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Movement diversity and complexity increase as 
arm impairment decreases after stroke: Quality 

of movement experience as a possible target for 
wearable feedback 

 
Shusuke Okita, Diogo Schwerz de Lucena, and David J. Reinkensmeyer, Member, IEEE 

Abstract— Upper extremity (UE) impairment is common 
after stroke resulting in reduced arm use in daily life. A few 
studies have examined the use of wearable feedback of 
the quantity of arm movement to promote recovery, but 
with limited success. We posit that it may be more 
effective to encourage an increase in beneficial patterns of 
movement practice – i.e. the overall quality of the 
movement experience – rather than simply the overall 
amount of movement. As a first step toward this goal, here 
we sought to identify statistical signatures of the 
distributions of daily arm movements that become more 
prominent as arm impairment decreases, based on data 
obtained from a wrist IMU worn by 22 chronic stroke 
participants during their day. We identified several 
measures that increased as UE Fugl-Meyer (UEFM) score 
increased: the fraction of movements achieved at a higher 
speed, forearm postural diversity (quantified by kurtosis 
of the tilt-angle), and forearm postural complexity 
(quantified by sample entropy of tilt angle). Dividing 
participants into severe, moderate, and mild impairment 
groups, we found that forearm postural diversity and 
complexity were best able to distinguish the groups 
(Cohen’s D = 1.1, and 0.99, respectively) and were also the 
best subset of predictors for UEFM score. Based on these 
findings coupled with theories of motor learning that 
emphasize the important of variety and challenge in 
practice, we posit that encouraging people to achieve 
more forearm postural diversity and complexity might 
improve the quality of their movement experience and 
therefore might be therapeutically beneficial. 
 

Index Terms— Wearable Sensing, Movement 
Rehabilitation, Activities of Daily Living (ADL), the Inertial 
Measurement Unit (IMU), Sample Entropy, Fugl-Meyer 
Upper Exremity (UEFM) Score, Upper Extremity (UE).  

I. INTRODUCTION 
troke is one of the most prevalent diseases across the 
world [1]. It was reported that 80 percent of people 
experience upper extremity (UE) motor impairments 
following stroke [2]. Due to these impairments, 
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people rely more on their less-impaired UE for daily 
activities [3], although the activity level of both UEs 
decreases as the impairment of the paretic arm increases [4], 
[5]. This phenomenon relates to the concept of “learned non-
use” [6] and may contribute to poor adherence to home 
exercise programs [7] and reduce gains from home 
rehabilitation [8]. 

Following on these concepts, Han et al. suggested that 
people following stroke can be categorized as either “users”, 
or “non-users” based on how much they use their impaired 
arm in daily activities [9]. “Users” are hypothesized to enter 
a “virtuous cycle”, in which they actively use their impaired 
arm, resulting in an improvement of arm function [8]. “Non-
users”, in contrast, are hypothesized to enter a “vicious 
cycle”, in which their arm non-use leads to reduced arm 
function [8]. 

Escaping this vicious cycle is challenging due to multiple 
factors. Firstly, people generally don't begin to use their 
impaired arm voluntarily unless its function reaches at least 
half of its normal functional ability [10], [11], which aligns 
with the threshold hypothesis proposed by Schweighofer et 
al [9]. Secondly, even when individuals show improvement 
on clinical functional tests, such as the Action Research Arm 
Test (ARAT), this progress doesn't necessarily translate to 
increased arm use in daily life, indicating a "translation gap" 
between arm functionality and actual use [12]. For example, 
a recent study found that a majority of stroke patients 
improved the capacity for UE activity as they recovered; 
however, they did not improve the actual performance of UE 
activity in daily life, as measured with a wearable sensor 
[13]. Further, patients typically spend limited time in 
therapeutic activities compared to non-therapeutic activities, 
with stroke patients spending only about 28% of their 
available time on therapeutic activities even in rehabilitation 
centers [14]. Finally, patients tend to overestimate the 
amount of their activity in home exercise programs [15]. 

We recently studied the potential of wearable feedback of 
amount of hand use to help address several of these issues. 
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We developed the Manumeter, a wrist-worn magnetic array 
that senses the movement of a magnetic ring worn on a 
finger, indicating the number of hand movements on a 
display [16]–[18], [10]. We used the Manumeter to test the 
hypothesis that real-time, daily feedback could promote hand 
use in daily activities [18]. We found that providing three 
weeks of such feedback promoted a small but a statistically 
significant increase in the amount of hand movements. 
Further, UE movement ability, measured by the UE Fugl-
Meyer (UEFM) Test and the Box and Block Test (BBT), 
modestly increased. Other studies of wearable feedback have 
also found modest benefits to providing wearable feedback 
of amount of hand use [19], [20], leaving open the question 
of whether there is a way to build on these results and 
increase the benefit of wearable feedback. 

Here, we reason that people with a stroke not only use their 
UE less, but also have an impoverished daily movement 
experience because they don’t use their UE for a variety of 
tasks. This idea of impoverishment can be considered to 
relate to the idea of “movement quality”, but is somewhat 
different than how movement quality has typically been 
conceived in wearable sensor research. For instance, 
previous studies have found that people after stroke exhibit 
decreased movement smoothness both during supervised 
movement in the clinic [21] and during daily activities [22]. 
Therefore, movement smoothness has been suggested as a 
measure of movement quality, or, alternately, measures such 
as increased movement speed and range of motion, or 
decreased curvature of reaching movements have been 
suggested [23]. However, these measures of movement 
quality focus on the quality of individual movements rather 
than the overall quality of the entire daily movement 
experience. 
The idea of impoverishment we propose here relates to the 
idea that severely impaired stroke subjects appear “stuck” 
in stereotypical, abnormal synergistic movement patterns 
due to reduced capability of the corticospinal tract and/or 
the presence of spasticity [24]. In any motor learning 
context, if a person only ever practices the same thing with 
variation and increasing challenge, it is difficult to improve 
in skill. Thus, we postulate that it is important for non-users 
to practice a more diverse set of challenging movements 
frequently throughout the day to enter a virtuous cycle that 
improves movement ability. This idea also relates to the 
idea of encouraging motor exploration by individuals after 
stroke ([25], [26]). 

But what should this diverse set of more challenging 
movements look like, and how might it be sensed by a wrist-
worn inertial measurement unit (IMU)? This study sought to 
identify statistical signatures of the distributions of daily arm 
movements, quantifiable with a wrist-worn IMU, that 
become more prominent as arm impairment decreases. We 
reasoned that better-recovered persons move in ways that 
would be advantageous to identify, to provide targets for less 
well-recovered persons to try emulating. Therefore, we 
examined how several candidate measures of the quality of 
movement experience varied with different levels of 
recovery. We did this by analyzing IMU data obtained from 
22 persons with a stroke wearing a wearable sensor on the 

wrist. Here, we focused on three categories of statistical 
quantification: 1) those relating to distributions of 
acceleration and angular velocity magnitudes of the forearm 
movement throughout the day; 2) those relating to the 
distribution of forearm postures experienced throughout the 
day; and 3) those related to the complexity of forearm 
movements performed throughout the day. 

II. METHODS 

A. Wearable Sensor and Experimental Protocol 
The Manumeter is a wrist-worn device consisting of a six 

degrees-of-freedom (DOF) IMU with an accelerometer and 
a gyroscope (LSM6DSL; STMicrosystems, Switzerland), 
four magnetometers on four corners of the device, and an 
OLED display [16], [17]. For this study, we analyzed sensor 
signals from the IMU, sampled at 52.6 Hz obtained from a 
previous pilot study of the effectiveness of hand count 
feedback versus conventional home exercise [10]. Twenty-
two participants (see overview of participants in Table I) 
wore the Manumeter once before the three-week hand-count 
feedback intervention and then once after the intervention. 
10 data sets were lost because of data acquisition problems 
[18], [27]. Thus, in total, 34 data sets were used for the study. 
All trials were conducted at the University of California, 
Irvine, with each participant giving informed consent in 
accordance with a protocol sanctioned by the relevant 
Institutional Review Board. The level of impairment of these 
participants was quantified using two common clinical 
measures. The Box and Blocks Test (BBT) requires 
participants to pick up small blocks from a box and transfer 
them over a divider, transferring as many blocks as possible 
in one minute [28].  The Upper Extremity Fugl Meyer 
(UEFM) test measures the ability of participants to perform 
33 different test movements, rating each 0, 1, or 2 and 
summing the points to get a total possible score of 66 [29]. 

Table 1. Characteristics of the 22 participants 
Age 57 ± 15 
Gender (Male[M])/Female([F]) 16 M / 4 F 
Time since stroke (months) 40 ± 33 
Side of hemiparesis (Right [R]/Left [L]) 12 R / 10 L 
Type of stroke 

    (Ischemic [I]/Hemorrhagic [H]) 12 I / 10 H 

Box and Blocks Test (Number of blocks 
    transferred in 60 seconds) 

21 ± 18 

Upper Extremity Fugl-Meyer (UEFM)  
    Score (0-66) 

40 ± 13 

B. Processing of the IMU Data 
We used the Madgwick filter to subtract the gravity 

components from acceleration [30]. To identify the statistical 
properties of the participant’s arm activity, we needed to 
filter out periods of arm inactivity, which was done in the 
following way (Figure 1). First, we removed any time 
periods when sensor values remained constant for over three 
minutes (cf. [31], [32]). Second, we introduced two measures 
of arm activity: (1) the instantaneous upper limb use score 
𝑢(𝑡), and (2) the mean arm use score 𝑢(𝑡). 𝑢(𝑡) is a binary 
number where 1 represents that the magnitude of the arm 
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acceleration is over a small threshold, chosen as described 
below. 

𝑢!(𝑡) ≜ '
0	(UL is not in use at time 𝑡)
1	(UL is in use at time 𝑡)  (1) 

𝑢(𝑡) is the average of 𝑢(𝑡) over a sliding window with D 
= 10 seconds long: 

𝑢!(𝑡; 𝐷) ≜
1
𝐷-  

"

"#$
𝑢!(𝑥)𝑑𝑥, 𝑡 ∈ [𝐷, 𝑇] (2) 

We identified a threshold for  𝑢(𝑡) such that if  𝑢(𝑡) were 
below that threshold, we considered the arm to be inactive at 
that movement and removed that data from our analysis.  We 
will use the terms “total inactive time” for the total amount 
of time that we removed, and “total active time” for the time 
periods we kept. To choose thresholds for 𝑢(𝑡) and	𝑢(𝑡), we 
conducted a grid search in the range of [0.05, 0.30] for the 
threshold of 	𝑢(𝑡), and [0.05, 0.30] for the threshold of 𝑢(𝑡), 
checking a combination of parameters that achieved a 
statistically significant correlation (see Supplementary 
Material).  Our goal was to make the thresholds as lenient as 
possible to retain as much data as possible for analysis. 
However, we imposed the constraint that the chosen 
thresholds should produce a total inactive time that was as 
strongly correlated as possible with the impairment level 
measured by UEFM score. As a result, we chose a threshold 
of 𝑢(𝑡) = 0.1 G and a threshold of 𝑢(𝑡) = 10 % as parameters 
for the rest of the analysis. 

C. Forearm Orientation 
Leuenenberger et al. previously used an estimate of the 

orientation of an IMU worn on the wrist to quantify 
functionally relevant arm movement of stroke patients, 
proposing it as a measure of movement quality [33].  
Motivated by their approach and the principles in [34], [35], 
we similarly estimated device orientation using the law of 
cosines [34]: 

Θ = arccos	 =
−𝑎%&

@𝑎%'( + 𝑎%)( + 𝑎%&(
B (3) 

where 𝑎%' , 𝑎%) , and 𝑎%&  represent the components of the 
measured acceleration vector along the x, y, and z axes, 
respectively, with respect to a sensor coordinate frame S, 
before Madgwick filtering (Figure 1A,C). We normalize this 
vector to obtain a unit vector with a magnitude of 1. Equation 
3 computes the angle Θ between the projection of the 
normalized acceleration vector in the sensor coordinate 
frame S, and a normal vector (0,0,1) with respect to a world 
coordinate W. An acceleration measurement typically 
encompasses both dynamic and gravitational components 
[36]–[38]. This is represented by 

𝑎 = 𝑎* + g + e (4) 
where 𝑎* denotes the dynamic or movement-induced 
acceleration, g denotes gravitational acceleration, and e 
represents error or noise inherent to the measurement 
process. Equation 3 can be computed using either raw 
acceleration vector or gravitational vector (Figure 1A.B). In 
this study, in order to maximize the utilization of the full 
bandwidth of acceleration signals, we used raw acceleration, 
allowing the full spectrum of dynamic and gravitational 
information to capture the changes of tilt angle. 

 
Figure 1. Preprocessing of data to find active periods. (A) Overview of the preprocessing steps. (B) Example of signals for one participant at different stages of 
preprocessing.  From top to bottom: Raw amplitude of acceleration; Periods of active arm movement identified by the first threshold; Moving averages of filtered 
movements with a window size of 1000; Filtered acceleration using the second threshold. (C) The derivation of the device orientation with respect to acceleration 
vectors. The algorithm compares the tilt angle Θ between a vector in the world coordinate frame W and a vector in the sensor coordinate frame S. 
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D. Sample Entropy 
To quantify the complexity of movement, we used Sample 

Entropy (SampEn), an established measure that quantifies 
the signal complexity of physiological measurements [39]–
[41], such as EEG signals [42] and EMG signals [43]. 
SampEn is defined as follows: 

SampEn	(𝑚, 𝑟) = −ln	 M
𝐵+,-(𝛾)
𝐵+(𝛾) P

= −ln	 M
(N −m− 1)#-∑  .#/#-

01- B0/,-(𝛾)
(N −m)#-∑  .#+

01- B0/(𝛾)
P
 (5) 

where Bm+1 represents the number of matches of length m+1 
with i+1 th template, and Bm represents the number of 
matches of length m with i th template (Figure 2). We need 
to choose two key parameters to assess movements: (1) a 
template length m, and (2) a tolerance r. m represents a length 
of template to compare the signal to the rest of the data. 
SampEn computes the number of matchings with a template 
having a length m (i.e.,	𝐵+(𝛾)), and m+1 (i.e., 𝐵+,-(𝛾)), 
and then computes the ratio of matching counts between 
𝐵+,-(𝛾) and𝐵+,-(𝛾). The tolerance r checks if a difference 
between a template and an inspected window is acceptable. 
In addition, we optimized the following additional 
parameters: (3) the segmentation length N, (4) the sampling 
rate, and (5) the type of sensor signals. The sampling rate is 
important because SampEn may not be good at identifying a 
complexity of high-resolution sensor measurements due to 
the nature of the algorithm [44]. To assess quality of 
movement with a smaller sampling rate than an original rate 
(i.e., 52.6 Hz), we down sampled IMU signals from 52.6 Hz 
to 26, and 13 Hz, respectively. We applied SampEn to (i) the 
amplitude of acceleration, (ii) the amplitude of angular 
velocity, and (iii) the tilt angle computed by Equation 3. 

To decide a best combination of parameters for (1)-(5) that 
maximizes a correlation between the sample entropy and 
UEFM scores, we chose parameters for each variable we 
studied (see Figure 1-3 in Supplementary Material). 

 
Figure 2. Overview of the Sample Entropy (SampEn) calculation. SampEn 
checks if there is a similar sequence in the sliding window compared to the 
template window.  

E. Identifying Measure Dependence on Arm 
Impairment 

We hypothesized that subjects have a different statistical 
pattern of daily movement depending on their level of arm 
impairment and analyzed this dependence in two ways. First, 

we examined whether putative statistical measures of arm 
movement varied with UE FM score using regression 
analysis. Second, we compared groups of subjects divided 
into three discrete levels of impairment.  A previous study 
[45] used Rasch analysis to propose that subjects could be 
split into severe, moderate, and mild groups based on UEFM 
cutoff scores of 19 and 47 out of 66.  Here, we used a variant 
of this three-group approach based on our own analysis of 
clinical and wearable sensing data that we previously 
acquired, which allowed us to assign a distinct meaning for 
each group. Group 1 (severely impaired) and Group 2 
(moderately impaired) are distinguished by their inability or 
ability to use their hand. Figure 3A shows the relationship 
between UEFM score and BBT score, a measure of hand 
function. We can see that the group of subjects with UEFM 
score < 30 pts only scored 0-2 blocks on the BBT test, 
meaning they had little to no hand function.  Groups 2 
(moderately impaired) and 3 (mildly impaired) are 
distinguished by whether they use their hand in daily life. 
Figure 3B shows the relationship between hand use, 
measured with the Manumeter, and UEFM score, replotted 
from [18]. Subjects with UEFM score ≥ 50 points 
(approximately) show a greater amount of hand use in the 
real world. Thus, we used UEFM scores of 30 and 50 as 
thresholds to split subjects into three groups with distinct 
meanings, for whom we then compared the statistical 
properties of arm movement. 

 
Figure 3. Basis for selecting severe, moderate, mild impairment groups 
based on UEFM score thresholds (defined by the vertical dashed lines) (A) 
The relationship between BBT Score and UEFM Score, replotted from [46]. 
Hand function emerges around UEFM = 30 (first dashed line) (B) The 
relationship between hand use intensity and the UEFM score (replotted from 
[10]). The hand use intensity is the number of hand counts detected from the 
Manumeter. Daily hand use emerges around UEFM = 50. 

F. Statistical analysis of movement experience quality 
features 

The left column of Table 1 provides a list of sensor 
variables (or “movement experience quality features”) that 
we created, based on distributions of acceleration or speed, 
parameters describing the distribution of forearm postures, 
and signal complexity measures. We performed linear 
regression between each metric and the UEFM score. To 
compare statistical differences between the three groups 
assigned by impairment level, we used analysis of variance 
(ANOVA). In order to find a feature that distinguished one 
group from another, we conducted an unpaired t-test. To 
assess how much a group was different from another by a 
selected measure, we computed an effect size using Cohen’s 
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D [47].  

We also used a multiple linear regression model to predict 
UEFM score. To check the multi collinearity between 
candidate features, we computed the variance inflation factor 
(VIF) between the variables: 

𝑉𝐼𝐹 =
1

1 − 𝑅!(
 (6) 

where 𝑅!(  represents the coefficient of determination. We 
conducted variable selection using the backward elimination 
[48]. In the ordinary least square (OLS) regression, we 
removed the variable having a highest p-value one by one 
until the model has a single variable. Then, we chose the 
model having a minimum Akaike Information Criterion 
(AIC), a measure assessing the quality of the model [49], 
[50]. AIC is often favored over R² because it takes into 
account both the goodness of fit and the complexity of the 
model, helping to avoid overfitting and select a more 
parsimonious model that is likely to generalize better to new 
data [51], [52]. By minimizing AIC, moreover, we can select 
a model that provides a good balance between fitting the data 
well and having a lower complexity [53]. To compare the 
models, we computed differences between each AIC and the 
minimum AIC in backward elimination: 

AlC = 2k − 2ln	(𝐿]) (7) 
Δ = AlC − AIC/02 (8) 

where k represents a number of estimated parameters in the 
model, 𝐿] represents the maximum value of the loglikelihood 
function of the model, and AICmin denote the minimum AIC 
from a model. The minimum AIC is the value of AIC that 
corresponds to the best model among a set of candidate 
models. The difference between the minimum AIC and each 
AIC determines how acceptable it is to select a model; it is 
expected there is too much difference if AIC is larger than 
2.0; Burnham and Anderson stated that there is a substantial 
empirical support if the delta of AIC is small enough (i.e., Δ 
< 2.0) [54]. 

III. RESULTS 

A. Total active time 
The 22 participants with a stroke donned the wrist-worn 

IMU after they left the laboratory following several hours 
of clinical evaluations (i.e. usually in the late morning or 
afternoon). The average duration of IMU recording for the 
rest of the day was about six hours. During this time, 
participants performed active movements for 1.8 hours on 
average, as detected by the activity filter described in the 
Methods section. Total inactive time computed with respect 
to wear time for the impaired arm decreased significantly 
from about 80% to 60% as a function of the UEFM score 
(See Figure 5 in Supplementary Material). Segmentation of 
active periods happened every 40 seconds on average 
across subjects, and the number of segmentations were 108 
times per hour on average across subjects. 

B. Distributions of acceleration and angular velocity 
magnitudes 

The distributions of the magnitude of acceleration and 

angular velocity for the groups of individuals in the three 
levels of impairment are shown in Figure 4. Although the 
distributions were similar between groups, there were 
visible differences between groups for the lowest 
acceleration range [0-1 m/s2], with the difference reversing 
in direction for the next highest acceleration range [1-2 
m/s2]. Specifically, the more impaired subjects spent more 
time at low accelerations, and less time at higher 
accelerations. To determine how strongly these differences 
related to UEFM score, we computed the ratio of the 
number of observations in the ranges, using a similar 
approach for angular velocity magnitude as well. There was 
a statistically significant correlation between the 
acceleration ratio and UEFM score (Figure 5A), but not the 
angular velocity ratio (Figure 5B). Less impaired subjects 
displayed a higher acceleration ratio, meaning they spent 
relatively more time at a higher acceleration magnitude 
range. Top speed of movement throughout the day also 
increased with FM score (Figure 5C, D).  

 
Figure 4. The proportion of participants’ movements as a function of 
magnitude of (A) acceleration magnitude and (B) angular velocity  

C. Forearm posture with respect to gravity 
The distribution of forearm postures varied depending on 
group, with the severely impaired group showing a 
narrower distribution (Figure 6).  To compare the shape of 
the statistical distribution of forearm posture, we used 
three standard statistical measures: kurtosis, skewness, 
and variance. Kurtosis relates to the sharpness of the 
distribution; the distribution becomes more rounded as 
kurtosis increases [55]. Kurtosis decreased significantly as 
a function of UEFM score (Figure 5E). Skewness also 
decreased as a function of UEFM score, but this decrease 
only approached significance (Figure 5F). Finally, 
variance increased significantly as a function of UEFM 
score (Figure 5G). 

D. Sample entropy 
We also tested a measure of movement complexity – the 

sample entropy – applied to the acceleration magnitude, the 
angular velocity magnitude, and the estimated forearm 
posture. For each of these measures, movement complexity 
increased significantly as a function of UEFM score (Figure 
5H, I, and J). 
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Figure 5. Correlation between UEFM score and various sensor variables. The shaded regions represent the 95% confidence interval. The correlation between the 
UEFM score and: (A) the ratio of acceleration in [1-3] m/s2 relative to [0-1] m/s2, (B) The ratio of angular velocity in [5-15] deg/s relative to [0-5] deg/s. (C) the 
mean of acceleration, (D) the mean of angular velocity and the UEFM score, (E) Kurtosis of tilt angle, (F) skewness of tilt angle, (G) variance of tilt angle, (H) 
SampEn of acceleration (I) SampEn of angular velocity, (J) SampEn of tilt angle. 
 

E. Identifying the measures that most effectively 
distinguished impairment level 
It is summarized in Table 2 which of the studied measures 
most effectively distinguished impairment level when 
subjects were grouped into the severe, moderate and mild 
impairment groups. Briefly, as a reminder, the group 
definitions were: Group 1: UEFM < 30, no hand function; 
Group 2: 30 ≤ UEFM < 50, hand function but low hand use; 
Group 3: UEFM ≥ 50, regular hand use. To distinguish 
Group 1 and Group 2, it was most useful to use kurtosis of 
the tilt angle distribution (Cohen’s D = 1.1, t-test, p=0.028). 
To distinguish Group 2 and Group 3, it was most useful to 
use SampEn from tilt angle (Cohen’s D = 0.99, t-test, 
p=0.017). 

F. Variable selection for the multivariate model that 
predicts the UEFM Score 

We sought to develop a multivariate linear model that 
predicted UEFM score.  We first removed variables that were 
not statistically significantly correlated with the UEFM score 
(Ratio of Angular Velocity, p=0.252; Mean of Angular 
Velocity, p=0.275). Then we conducted a backward 
elimination process with the remaining variables (as 
described in detail in the Methods) to understand which 
combination of features best distinguished groups, removing 
variables from the mode l one by one (see Supplementary 
Material). We observed the lowest AIC when we selected the 
number of variables to be two (Figure 7A). In this case, the 
selected variables were the kurtosis of the tilt distribution 
(i.e. forearm postural diversity) and the sample entropy of tilt 
(i.e., forearm postural complexity). We further examined the 

correlation coefficients between the variables (Figure 7B), 
seeking to identify if there was multicollinearity between any 
variables, which is a statistical phenomenon that occurs 
when two or more independent variables in a multiple 
regression model are highly correlated; a high correlation 
makes it diffcult to determine the individual contribution of 
each variable to the dependent variable. To assess 
multicollinearity, we used the criterion that the Variance 
Inflation Factor (VIF) should be less than 5 [56]. The VIF 
measures the extent to which the variance of the estimated 
regression coefficients is increased due to multicollinearity. 
A VIF value less than 5 is considered acceptable, indicating 
that multicollinearity is not a significant concern. In our 
analysis, the correlation between Kurtosis and SampEn of tilt 
angle was weak (Pearson Correlation Coefficient= 0.22), and 
the VIF in Step 8 was 1.05 for both variables. These results 
suggest that multicollinearity is not a major issue for these 
variables in the model. 

IV. DISCUSSIONS 
The objective of this study was to identify statistical 

characteristics of daily arm movements that became more 
prominent as arm impairment decreased, based on data 
obtained from a wrist IMU worn by 22 chronic stroke 
participants during their day. Our focus here was on the 
statistical distributions of movement features across many 
arm movements made during the period the wearable sensor 
was worn. We hypothesize these features relate to the 
“quality of the movement experience” (which we will 
abbreviate QOME for this Discussion) over a period time.  
We identified several QOME-related measures that 
increased as UE Fugl-Meyer (UEFM) score increased: 



7 
 
 
proportion of movements with higher forearm speed, 
forearm postural diversity (quantified by kurtosis of the tilt-
angle), and forearm postural complexity (quantified by 
sample entropy of tilt angle). Dividing participants into 
severe, moderate, and mild impairment groups, we found 
that forearm postural diversity and complexity were best able 
to distinguish the groups. Specifically, to distinguish 
between severe and moderate impairment, kurtosis of the tilt 
angle, our measure of forearm postural diversity, was most 
effective. To distinguish between moderate and mild 
impairment, SampEn of the tilt angle, our measure of 
movement complexity, was most effective. The application 
of a multivariate modeling approach confirmed that these 
were also the best variables from among the ones we 
considered for predicting UEFM score. We discuss now 
these results as well as limitations and future directions. 

A. Quantifying movement diverisity based on forearm 
posture (tilt angle) distribution 

We did not attempt to estimate the three angles that are 
needed to fully describe forearm posture over time, which is 
challenging with an IMU, but rather examined the simpler 
idea of tilt angle analysis with respect to gravity direction, 
first proposed by Leuenberger et al. [33] in the context of 
wearables for stroke rehabilitation. They found that the 
impaired arm had lower tilt angle (or “elevation”) during 
performance of activities of daily living, found different 
probability distributions between the impaired arm and 
unimpaired arm, and suggested forearm posture as a 
potential target for improving patients’ upper arm dexterity. 
We found that tilt angle was distributed across a broad range 
of angles for participants with less impairment, but more 
narrowly concentrated for the most severely impaired group. 
We found that the established statistical concept of kurtosis 
of a distribution was useful to quantify this narrowing.  

A narrow tilt-angle concentration is consistent with the 
concept of “postural stagnation” – i.e. that persons with 
severe impairment after stroke tend to keep their arm in a 
stereotypical posture when not using it. Previous studies 
have identified five different arm postures that stroke 
patients adopt, with two being most prevalent [57], [58].  
Further, postural stagnation in severe impairment is 
consistent with the observation of stereotypical, abnormal 
synergistic movement patterns due to reduced capability of 
the corticospinal tract and/or the presence of spasticity [24]. 
A study of the ability of people with stroke to reach in a wide 
range of directions found that severely impaired individuals 
were constrained to reach in a narrow range [59].  Based on 
these results and the experimental findings, it seems probable 
that postural stagnation is a valuable concept for QOME 
metrics. As mentioned in the Introduction, if one only ever 
practices the same thing (i.e. holds the arm in a limited set of 
postures), it is difficult to improve in skill (i.e. learn to 
activate muscles for a wide range of arm postures and 
activities). Limitations of the tilt angle approach are that it 
cannot distinguish forearm supination/pronation from 
shoulder internal/external rotation and it doesn’t consider the 
posture of the whole body. Thus periods spent lying or 
reclining might introduce noise into the distribution. 

Nevertheless, we found tilt-angle to be a valuable feature for 
distinguishing severely and moderately impaired 
participants. 

 
Figure 6. The distribution of the device tilt angle and corresponding forearm 
postures with respect to the gravity, using 91 bins in range of 0-180 degrees 
(i.e., 2 degrees for one bin). The below three figures (B-D) correspond to 
the device orientation. The red, green, and blue lines represent the mean of 
distribution for Group 1, Group 2, and Group 3, respectively. The shaded 
areas represent the confidence interval for each group. The proportions 
represent the probability density distribution, such that the integration from 
0-180 degrees is 100%. 

 
Figure 7. The variable selection analysis. (A) Model comparison through the 
AIC. (B) Correlations between features. 

B. Quantifying movement complexity 
To quantify movement complexity we focused on one of 

the many possible measure of signal complexity – entropy, a 
measure that has found application in human movement 
science for analyzing postural control, walking activity, 
spontaneous leg activity in infants, and finger force 
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production (see review: [39]). Entropy features, specifically 
sample entropy, have been increasingly utilized in studies 
with wearable sensors, analyzing various biological signals 
to improve detection and prediction of motor impairments. 
In Parkinson's disease research, Shawen et al. applied sample 
entropy to acceleration and angular velocity signals from 
skin-mounted sensors and smartwatches, enhancing tremor 
detection accuracy [60]. In autism studies, Konrad et al. used 
sample entropy to analyze wrist accelerometer acceleration 
signals, finding a moderate relation to motor coordination 
[61]. For post-stroke rehabilitation, O'Brien et al. applied 
sample entropy and kurtosis to both acceleration and 
rotational velocity signals from inertial measurement unit 
(IMU) sensors, linking higher sample entropy values to 
higher ambulation levels [62]. After stroke, sample entropy 
has been used to gain insight into UE muscle activity changes 
following robotic rehabilitation [63].  To our knowledge, this 
is the first report of showing the potential value of sample 
entropy of forearm posture, measured from a wristworn 
IMU, for gaining insight into UE impairment after stroke. 
SampEn best distinguished participants with moderate and 
mild impairment, with the more mildly impaired group 
showing more complexity in their movements.  This seems 
indicative that they typically achieved a richer daily 
movement experience, perhaps because they could use the 
arm in a wider variety of activities. 
A limitation of the use of sample entropy is that it is strongly 
dependent on parameter selection [39]. To address this, we 
used a grid search to find the best combination of parameters 
(see Supplementary Material). Another potential limitation, 
particularly with a view toward implementation in a 
wearable sensor, is that SampEn can be computationally 
costly, with a complexity of 𝑂 a𝑁(# !

"#!c, where N is the 
segmentation length and m is the template length [40]. 
Nevertheless, at least one study was able to implement 
SampEn in a wearable sensor for sleep research [64]. 

C. Other considerations: movement activity and speed 
Based on the inactivity filtering results, we found that 

participants with more severe impairment exhibited reduced 
UE activity. This finding is consistent with the theory of 
learned non-use [6] as well as previous studies using 
wearable sensing (e.g. [18], [63]).  
It was unexpected to us that movement diversity (quantified 
by kurtosis of tilt angle) and complexity (quantified by 
sample entropy) were the best features for distinguishing 
groups and predicting UEFM score, as opposed to movement 
speed. Nevertheless, distributions of movement speed did 
have some power to discriminate impairment level.  In a 
study relevant for considering the potential of QOME 
wearable feedback, Dejong et al. examined the effect of 
instructing individuals with a stroke to move the UE more 
quickly as they reached and grasped a cup. They found that 
not only could the participants move their upper arm more 
quickly, but also that movement quality improved, as 
assessed by straighter reach paths and larger hand grip 
apertures [65]. Thus, by focusing on an easily instructed 
variable, other benefits related to movement quality could be 
obtained. 

D. Limitations and Future Work 
Besides the specific limitations mentioned above with 
respect to the diversity and complexity measures, there are 
several other limitations to this work. First, we studied a 
relatively small list of potential measures related to QOME. 
Other measures are certainly possible and may be more 
strongly related to impairment level, or more valuable for 
encapsulating QOME. Second, the motivation for this work 
was to identify potential QOME measures that could be 
provided by a wrist-worn sensor to enhance rehabilitation. 
 
 

Table 2. Summary of movement experience quality features calculated across the recorded movement experiences. 

 

Kind Sub kind Correlation  R2 
Effect size (p-value in t-test) ANOVA 

(Group 1,2,3) 
Group 1–  

Group 2 
Group 2–  

Group 3 
Group 1–  

Group 2,3 
Group 1,2–  

Group 3 f p-
value 

Tilt 
Angle 

Kurtosis 0.383 
(p=0.025) 0.15 1.145(0.028) 0.199(0.611) 1.529(0.054) 0.605(0.068) 6.40 0.005 

Skewness 0.314 
(p=0.07) 0.10 0.292(0.548) 0.563(0.158) 0.616(0.156) 0.663(0.064) 2.05 0.146 

Variance 0.389 
(p=0.023) 0.15 0.438(0.369) 0.395(0.348) 0.734(0.093) 0.592(0.096) 2.05 0.146 

Ratio 
Acceleration 0.435 

(p=0.01) 0.19 0.561(0.255) 0.830(0.042) 0.791(0.072) 1.037(0.005) 4.70 0.016 

Angular Velocity 0.171 
(p=0.333) 0.03 0.841(0.095) 0.445(0.261) 0.644(0.139) 0.079(0.821) 1.69 0.201 

Mean 
Acceleration 0.341 

(p=0.049) 0.15 0.664(0.180) 0.553(0.166) 0.778(0.076) 0.772(0.032) 2.96 0.066 

Angular Velocity 0.188 
(p=0.286) 0.04 0.116(0.810) 0.401(0.310) 0.340(0.429) 0.471(0.182) 0.93 0.407 

SampEn 

Acceleration 0.405 
(p=0.017) 0.16 0.119(0.806) 0.805(0.048) 0.525(0.225) 0.862(0.018) 3.04 0.062 

Angular Velocity 0.41 
(p=0.016) 0.17 0.610(0.217) 0.611(0.127) 0.868(0.049) 0.835(0.021) 3.58 0.04 

Tilt Angle 0.5 
(p=0.003) 0.25 0.047(0.922) 0.993(0.017) 0.576(0.184) 1.106(0.006) 4.97 0.013 
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  However, clearly, our hypothesis that providing feedback 
on QOME could beneficial for rehabilitation requires testing 
in a clinical trial. We note that a large body of motor learning 
research  supports the idea that challenging and variable task 
practice is beneficial [66]. Further, we have not identified 
whether and how people with a stroke can volitionally 
change a QOME measure. We aim to address these questions 
by embedding real-time QOME metrics in a wearable sensor 
and studying the effect of providing QOME feedback in 
future studies. 
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