by:

Δ𝑛 ≡ 𝑐

𝜔
𝜕𝑧𝜙 = 𝑛2𝑃, (28)

with the Kerr coefficient:
𝑛2 ≡ 3𝜅/𝑁 . (29)

Note that (28) is proportional to the power. This contrasts the classical result from bulk optics
where the optical Kerr effect induces a change of material refractive index proportional to the
intensity.

For a waveguide based on amorphous materials, (12) applies, and if there is only a negligible
nonlinear contribution from the cladding, the coupling coefficient (11) reduces to:

𝜅 =
𝑐𝜀0
12𝑁

𝑐11𝛴, (30)

where:
𝛴 ≡

∬
R2

(
®𝔢 · ®𝔢

)2 + 2
(
®𝔢 · ®𝔢∗

)2 d𝑥 d𝑦 . (31)

The Kerr coefficient can then be expressed as:

𝑛2 =
𝑐𝜀0

4𝑁2 𝑐11𝛴. (32)

Using the mode profile to calculate a nonlinear effective refractive index has already been
reported, e.g. in [39], but the presented formalism expands on this by being a direct consequence
of the NLS equation, and not the other way around.

3.1. Third-order nonlinear coefficient

The 𝑐11 tensor element of amorphous Si3N4 is here found using multiple previous studies on
the Kerr effect in Si3N4 waveguides. The chosen studies all measure the Kerr value in Si3N4
waveguides but have different cladding materials and geometries. Waveguides made from Si3N4
was chosen because it is an amorphous material for which (32) is applicable, it has a high
third-order nonlinearity [40], has low loss with a broad transparency range [41] and is well used
for a wide variety of third-order effects, especially frequency combs [42, 43].

In the conventional formalism the tensor element for an amorphous material can be found
from a measured Kerr coefficient 𝑛̄2, with units

[
m2/W

]
, by [19]:

𝑐11 = 𝑛̄2𝑛
2𝜀0𝑐

/
3 . (33)

The Kerr coefficient 𝑛̄2 from the conventional formalism can be converted to the presented
formalism by:

𝑛2 = 𝑛̄2/𝐴eff , (34)

with 𝐴eff being the effective mode area.
The waveguide structures investigated are either a Si3N4 waveguide embedded by SiO2

cladding [40,41] or a substrate of SiO2 with a Si3N4 waveguide embedded and air cladding on
top [44]. With heterogeneous structures, and 𝑛2 given by (29), the transverse integral in 𝜅 is split
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Fig. 3. Fundamental TE mode simulated at 1550 nm for a Si3N4 waveguide embedded
in SiO2. The waveguide core is 1000 nm wide and 500 nm thick, replicating the
structure from [40]. The 𝑥 and 𝑦 components of the electric mode profile, ®𝔢, are
purely real, with the 𝑧 component being purely imaginary. The non-zero imaginary
𝑧 component is visualized, motivating the derivation of the NLS equation without
assuming this to be zero. The contour lines indicate a drop of 25%.

Table 1. 𝑐11 Calculation.

Study Waveguide
confinement

10−19 𝑛̄2
[m2/W]

10−21 𝑐11
[m2/V2]

10−7 𝑛2
[W−1]

10−21 𝑐11
[m2/V2]

Relative error
𝜖 [%]

[40] 72.3% 2.4 0.61 2.94 0.63 3.5
[41] 87.3% 3.1±0.4 0.89±0.12 2.82 0.90±0.12 1.2
[44] 88.6% 2.61 0.73 2.680 0.75 1.8

into two parts, one for the cladding and one for the waveguide. The total effective Kerr coefficient
is a sum of the contributions stemming from both the waveguide core and the cladding:

𝑛2 =
3𝑐𝜀0

4𝑁2
(
𝛴wg + 𝛴clad

)
, (35)

with:
𝛴wg ≡

∬
wg

(
𝐶wg®𝑣

)
· ®𝔢∗ d𝑥 d𝑦 , (36a)

and:
𝛴clad ≡

∬
clad

(
𝐶clad®𝑣

)
· ®𝔢∗ d𝑥 d𝑦 . (36b)

The electric mode profiles ®𝔢 are obtained from mode simulation, from which the effective area
is also found. Using existing values of 𝑐11 for SiO2 of 0.389 × 10−22 m2/V2 [45], 𝑐11 for Si3N4
can be found. See Section 10 in Supplement 1 for a numerical example.

All three waveguides are designed for the fundamental TE mode and have waveguide
confinement between 72-89%, with the evanescent field extending into the SiO2 cladding, and
for [44] into the air top cladding. As an example, the simulated mode profile of the waveguide
from [40] is plotted in Figure 3.

The tensor element found from each literature source, from both formalisms, can be found
in Table 1, along with the relative error, found similarly to (22). The resulting mean 𝑐11 tensor



element for Si3N4 is:
𝑐11 = 0.76 × 10−21 m2/V2. (37)

Not all studies provided uncertainties for their measurements preventing error estimation. The
variations in values can be a result of the different manufacturing processes used, as the flow ratio
during chemical vapor deposition (CVD) has been shown to modify the stoichiometry of Si3N4
films resulting in differing nonlinear tensor element values [46, 47]. The high uncertainty on
the measurements from [41], and the resulting high uncertainties found for the nonlinear tensor
elements, are also seen in other materials, such as barium borate (BBO) [48].

4. Discussion

The presented NLS equation for integrated photonics differs from the currently accepted
derivations in multiple aspects. In particular, it avoids a series of assumptions on the electric
field such as plane wave propagation and the magnitude of the longitudinal component along 𝑧.
Both are in contradiction to the purely imaginary 𝑧 component seen in the mode simulation in
Fig. 3. The model is not derived phenomenologically by assuming the existence of the Kerr
effect, but is instead directly from Maxwell’s equations. The model is derived with heterogenous
waveguides in mind, allowing for dispersion and nonlinear contributions from multiple materials.
It does not make assumptions on the magnitude of the nonlinear effects and with the derivation
using the complex wavenumber ®𝑘 it includes a finite value of attenuation through the entire
derivation. The inclusion gives insight into how it affects nonlinear mode coupling, with a clear
dependence seen in the nonlinear term in (15) (first term on the right-hand side). This makes
the model better suited in situations with high propagation loss, such as lasing near an optical
bandgap or at shorter wavelengths. Nonlinear effects such as two-photon absorption, stimulated
Raman scattering, and stimulated Brillouin scattering are not explicitly included in the derivation
on the NLS equation, but could, along with other nonlinear effects, be included in ®̃P (NL) in the
chief equation, (8), or in the attenuation coefficient.

As the presented explicit formula for the group index, (20), shows good coincidence with the
conventional expression, (21), our confidence in the validity of the presented formalism is very
high. Having an explicit formula for the group index, and therefore GVD, provides more insights
into how to engineer these quantities to desired values, e.g. normal or anomalous dispersion.

In integrated optics, the intensity across the waveguide cross-section varies greatly, resulting
in an ill-defined quantity. Having the optical Kerr effect expressed by optical power is preferred
as mode simulation software is readily available, and power is usually known in a laboratory
setting, enabling quick calculations. This model excels when working with heterogeneous
waveguides such as the quickly developing lithium niobate-on-silicon nitride platform [42]. Here
a significant part of the mode profile leaks into the cladding/substrate and multiple materials
with high nonlinearities are used. This leads to multiple contributions to the generated phase
shift. The multiple contributions are in the presented model accounted for in (11) by splitting the
integral into as many terms as there are nonlinear contributions. An example of this is provided
in Supplement 1, section 10.

In the presented calculations in Section 3.1, a relative error in the third-order tensor element
of 3.5% is found. This is in a well-guided mode with a waveguide confinement of 72.3%. The
error will only increase for structures with lower waveguide confinement and a cladding material
with a higher nonlinear coefficient. Using (8) to find coupled amplitude equations, as done for
second harmonic generation in [27], the power of a generated signal scales with 𝜅2, escalating
the significance of the error, and shows the importance of using the correct model for the task at
hand.

Combined with the presented method for calculating 𝑐11, the expression for the Kerr coefficient
given in this paper will allow for better predictions in the design of devices utilizing the Kerr



effect, such as all-optical switches. The limiting factor for the accuracy of the model now becomes
the large uncertainties in the 𝐶 tensor elements, especially for non-amorphous materials with
multiple independent tensor elements [48, 49].

5. Conclusion

This study introduces a novel formalism for describing nonlinear integrated photonics, derived
from a generalized chief equation. The resulting nonlinear Schrödinger equation is applied to
the case of degenerate four-wave mixing, revealing a bright soliton solution. The NLS equation
is used to derive a more general formula for the group index, showing excellent coincidence
with the conventional model. Moreover, the optical Kerr effect is expressed in terms of optical
power, yielding a Kerr coefficient that depends explicitly on the waveguide mode and power.
The application of this formalism is demonstrated by calculating the relevant nonlinear tensor
coefficient for Si3N4. For one example this results in a relative error of 3.5% to the conventional
model. By providing a rigorous derivation of the NLS equation this study helps model nonlinear
effects in waveguides, but more research is necessary to gain insight into the overall scope
of its implications especially in lossy materials. This could include simulations of the NLS
equation in optical components such as long optical fibers, and ring resonators for frequency
comb generation.
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