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Abstract—A study is presented to provide a new formalism
for describing nonlinear integrated photonics. The nonlinear
Schrödinger (NLS) equation is derived from a presented chief
equation in the special case of degenerate four-wave mixing. From
the soliton solution to the NLS equation, a new formula for the
group index and group-velocity dispersion is found. With a focus
on heterogeneous waveguides, the nonlinear phase shift generated
by the optical Kerr coefficient is found to be proportional to the
power in the waveguide. The Kerr coefficient is found for any
given material system, with the special case of an amorphous
material showing a vastly simplified expression. The presented
Kerr coefficient utilizes the waveguide mode and optical power,
which are better defined in integrated photonics compared to
conventional expressions. Using the presented Kerr coefficient,
the tensor coefficient for stoichiometric silicon nitride is found
based on data from previous studies.

Index Terms—Group Index, Integrated Photonics, Nonlinear
Schrödinger Equation, Optical Kerr Effect, Solitons, Silicon
Nitride Waveguide

I. Introduction

THE nonlinear Schrödinger (NLS) equation has been a
fundamental tool in photonics for decades [1], offering

insights into dispersion and the behavior of light in non-
linear optical media. Its applications, spanning optical com-
munications [2], frequency metrology [3], spectroscopy [4],
ultrafast science [5], and quantum optics [6], [7], underscore
its paramount importance in modern optics. Today, the NLS
equation is indispensable for modeling devices like all-optical
switches [8], [9] and optical parametric oscillation (OPO) [10],
[11]. These advancements in nonlinear optics have not only
revolutionized chip-scale photonic capabilities but have also
paved the path for breakthroughs in frequency synthesis [12],
precision timing for positioning and navigation [13], frequency
conversion of mid-infrared [14] to deep-UV [15] and a myriad
of spectroscopic techniques [16].

Using the NLS equation, one can simulate how dispersion
and nonlinearities affect the shape of an optical pulse as it
propagates in a nonlinear medium [17]. The typical formalism
to derive the NLS equation, inherited from bulk optics, makes
simplifying assumptions such as lossless system and purely
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transverse fields[18], [19]. However, for a guided mode in a
material with loss, these assumptions may not necessarily be
valid [20].

The NLS equation is derived from first principles in the
special case of degenerate four-wave mixing [21]. The pre-
sented model avoids assumptions about polarization and the
plane-wave approximation while accommodating discontinu-
ities in the permittivity. This makes it universally applicable
to all waveguides, especially well-suited for heterogeneous
structures [22], [23], [24]. In addition, the NLS equation
is typically derived assuming the existence of the optical
Kerr effect [25], whereas in this work the effect follows
directly from the NLS equation. The bright soliton solution
of the NLS equation is presented, from which a more general
expression for the group index is found, which depends on
both the dispersion and the mode field patterns. The presented
derivation of the Kerr effect differs from existing literature in
that the nonlinear phase shift is proportional to the optical
power instead of the intensity. This is a more relevant and
convenient quantity in integrated photonics, since the optical
intensity in waveguides varies significantly over the cross-
section. The presented model leads to a compact expression for
the Kerr coefficient given by the third-order nonlinear tensor
and the mode profile. As the waveguide modes are readily
simulated in available software, the presented formalism is a
powerful tool for optical engineers to better design generated
nonlinear phase shifts. To provide verification and an example
of how this formalism can be used, examples are provided
with silicon nitride Si3N4 based on previous studies.

II. Chief equation and NLS equation

The complex wavenumber is expressed as:

k = β + iα/2 = nω/c , (1)

where β is the wavenumber, α the attenuation coefficient, n is
the effective refractive index of the relevant mode at the carrier
frequency ω/(2π) , and c is the speed of light in vacuum.

The complex electric field is decomposed as [26]:

E⃗ = eiφZ (z, t) e⃗ (x, y) , (2)

where φ = kz−ωt. The complex vector e⃗ is the electric mode
profile, which is independent of the longitudinal ẑ-direction.
The complex function Z is unitless and accounts for coupling
between modes, as well as additional time dependence. This
can be modeled through Fourier decomposition at different
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Fourier frequencies Ω/2π . The modes are normalized with
the following parameter[27]:

N ≡ 1
2

"
R2

(⃗
e × h⃗∗

)
· ẑ dx dy , (3)

where h⃗ is the magnetic mode profile and the integration
extends over the transverse plane of the waveguide. The mode
profiles and the effective index are found by solving the
dispersion relation [28]. The Z function is then found by
solving the chief equation, which is introduced now. It involves
the following quantity:

K(Ω) ≡ 1
4µ0ωN

"
R2
γ2(Ω) e⃗ · e⃗∗ dx dy , (4)

where µ0 is the vacuum permeability, and the gamma factor γ
is related to the material refractive index nmat via:

γ(Ω) = Ω nmat(Ω)/c . (5)

The K parameter can be Taylor expanded around ω:

K(Ω) ≈ K(ω) + (Ω − ω)k1 +

∞∑
m=2

(Ω − ω)m

m!
km, (6)

with:
k1 ≡ dK

dΩ

∣∣∣∣∣
ω
, km ≡ dmK

dΩm

∣∣∣∣∣
ω
. (7)

In the presence of dispersion, nonlinearity, and a finite value
of attenuation, the Z function is found by solving:

∂zZ + k1∂tZ = T + i
∞∑

m=2

km
(i∂t)2

m!
Z . (8)

This chief equation is derived in the supplementary materials.
In the special case of continuous-wave (cw) operation, (8)
reduces to the equation reported in [29]. The term T accounts
for the nonlinear interaction and is defined as:

T ≡ ie−iφ

4ωN

∫ ∞
−∞
Ω2e−iΩt

"
R2

[
⃗̃P (NL)(Ω) · e⃗∗ dx dy

]
dΩ , (9)

where ⃗̃P (NL) is the Fourier component of the nonlinear polar-
ization and depends on the nonlinear effect of interest.

Degenerate four-wave mixing is now considered, for which:

⃗̃P (3)(Ω) = 3ε0δ(Ω − ω)e−αzeikzZ |Z |2 C3⃗, (10)

where ε0 is the vacuum permittivity, C is the third-order
nonlinear tensor that has been reduced by assuming Kleinmann
symmetry [30] and 3⃗ is a complex 10-row vector that involves
the components of the electric mode profile. These quantities
are used in the definition of a unitless coupling coefficient:

κ ≡ cε0

4N

"
R2

(C3⃗) · e⃗∗ dx dy . (11)

For amorphous materials, the C tensor contains only one
independent coefficient (c11), and [31]:

(C3⃗) · e⃗∗ = c11

3

[(⃗
e · e⃗)2 + 2

(⃗
e · e⃗∗)2] . (12)

Using (10) and (11) the term (9) simplifies to:

T = iΓe−αzZ |Z |2 , (13)

where:
Γ ≡ 3

ω

c
κ. (14)

Inserting (13) into (8):

∂zZ + k1∂tZ = iΓe−αzZ |Z |2 + i
∞∑

m=2

km
(i∂t)m

m!
Z . (15)

Relation (15) is commonly referred to as the nonlinear
Schrödinger equation [32]. The presented derivation differs
from how the NLS equation is typically formulated by includ-
ing the longitudinal component of the electric field in the wave
equation, and by including attenuation in the wavenumber k
through all steps, as opposed to adding a term to the left-hand
side of (15) after the derivation.

A. Temporal solitons

In the case where km = 0 for m > 2, the following function
is an exact solution to (15):

Z(z, t) = Z0eGz
/
cosh [τ/τ0 ] , (16)

with the retarded time τ ≡ t − k1z, a complex amplitude
Z0, a characteristic time τ0 and a complex phase G. These
parameters must satisfy the following conditions:

|Z0|2 = − k2

Γτ2
0

, (17)

and:
G = −i

k2

2τ2
0

. (18)

A pulse given by (16) does not vary in shape. This is known
as a temporal soliton [33], [34], [35].

The group velocity is defined as the speed of a pulse
envelope. From (16) and the definition of τ, it is clear that
k1 is related to the group velocity vg by:

k1 = 1/vg. (19)

From (7), k2 relates to the group-velocity dispersion (GVD).
Equation (17) imposes that the sign of k2 should be opposite
to the sign of κ (seen from (14)). For bright solitons, a negative
k2 results in anomalous dispersion, and a positive κ [36]. If
there is zero attenuation, these conditions also imply that τ0
is real. Hence, τ0 represents the temporal width of the pulse.

B. Group index

From (7) and (19), the group index can be found from:

ng ≡ c/vg = c
dK
dΩ

∣∣∣∣∣
ω
. (20)

This expression seems to be more general than the common
expression [37]:

n̄g = n + ω
dn
dω
. (21)

Both expressions (20) and (21) are compared in Fig. 1 by
plotting the error:

ϵ ≡ (n̄g − ng)
/
n̄g . (22)
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ng and n̄g are found from simulations of waveguides made
from Si3N4 and GaAs. Both structures are enclosed in SiO2
cladding. As the waveguide thickness increases, the mode
confinement increases, converging towards a homogeneous
waveguide. The simulations are made with a 2 µm wide
waveguide with a varying thickness (the Si3N4 waveguide is
not simulated with a thickness below 100 nm, as the mode
becomes highly unconfined). Values found from (21) are in
general higher with a finite difference found in the third digit,
showing an excellent match between the two expressions.
The common expression (21) has been found to match well
experimentally [38], giving us confidence in the validity of the
presented formalism.
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Fig. 1. Error (22) between the general expression (20) and the common
expression (21) for the group index. Simulations are performed for a Si3N4
waveguide (in red) and a GaAs waveguide (in blue) as a function of the core
thickness. Dashed lines show the confinement factor.

III. Optical Kerr effect

An important implication of the NLS equation is the optical
Kerr effect. Under continuous-wave (cw) excitation, the NLS
equation (15) reduces to:

∂zZ = iΓe−αzZ |Z |2 . (23)

The Z function can be expressed as:

Z = eiϕZ, (24)

with a phase ϕ and a norm Z, such that:

∂zZ = eiϕ(∂zZ + iZ∂zϕ). (25)

From (23) one deduces that ∂zZ = 0. Using the expression for
the optical power:

P = Ne−αzZ2, (26)

one finds:
∂zϕ =

Γ

N
P, (27)

with Γ from (14). The third-order nonlinearity induces a phase
change. This is known as the optical Kerr effect. One further
defines a change of effective index by:

∆n ≡ c
ω
∂zϕ = n2P, (28)

with the Kerr coefficient:

n2 ≡ 3κ/N . (29)

Notice that (28) is proportional to the power. This contrasts
with the classical result from bulk optics where the optical
Kerr effect induces a change of material refractive index
proportional to the intensity.

For a waveguide based on amorphous materials, (12) ap-
plies. For waveguides with a negligible nonlinear contribution
from the cladding, the coupling coefficient (11) reduces to:

κ =
cε0

12N
c11Σ, (30)

where:
Σ ≡
"
R2

(⃗
e · e⃗)2 + 2

(⃗
e · e⃗∗)2 dx dy . (31)

The Kerr coefficient can then be expressed as:

n2 =
cε0

4N2 c11Σ. (32)

Using the mode profile to calculate a nonlinear effective
refractive index has been already reported, e.g. in Ref. [39].
The present formalism expands on this. Derived directly from
the NLS equation, (29) is more general and works for all
material systems.

A. Third-order nonlinear coefficient

The usual formalism of the Kerr effect uses an effective area
Aeff of the mode profile to have it represented with respect to
intensity [40]. To translate it to the presented formalism, the
Kerr coefficient n̄2, given in the intensity formalism, can be
divided by the effective area Aeff .

This approach is used to find the c11 tensor element of
amorphous Si3N4 from multiple previous works by using the
measured Kerr coefficient reported in the intensity formalism
in Si3N4 waveguides, see Table I. Si3N4 is chosen as it has
a high third-order nonlinearity [41], a broad transparency
range [42], and is an amorphous material for which (32) is
applicable. The waveguide structures in the investigated works
are either a Si3N4 waveguide embedded by SiO2 cladding [42],
[41] or a substrate of SiO2 with a Si3N4 waveguide embedded
and air on top [43].

From these heterogeneous structures, the transverse integral
in (11) is split into two parts, one for the cladding and one
for the waveguide. The total effective Kerr coefficient is a
sum of the effective Kerr coefficient stemming from both the
waveguide core and the cladding:

n2 =
3cε0

4N2

(
Σwg + Σclad

)
, (33)

with:
Σwg ≡

"
wg

(Cwg3⃗) · e⃗∗ dx dy , (34a)

and:
Σclad ≡

"
clad

(Cclad3⃗) · e⃗∗ dx dy . (34b)

The electric mode profiles e⃗ are obtained from mode simula-
tion, leaving the c11 tensor element for each material as the



4

TABLE I
c11 Calculation.

10−19 n̄2
[m2/W]

Si3N4 dim.
(w × h) [nm]

λ
[nm]

Aeff
[µm2]

10−7 n2
[W−1]

10−21 c11
[m2/V2]

Deposition
method

3.12 ± 0.5 [42] 1650 × 700 1563 0.896 3.482 1.133 ± 0.8 LPCVD
2.4 [41] 1000 × 500 1550 0.802 2.994 0.655 PECVD
2.61 [43] 1600 × 660 1550 0.974 2.680 0.760 LPCVD
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Fig. 2. Fundamental TE mode simulated at 1550 nm for a Si3N4 waveguide embedded in SiO2. The waveguide core is 1000 nm wide and 500 nm thick,
replicating the structure from [41]. A clear non-zero z component is visualized, motivating the derivation of the NLS equation without assuming this to be 0.
The contour lines indicate a drop of 25%.

unknown variables. Using existing values of c11 for SiO2 of
0.389 × 10−22 m2/V2 [44], c11 for Si3N4 can be found.

In literature sources where the effective area is not provided
[41], [42], it is instead found from mode simulations using
the provided waveguide geometries in EMode [45]. All three
papers considered the fundamental TE mode. The simulated
mode profiles have waveguide confinement of 70-90%, with an
evanescent field extending into the cladding. As an example,
the mode profile of the waveguide from [41] is plotted in
Figure 2. With low waveguide confinement, using a model
that allows for heterogeneous structures becomes necessary.

The c11 coefficient found from each literature source results
in a value for Si3N4:

c11 = 0.849 × 10−21 m2/V2. (35)

Not all sources provided uncertainties for their measurements,
preventing error estimation. The variations in values can
be a result of the manufacturing process, as the flow ratio
during chemical vapor deposition (CVD) has been shown to
modify the stoichiometry of SiN films [46], [47]. The high
uncertainty on the measurements from [42], and the resulting
high uncertainties found for the nonlinear tensor elements, are
also seen in other materials, such as barium borate (BBO)
[48].

IV. Discussion

The presented NLS equation for integrated photonics differs
from the currently accepted derivations in multiple aspects. In
particular, it avoids a series of assumptions such as plane wave
propagation, the magnitude of the longitudinal component

along ẑ, the existence of the optical Kerr effect, and the
magnitude of the nonlinear effects. Lastly, the derivation is
conducted using the complex wavenumber k⃗, which includes
a finite value of attenuation through the entire derivation. By
including the attenuation through the entire derivation, the
resulting chief equation and NLS equation give insight into
how attenuation affects nonlinear mode coupling. Nonlinear
effects such as two-photon absorption, stimulated Raman scat-
tering, and stimulated Brillouin scattering are not explicitly
included in the derivation on the NLS equation, but could,
along with other nonlinear effects, be included in ⃗̃P (NL) in the
chief equation, (8), or in the attenuation coefficient.

As the presented explicit formula for the group index, (20),
shows good coincidence with the conventional expression,
(21), our confidence in the validity of the presented formal-
ism is very high. Having an explicit formula for the group
index, and therefore GVD, provides more insights into how
to engineer these quantities to desired values, e.g. normal or
anomalous dispersion.

The optical Kerr effect given by optical power is optimal for
higher-order modes, where the effective area is a bad repre-
sentation of the intensity. Two different modes can exhibit the
same effective area, but a non-fundamental mode can achieve a
substantially higher peak intensity, increasing the Kerr effect.
Power is also used more in a laboratory setting, and hence
a more convenient quantity for calculations. As the model
allows for heterogeneous waveguides, its strength is apparent
when a significant part of the mode profile leaks into the
cladding/substrate, as in thin waveguides, leading to multiple
contributions to the generated phase shift. The contributions
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are accounted for in (11) by splitting the integral into as
many terms as there are nonlinear contributions, as done in
the presented example. Combined with the presented method
for calculating c11, the expression for the Kerr coefficient given
in this paper will allow for better predictions in the design of
devices utilizing the Kerr effect, such as all-optical switches.
The limiting factor for the accuracy of the model now becomes
the large uncertainties in the C tensor elements, especially
for non-amorphous materials with multiple independent tensor
elements [49], [48].

V. Conclusion
This study introduces a novel formalism for describing

nonlinear integrated photonics, derived from a generalized
chief equation. The resulting nonlinear Schrödinger equation is
applied to the case of degenerate four-wave mixing, revealing
a bright soliton solution. The NLS equation is used to derive
a more general formula for the group index, providing a more
accurate representation of integrated photonics compared to
conventional expressions. Moreover, the optical Kerr effect is
expressed in terms of optical power, yielding a Kerr coefficient
that depends explicitly on the waveguide mode and power. The
application of this formalism is demonstrated by calculating
the relevant nonlinear tensor coefficient for Si3N4. This study
enhances understanding of nonlinear effects in waveguides
and offers practical tools for optical engineers in predicting
nonlinear effects, especially nonlinear phase shifts.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.
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Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R.
Newbury, “Tight real-time synchronization of a microwave clock to an
optical clock across a turbulent air path,” Optica, vol. 3, no. 4, pp. 441–
447, 2016.

[14] E. Z. Ulsig, I. Degli-Eredi, E. J. Stanton, and N. Volet, “Efficient low
threshold frequency conversion in AlGaAs-on-insulator waveguides,”
Front. Photon., vol. 3, p. 904651, 2022.

[15] E. J. Stanton, P. Tønning, E. Z. Ulsig, S. Calmar, M. A. Bourland,
S. T. Thomsen, K. B. Gravesen, P. Johansen, and N. Volet, “Continuous-
wave second-harmonic generation in the far-uvc pumped by a blue laser
diode,” arXiv, 2309.04554, 2023.

[16] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in
photonic crystal fiber,” Rev. Mod. Phys., vol. 78, no. 4, p. 1135, 2006.

[17] V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear
Schrödinger equation model,” Phys. Rev. Lett., vol. 85, no. 21, p. 4502,
2000.

[18] Y. Shen, The Principles of Nonlinear Optics. Wiley, 1984.
[19] R. W. Boyd, Nonlinear Optics. Academic Press, 2020.
[20] P. S. Kuo and M. Fejer, “Mixing of polarization states in zincblende

nonlinear optical crystals,” Opt. Express, vol. 26, no. 21, pp. 26 971–
26 984, 2018.

[21] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky,
“Dissipative kerr solitons in optical microresonators,” Science, vol. 361,
no. 6402, p. eaan8083, 2018.

[22] A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and
potential of lithium niobate on insulator (LNOI) for photonic integrated
circuits,” Laser Photonics Rev., vol. 12, no. 4, p. 1700256, 2018.

[23] G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on
insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev.,
vol. 6, no. 4, pp. 488–503, 2012.

[24] X. Han, M. Yuan, H. Xiao, G. Ren, T. G. Nguyen, A. Boes, Y. Su,
A. Mitchell, and Y. Tian, “Integrated photonics on the dielectrically
loaded lithium niobate on insulator platform,” J. Opt. Soc. Am. B, vol. 40,
no. 5, pp. D26–D37, 2023.

[25] G. P. Agrawal, Nonlinear fiber optics, 6th ed. Springer, 2019.
[26] M. L. Madsen, E. Z. Ulsig, S. Folsach, P. H. Godoy, E. J. Stanton, and

N. Volet, “Mid-infrared difference-frequency generation in AlGaAs-on-
insulator waveguides,” J. Opt. Soc. Am. B, vol. 40, no. 7, pp. 1742–1748,
2023.

[27] M. T. Hansen, E. Z. Ulsig, F. Labbé, M. L. Madsen, Y. Ding, K. Rottwitt,
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