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Abstract 17 

Fractures play important roles in fluid and heat flow during heat extraction from an enhanced 18 

geothermal system (EGS). Quantifying the associated uncertainties in fractures is critical for 19 

predicting long-term thermal performance of EGSs. Considerable advancements have been made 20 

regarding the inversion of fracture characteristics such as aperture distribution. However, most 21 

previous studies assumed a constant fracture aperture to simplify the inversion, while both 22 

experimental and numerical results indicated significant variations in fracture aperture due to 23 

complex thermo-hydro-mechanical (THM) coupled processes during heat extraction. This study 24 

introduces a multi-stage inversion framework that integrates the Ensemble Smoother with 25 

Multiple Data Assimilation (ES-MDA) with a THM coupled model to capture the dynamic 26 

evolution of fracture aperture. The framework executes multiple aperture inversions at different 27 

times during EGS operation. In each inversion stage, we use ES-MDA to invert for fracture 28 

aperture by assimilating tracer data, and then perform THM modeling to analyze fracture 29 

aperture evolution under coupled THM processes and predict thermal performance. We propose 30 

a principle to assure a smooth transition between two consecutive inversion stages, that the 31 

posterior aperture fields obtained in an inversion stage are used as the prior aperture fields for the 32 

following stage, and the temperature field simulated in the previous inversion stage serves as the 33 

initial temperature field for the following stage. Application of the framework to a synthetic 34 

field-scale EGS model demonstrates its efficacy in capturing the dynamic evolution of fracture 35 

aperture, resulting in more accurate thermal predictions compared with previous inversion 36 

methods assuming constant fracture aperture. 37 

Plain Language Summary 38 

Enhanced geothermal systems (EGS) generally rely on artificial and/or natural fractures as 39 

pathways for fluid circulation (typically water) and heat transfer to extract heat from hot dry 40 

rocks. Due to the deep geological location, directly observing and measuring fracture 41 

characteristics is rather difficult, if not impossible. Researchers typically use geophysical and 42 

hydrological data to indirectly infer fracture characteristics. However, previous studies mostly 43 

speculated only on the initial fracture characteristics in an EGS, neglecting or being unable to 44 

capture dynamic changes in fractures during heat production, inevitably leading to biased long-45 

term thermal prediction. We propose a multi-stage inversion framework that estimates the 46 

distribution of fracture apertures at different stages of EGS operation. This allows us to 47 

continuously and accurately capture changes in fracture aperture caused by coupled thermo-48 

hydro-mechanical (THM) processes. In this framework, we use an ensemble smoother to infer 49 

fracture aperture distributions from tracer test data, along with a specialized computer code to 50 

simulate the coupled THM processes for thermal prediction. Examining this framework on a 51 

synthetic field-scale EGS model shows more accurate thermal performance predictions 52 

compared with traditional inversion methods. Accurate thermal predictions are beneficial for 53 

better planning for geothermal energy utilization and effective risk management. 54 

1 Introduction 55 

The increasing global demand for sustainable and clean energy resources has driven the 56 

exploration and development of various innovative energy technologies. Among these 57 

technologies, enhanced geothermal systems (EGS) are considered promising in improving the 58 

current global energy consumption structure due to their ability to extract heat from hot dry rocks 59 

that contain abundant renewable geothermal resources (Li et al., 2022; Olasolo et al., 2016; 60 
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Tester et al., 2007). In EGS development, the accurate estimation of long-term thermal 61 

performance is essential for the optimization of engineering decisions and risk management (Wu 62 

et al., 2021a). As hot dry rocks largely reserve at several kilometers below the ground surface, 63 

the development of an EGS generally encounters complex geological conditions that are rather 64 

difficult to measure/observe directly. Important information on subsurface properties, such as 65 

matrix permeability, fracture distribution and fracture aperture field, is often quite limited, 66 

leading to a high level of uncertainties in EGS development (Liu et al., 2018; Pollack & Mukerji, 67 

2019; Vogt et al., 2012; Witter et al., 2019). These uncertainties impede a comprehensive 68 

understanding of fluid circulation and heat transfer processes within an EGS reservoir, thus 69 

posing a significant challenge to the thermal performance estimation of the EGS. 70 

In recent decades, substantial efforts have been dedicated to developing inversion 71 

methods to resolve subsurface uncertainties and improve the prediction capability of EGS 72 

thermal performance. For an EGS reservoir, a major uncertainty associated with fluid flow and 73 

thermal transport processes is fracture characteristics as fractures are primary fluid flow paths 74 

during heat extraction. Widely used fracture inversion algorithms involve stochastic approaches 75 

(Jiang et al., 2023; Ringel et al., 2021; Somogyvári et al., 2017; Wu et al., 2021b), deep learning 76 

methods (Chandna & Srinivasan, 2022; Jiang et al., 2021; Vu & Jardani, 2022) and ensemble-77 

based data assimilation (Elahi & Jafarpour, 2018; Liem et al., 2022; Liem & Jenny, 2020; Ping & 78 

Zhang, 2013; Wu et al., 2021a). Amongst, ensemble-based methods are considered 79 

computationally more efficient and enable an easy integration with forward models for inverse 80 

problems. The variability among ensemble-based realizations can represent uncertainties arising 81 

from different sources. The inversion of fracture characteristics also heavily relies on the quality 82 

and quantity of available geological, geophysical and hydrological data such as seismic and 83 

electrical data, hydraulic and tracer testing data, etc. (Berkowitz, 2002; Ren et al., 2023; Tarrahi 84 

et al., 2015; Wu et al., 2019, 2021b). Previous research indicates that microseismic data enables 85 

the identification of fracture networks in EGS reservoir (Tarrahi et al., 2015), while tracer data 86 

can effectively inform hydraulic characteristics of reservoirs and provides key information about 87 

fracture aperture and distribution (Egert et al., 2020; Elahi & Jafarpour, 2018; Liu et al., 2023; 88 

Ren et al., 2023; Wu et al., 2021a). Interwell tracer test have been applied in 89 

conventional/unconventional reservoirs for decades, demonstrating its effectiveness in reservoir 90 

characterization (Abbaszadeh-Dehghani & Brigham, 1984; Chen et al., 2022; Shook & Suzuki, 91 

2017). Our previous work successfully developed a data assimilation framework to interpret 92 

tracer test data, facilitating the inversion of the fracture aperture distribution in an EGS (Wu et 93 

al., 2021a). With the inversion framework, predicting long-term thermal performance of a sing-94 

fracture EGS under constant fracture properties has been properly addressed. 95 

A significant challenge associated with EGS fracture characterization is that fracture 96 

aperture/permeability dynamically evolves due to the coupled hydro-thermal-mechanical-97 

chemical processes rather than remains constant during the production lifetime of an EGS. For 98 

example, thermal drawdown-induced thermal stress has been recognized as a major mechanism 99 

for fracture aperture evolution. The thermal stress can reduce the effective compressive stress 100 

that acts on the fractural flow pathways and therefore increases the apertures of fracture. As an 101 

EGS mainly relies on fractures for fluid flow and heat transfer, the influence of thermal stress on 102 

fracture characteristics is critical for heat production from the EGS. In fact, thermal stress has 103 

proven a main cause of flow channeling (or short-circuiting), a widely recognized phenomenon 104 

that fluid concentrates in several preferential flow channels between injection and production 105 

wells (Fu et al., 2016; Gee et al., 2021; Ghassemi & Suresh Kumar, 2007; Guo et al., 2016; 106 
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McLean & Espinoza, 2023; Vik et al., 2018). As a result of flow channeling, effective heat 107 

exchange area between fracture fluid and adjacent rock formations is reduced and heat recovery 108 

is impaired. Guo et al. (2016) conducted a comprehensive investigation on the effect of thermal 109 

stress through a single-fracture EGS model. They concluded that thermal stress could lead to 110 

premature thermal breakthrough, and ignoring the influence of thermal stress might overestimate 111 

the EGS lifespan by more than 20 years. In addition, chemical reactions (dissolution and 112 

precipitation) constitute another crucial mechanism for the dynamic evolution of fracture 113 

characteristics (Detwiler, 2008; Pandey et al., 2014; Salimzadeh & Nick, 2019; Song et al., 2022; 114 

Yasuhara et al., 2011). Dissolution may lead to an increase in fracture aperture, while 115 

precipitation typically leads to a reduction in aperture. 116 

Unfortunately, most previous studies ignored the dynamic evolution of fracture aperture 117 

while performing fracture inversion and thermal prediction for EGSs. In other words, only the 118 

initial fracture aperture was inverted for and used for subsequent analyses such as thermal 119 

performance prediction. Although Wu et al. (2021a) proposed an effective tracer data 120 

interpretation framework for fracture aperture inversion in a single-fracture EGS model, they 121 

adopted a thermo-hydraulic (TH) model for thermal simulation, thus did not consider fracture 122 

aperture evolution due to thermal stress. The inferred aperture distribution was assumed to 123 

remain constant during the lifetime of the EGS model. As aforementioned, the thermal 124 

drawdown-induced thermal stress may cause significant changes in fracture aperture and further 125 

affect long-term thermal performance. Directly using the initially inferred fracture aperture 126 

distribution for flow and thermal modeling inevitably leads to biased thermal predictions. To 127 

improve the inversion accuracy and provide a reliable thermal prediction for engineering 128 

decision making, both the initial fracture aperture distribution and its dynamic evolution during 129 

heat extraction should be appropriately characterized through advanced inversion strategies. 130 

In this study, we propose a multi-stage data assimilation framework for the inversion of 131 

fracture aperture from tracer data and capture the dynamic evolution of aperture distribution 132 

during the lifetime of EGSs. The proposed framework extends the framework in Wu et al. 133 

(2021a) by integrating a thermo-hydro-mechanical (THM) coupled model to account for the 134 

thermal stress effect and incorporates multi-stage fracture inversions. Each inversion stage uses 135 

the posterior aperture ensemble from the previous inversion stage as the prior ensemble, ensuring 136 

a progressive refinement of the inversion model rather than a random modification. The key 137 

novelty of our study is to dynamically characterize fracture aperture evolution through multi-138 

stage inversion to gradually improve the accuracy of long-term thermal prediction of EGSs. 139 

The remainder of the paper is organized as follows. Section 2 briefly describes the major 140 

components of the proposed framework. Section 3 introduces a synthetic field-scale EGS model 141 

for subsequent verification of the proposed framework. In Section 4, we apply the proposed 142 

framework to the EGS model and investigates the effectiveness of the framework in capturing 143 

dynamic fracture aperture evolution and thermal performance prediction. Section 5 provides 144 

discussions and implications regarding the application of the proposed framework. 145 

2 Multi-stage inversion strategy 146 

As mentioned before, although the framework proposed by Wu et al. (2021a) is capable 147 

of fracture aperture inversion and thermal prediction, it assumes a constant aperture distribution 148 

and therefore is unable to capture the dynamic evolution of fracture aperture during heat 149 

extraction. To address this issue, we propose a multi-stage inversion strategy based on the 150 
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framework from Wu et al. (2021a) (Figure 1). The key of the strategy is to perform multiple 151 

aperture inversions using tracer data obtained at different times during EGS operation, and thus, 152 

dynamically update fracture aperture distribution to improve thermal prediction accuracy. 153 

Compared with many previous studies that only performed a onetime aperture inversion (e.g., 154 

Elahi and Jafarpour, 2018; Liem et al., 2022; Liem and Jenny, 2020; Wu et al., 2021), the present 155 

study aims to invert for fracture aperture multiple times to obtain snapshots of aperture field 156 

during the lifetime of an EGS. The rationale and technical feasibility of such a multi-stage 157 

inversion is that tracer testing can be performed repeatedly during fluid circulation in EGS 158 

reservoirs with relatively low cost. Since the time required to complete a tracer testing (days to 159 

months) is much shorter than the lifespan of an EGS (decades), the aperture field almost remains 160 

constant during the period of a tracer testing, and therefore the aperture inversion result can be 161 

considered a reasonable estimate of the aperture field at the time of this tracer testing. 162 

In the following, we first briefly introduce the data assimilation framework from Wu et 163 

al. (2021a), and then describe the multi-stage inversion strategy for the inversion of dynamic 164 

aperture evolution. 165 

2.1 A data assimilation framework for aperture inversion and thermal prediction 166 

The data assimilation framework from Wu et al. (2021a) includes three major 167 

components: (1) Low-rank parameterization of fracture aperture; (2) Fracture aperture inversion 168 

through Ensemble Smoother with Multiple Data Assimilation (ES-MDA); (3) Thermal modeling 169 

and prediction based on the inverted apertures. A brief description of each component is given as 170 

follows. 171 

2.1.1 Low-rank parameterization 172 

A significant challenge in fracture aperture inversion is the ill-posedness issue arising 173 

from the inherent complexity of aperture distribution and the limited availability of 174 

measurements. Dimensionality reduction methods have been applied to map high-dimensional 175 

aperture fields to low-rank latent spaces, thus reduce the complexity of original aperture fields 176 

and accommodate the data scarcity issue. In the framework of Wu et al. (2021a), principal 177 

component analysis (PCA) was used for dimensionality reduction through a set of principal 178 

components that retain the most critical features of original aperture fields. These principal 179 

components can be obtained either by performing singular value decomposition (SVD) or 180 

calculating the eigenvectors and eigenvalues of the original aperture fields. The components are 181 

ranked based on their significance, with the higher-ranked components explaining higher 182 

variances in original aperture fields. By truncating less significant components, PCA allows to 183 

represent the original aperture fields in a more compact form. We refer to Wu et al. (2021a) for 184 

further information on the low-rank parameterization of fracture aperture fields with PCA. 185 

2.1.2 ES-MDA inversion 186 

The latent parameters obtained from PCA are then inverted for using ES-MDA, an 187 

ensemble smoother that repeatedly assimilates measurements with an expanded measurement 188 

error covariance matrix to iteratively estimate model parameters (Emerick and Reynolds, 2013). 189 

Without going into mathematical derivation details, we briefly overview the workflow of ES-190 

MDA. Detailed information on ES-MDA algorithm can be found in the reference (Emerick & 191 

Reynolds, 2013; Evensen, 2018; Le et al., 2016; Ranazzi & Sampaio, 2019; Todaro et al., 2022). 192 
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ES-MDA begins with generating a prior ensemble of latent parameters with an ensemble 193 

size of 𝑁𝑒, denoted as 𝐙0 = [𝐳1
0 𝐳2

0 … 𝐳𝑁𝑒

0 ] ∈ ℝ𝑙×𝑁𝑒, where l is the dimension of latent parameter. 194 

As the latent parameters obtained from PCA approach follow the standard normal distribution, 195 

the prior ensemble parameter 𝐙0 is randomly sampled from 𝒩(0,1). With the prior parameter 196 

ensemble, ES-MDA then proceeds with iterative forecast and update steps. 197 

At each iteration of ES-MDA, we first remap the latent parameters into aperture fields, 198 

and then perform tracer modeling with the aperture fields to forecast model responses 𝐲𝑗
𝑖 (tracer 199 

breakthrough data in this study, i denotes iteration index and j denotes realization number in the 200 

ensemble). In the update step, the ensemble of latent parameters is updated as follows, 201 

 1 1 1 1 1

ZY YY obs( ) ( )i i i i i

j j i i j j         z z C C R y ye  (1) 202 

where 𝐂ZY
𝑖−1 ∈ ℝ𝑙×𝑁𝑑 denotes the cross-covariance matrix between the ensemble of parameters 203 

𝐙𝑖−1 and its corresponding model predictions 𝐲𝑖−1; 𝐂YY
𝑖−1 ∈ ℝ𝑁𝑑×𝑁𝑑 denotes the auto-covariance 204 

matrix of predictions; 𝐑 ∈ ℝ𝑁𝑑×𝑁𝑑 denotes the auto-covariance matrix of the measurement errors 205 

of the observation data (𝐲obs) to be assimilated; 𝜀𝑗 is the measurement error following a Gaussian 206 

distribution 𝒩(0, 𝐑); 𝛼𝑖 is the inflation factor at the current iteration that must satisfy 207 

∑ 𝛼𝑖
−1𝑁𝑎

𝑖=1 = 1, where 𝑁𝑎 denotes the total iteration number. 208 

After the current update, the procedure continues to the next forecast and update steps 209 

until the final iteration is completed. 210 

2.1.3 Thermal performance prediction 211 

The third component of the framework from Wu et al. (2021a) is to perform thermal 212 

modeling and make long-term thermal performance predictions. The posterior ensemble of latent 213 

parameters obtained from ES-MDA is remapped to the posterior ensemble of fracture aperture 214 

fields, which is then incorporated into a thermo-hydraulic model for thermal modeling. 215 

2.2 Multi-stage inversion strategy 216 

The framework from Wu et al. (2021a) can be considered as a one-time inversion as ES-217 

MDA is executed only once to characterize the initial fracture aperture distribution. To capture 218 

the dynamic evolution of fracture aperture during EGS heat recovery, the present study further 219 

extends the framework from Wu et al. (2021a) to a multi-stage inversion framework, which 220 

performs multiple tracer tests and fracture aperture inversions throughout the lifetime of the EGS 221 

(Figure 1). Such a framework dynamically updates fracture aperture based on new tracer data to 222 

accommodate the impacts of the mechanical and chemical influences on fracture aperture and 223 

flow fields. 224 

The multi-stage framework consists of multiple consecutive inversion stages, with each 225 

stage refining model parameters based on insights obtained from previous inversion stages and 226 

new observations/measurements. For the initial stage, the prior ensemble is randomly generated 227 

from 𝒩(0,1) as aforementioned. For subsequent inversion stages, the posterior ensemble from 228 

the previous inversion is utilized as the prior ensemble. This approach capitalizes on the fact that 229 

the previous inversion has already reduced uncertainties in aperture distribution, thus providing a 230 

relatively reliable starting point for the subsequent inversion stage. Since tracer data is used as 231 

the major inversion data in the present study, a tracer testing is performed before each inversion 232 
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stage to provide new measurements. Within each stage, the major inversion procedures are the 233 

same as that in Wu et al. (2021a), as illustrated in Section 2.1. 234 

After the completion of each inversion stage, we incorporate the obtained posterior 235 

fracture aperture field into a thermo-hydro-mechanical model to perform THM coupled 236 

simulations for thermal performance prediction. Note that each time fracture aperture is updated, 237 

the simulated temperature field at the end of the previous THM simulation is utilized as the 238 

initial temperature field for the following THM simulation. 239 

 240 

Figure 1. Multi-stage inversion framework to invert for the dynamic evolution of fracture 241 

aperture from tracer test data. 242 

3 Numerical model 243 

3.1 Model setup 244 

In this section, we design a synthetic field-scale EGS model with a single fracture to 245 

examine the capability of the proposed multi-stage inversion framework in dynamic aperture 246 

inversion as well as long-term thermal forecasting. The EGS model spans dimensions of 3 km × 247 

3 km × 3 km, and has one injection well and one production well connected by a horizontal 248 

circular fracture in a low-permeability rock formation (Figure 2). The diameter of the fracture is 249 
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1 km, and the distance between the injection and production wells is 600 m. The model is 250 

initially saturated with water, and exhibits a vertical geothermal gradient of 40 °C/km with an 251 

initial temperature of 200 °C at the depth of the fracture. We use an orthogonal grid to discretize 252 

the reservoir model. Specifically, the fracture is discretized with a thin layer of solid elements, 253 

each has a resolution of 10 m × 10 m × 4 mm, and the rock matrix elements adjacent to the 254 

fracture are sized at 10 m × 10 m × 1 cm. The mesh resolution gradually coarsens from the 255 

fracture to far field, maintaining a balance between computational costs and modeling accuracy. 256 

To simulate the high heterogeneity of fracture aperture distribution, we design a 257 

procedure employing three different Gaussian distributions to create a fracture aperture field 258 

(Figure 2). First, the sequential gaussian simulation algorithm is applied to generate three 100 × 259 

100 two-dimensional random Gaussian fields following 𝒩(0.6 mm, (0.7 mm)2), 𝒩(0.4 mm,260 

(0.5 mm)2), 𝒩(0.8 mm, (0.9 mm)2), respectively. The correlation length of the three 261 

Gaussian fields is 200 m. Then, we perform element-wise replacements in the first aperture field: 262 

elements with aperture values less than 0.6 mm are replaced with corresponding elements from 263 

the second field, and otherwise from the third field. The reservoir simulation with this specially 264 

designed fracture is considered as the synthetic reference model. 265 
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Figure 2. A synthetic field-scale EGS model with a production well and an injection well 267 

connected by a horizontal penny-shaped fracture. Left: Spatial relationship between the modeling 268 

domain, the production and injection wells, and the fracture. Right: Reference fracture aperture 269 

field. 270 

3.2 Tracer and thermo-hydro-mechanical modeling 271 

We utilize GEOS, a THM coupled numerical simulator developed at the Lawrence 272 

Livermore National Laboratory (Guo et al., 2016; Settgast et al., 2017, 2018), for tracer and 273 

THM modeling in this study. For tracer modeling, we first perform flow simulation to obtain 274 

fracture flow field. Subsequently, we simulate tracer transport process by solving the advection-275 

dispersion-sorption equation based on the fracture flow field. Notice that we only consider the 276 

fracture for tracer modeling as the matrix has little impact on tracer transport owing to its 277 
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relatively low permeability and the negligible matrix diffusion effect (Wu et al., 2021a). We 278 

assume an initial hydrostatic pressure in the model, setting the pressure at the fracture depth to 279 

30 MPa. A source flux condition is imposed at the injection well with a constant flow rate of 10 280 

L/s, and the fluid pressure at the production well is held constant at 30 MPa. Fracture boundaries 281 

are assumed impermeable. 282 

Tracers are then released from the injection well into the fracture for one hour, followed 283 

by a 40-hour simulation of tracer transport to acquire tracer breakthrough curves at the 284 

production well. According to the suggestion from our previous study (Wu et al., 2021a), we 285 

consider both conservative and sorptive tracers to provide sufficient data for aperture inversion. 286 

For sorptive tracers, we presume an equilibrium adsorption process with a partition coefficient of 287 

0.1 mm. 288 

We perform THM coupled modeling to solve heat transfer process in both the fracture 289 

and the surrounding rock formations. The THM coupled model is comprised of two key solvers 290 

(Fu et al., 2016; Guo et al., 2016): the fluid and heat flow solver (TH solver), and the thermo-291 

mechanical solver. The two solvers are managed iteratively in a one-way coupled manner. In 292 

each iteration time step, the reservoir temperature and fluid pressure fields are first obtained from 293 

the TH solver, and then the temperature field is conveyed to the thermo-mechanical solver to 294 

calculate thermal stress and update total stress of each rock matrix element. With the fluid 295 

pressure and the updated total stress, we follow Guo et al. (2016) to employ the Barton–Bandis 296 

model (Bandis et al., 1983; Barton et al., 1985) to update the thermal-drawdown induced fracture 297 

aperture 𝑤, 298 

 max
1

n

n

a
w w

b






 


 (2) 299 

where 𝑤max denotes the aperture at a zero effective stress state; 𝜎𝑛
′  represents the effective stress 300 

normal to the fracture that equals to the difference between the total stress and the pore fluid 301 

pressure; 𝑎 and  𝑏 represent two material related state parameters and their detailed expressions 302 

can be found in Guo et al. (2016). Subsequently, we use the updated fracture aperture to re-303 

invoke the TH solver for the computation of flow and temperature fields, and continue the 304 

aforementioned iterative process. 305 

We impose zero-flux boundary conditions for fluid flow and heat transfer, as well as zero 306 

normal displacement constraints, at the model boundaries in the THM modeling. The three 307 

principal components of the in-situ stress at the fracture depth are set to 60 MPa, 90 MPa, and 54 308 

MPa, respectively. Then, we inject relatively cool water of 50 °C with a constant flow rate of 309 

10.0 L/s into the injection well for 50 years. 310 

In addition, we also perform TH modeling for comparison to demonstrate the impact of 311 

thermal stress on thermal performance. 312 

Table 1 shows the parameters for tracer and THM modeling. Since we represent the 313 

fracture plane as a thin layer in the model, the porosity and permeability of the fracture can be 314 

equivalently calculated as 𝜙 = 𝑤/𝐻 and 𝜅𝑓 = 𝑤3 (12𝐻)⁄  respectively according to Guo et al. 315 

(2016) and Berkowitz (2002), where 𝐻 is the thickness of the fracture layer. Tracer and thermal 316 

breakthrough curves for the reference model are shown in Figure 3. 317 

Table 1 Material parameters for simulations of the field-scale EGS model 318 
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Parameter Value 

Porosity of rock matrix 0. 01 

Permeability of rock matrix (m
2
) 1 × 10

-16
 

Density of rock matrix (kg/m
3
) 2,500 

Rock bulk modulus (GPa) 33.3 

Rock shear modulus (GPa) 20 

Thermal conductivity of rock matrix (W/m/K) 2.5 

Specific heat capacity of rock matrix (J/kg/K) 790 

Linear thermal expansion coefficient of rock matrix (K
−1

)  8.0 × 10
−6

 

Density of water (kg/m
3
) 887.2 

Specific heat capacity of water (J/kg/K) 4,460 

Compressibility of water (Pa
-1

) 5 × 10
-10

 

Volumetric thermal expansion coefficient of water (K
−1

) 7.66 × 10
−4

 

Dynamic viscosity of water (Pa·s) 1.42 × 10
-4

 

Diffusion coefficient (m
2
/s) 1 × 10

-9
 

Longitudinal dispersivity (m) 0.2 

Transverse dispersivity (m) 0.02 

Partition coefficient (mm) 0.1 

During the 40 hours of transport, the concentration distribution of the tracers exhibits 319 

distinct peaks. For conservative tracer, two peaks are observed, reflecting the heterogeneity in 320 

the reference fracture aperture field (Figure 2). This multi-peak behavior suggests the presence of 321 

multiple flow channels within the fracture. In contrast to the conservative tracer, the sorptive 322 

tracer shows delayed arrival time and smaller peak magnitude due to the sorption effect when the 323 

sorptive tracer transports along the fracture. Due to the along-path flow resistance, the simulated 324 

injection well pressure is 54.4 kPa higher than that at the production well. Both the simulated 325 

tracer breakthrough curves and the well pressure difference are used as inversion data for 326 

subsequent ES-MDA inversions to characterize fracture aperture distribution. In the present 327 

study, each tracer breakthrough curve contains 105 data points, and therefore the total inversion 328 

dataset comprises 211 data points. In our preliminary model tests, we found that the 211 329 

observations were insufficient to properly constrain the uncertainties in fracture aperture, 330 

manifesting as the poor convergence behavior of ES-MDA. To address this issue, we empirically 331 

augment the difference between the conservative and sorptive tracer breakthrough curves into the 332 

inversion data set (Figure 3a). Such a treatment is similar to tricks used in machine learning to 333 

expand datasets, such as geometrically rotating and transforming the original data. 334 

The comparison between TH and THM modeling indicates that thermal-drawdown 335 

induced thermal stress significantly impairs the thermal performance (Figure 3b). We adopt a 336 

threshold of 120 °C to determine the production lifespan, i.e., heat production is terminated when 337 

the production temperature decreases from the initial 200 °C to 120 °C. For the TH results, the 338 

production lifespan exceeds 50 years, while for the THM model, the production lifespan 339 

drastically reduces to 18.4 years. This substantial reduction indicates the vital role of thermal 340 
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stress in EGS heat production, and neglecting it can result in significant overestimation of heat 341 

extraction potential. The two production temperature curves are used as key indicators for 342 

assessing the thermal performance prediction ability of subsequent ES-MDA inversion models. 343 

 344 

Figure 3. Tracer and thermal simulation results of the synthetic EGS model. (a) Tracer 345 

breakthrough curves measured at the production well. The measured tracer concentration is 346 

normalized by injected tracer concentration C0. Concentration difference between the 347 

conservative and sorptive tracers is also displayed. (b) Production temperature curves obtained 348 

from the TH and THM modeling. 349 

4 Aperture inversion and thermal prediction 350 

We first perform a onetime aperture inversion using the previous data assimilation 351 

framework from Wu et al. (2021a), and then a multi-stage aperture inversion using the proposed 352 

inversion framework in the present study. Their results are compared in terms of aperture 353 

distribution, fracture flow field, fracture temperature distribution, as well as production 354 

temperature to demonstrate the capability of the proposed multi-stage inversion framework in 355 

dynamic aperture inversion and long-term thermal prediction. 356 

4.1 Onetime aperture inversion and the corresponding thermal prediction 357 

According to the data assimilation framework in Wu et al. (2021a), we first map the high 358 

dimensional aperture field to a low dimensional latent space through PCA, and then apply ES-359 

MDA to invert for the latent parameters from the tracer and pressure data. The inferred latent 360 

parameters are then converted to an aperture field, which is then used in the 3D EGS model to 361 

solve the long-term heat extraction process. 362 

4.1.1 Onetime aperture inversion 363 

We use sequential gaussian simulation to generate 5,000 spatially auto-correlated 364 

aperture fields on a 1 km × 1 km domain discretized into a 100 × 100 regular grid, each 365 

following a normal distribution with a mean of 0.66 mm, a standard deviation of 0.75 mm and a 366 

correlation length of 150 m. We then apply PCA to the 5,000 aperture fields to obtain 5,000 367 
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principal components, which are arranged in descending order based on their significance, 368 

namely, percentage of preserved variance in original aperture fields. We subsequently use the 369 

first l principal components for aperture field generation. A larger l results in a more 370 

sophisticated aperture field. Based on our previous work (Wu et al., 2021a), the first 100 371 

principal components are sufficient to preserve the primary characteristics of the original 372 

aperture field. Therefore, we set l = 100 for the following inversion. 373 

We then use ES-MDA to assimilate the tracer breakthrough curves and pressure data in 374 

Figure 3a (316 data points in total). The ensemble size is set to 400, and the assimilation 375 

undergoes 12 iterations to achieve a stable inversion result. The geometric method (Emerick, 376 

2019) is adopted to determine the inflation factor 𝛼, which is decreased by 10% after each 377 

iteration. To ensure the assimilation performance, the specification of covariances of 378 

measurement error is crucial. Here, we define measurement covariances by setting the standard 379 

deviation according to the relationship (Todaro et al., 2022): 3𝜎 = 𝑝/100 ∙ 𝑦𝑜𝑏𝑠, where p is a 380 

user-defined parameter and 𝑦𝑜𝑏𝑠 is the observation value. We set 𝑝 = 1, 𝑝 = 0.1 for tracer and 381 

pressure data, respectively. 382 

Compared with prior realizations, the posterior realizations yield tracer breakthrough 383 

curves exhibiting a significantly enhanced agreement with the reference tracer and pressure data 384 

(Figure 4). This improvement is notably evident in the alignment of peak timings, shape profiles, 385 

and overall magnitude of tracer concentration. In addition, the pressure difference between the 386 

injection and production wells simulated from the posterior realizations also matches much better 387 

with the reference values than that from the prior realizations does (Figure 4b). 388 

 389 

Figure 4. Numerical results of tracer and well pressure difference from prior and posterior 390 

realizations. (a) Comparison between the reference and predicted tracer breakthrough curves. 391 
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The top and bottom rows display the comparison for the prior and posterior ensembles, 392 

respectively. The simulated tracer curves are shown in gray, and the dots represent the reference 393 

tracer breakthrough data. The dark blue shadings represent the 90% credible intervals for the 394 

predicted tracer breakthrough curves. (b) Evolution of the predicted well pressure difference with 395 

ES-MDA iterations. The predicted pressure difference results are shown in gray circles, while 396 

the reference value is denoted by the red circle. 397 

We randomly select a realization from the prior ensemble for analysis (Figure 5). The 398 

prior realization exhibits a highly dissimilar aperture distribution compared with the reference 399 

model. The following ES-MDA inversion gradually updates the aperture distribution and the 400 

obtained posterior aperture closely resembles the reference aperture (Figure 5c). The posterior 401 

model successfully resolves the primary and secondary flow channels observed in the reference 402 

flow field (as annotated in the second column in Figure 5). A major difference between the 403 

posterior and reference flow fields is the two relatively weak branch flow channels between the 404 

primary and secondary flow channels (Figure 5c). In the reference flow field, we only vaguely 405 

observe many narrow branch flow channels between the primary and secondary flow channels, 406 

while in the posterior flow field, the overall effect of these narrow branch channels seems to be 407 

represented by the two branch channels. This difference might be attributed to the insufficient 408 

characterization of detailed aperture features in the inversion aperture model. 409 
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Figure 5. Comparison of aperture field, flow field, and temperature distribution within the 411 

fracture. (a) Results from the reference model. (b) Results from a randomly selected prior 412 

realization. (c) Results from the corresponding posterior realization. 413 
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4.1.2 Thermal simulation and prediction 414 

With the prior and posterior ensembles, we then conduct thermal simulations to 415 

investigate the predictive capability of the posterior realizations in terms of EGS thermal 416 

performance. We first consider a relatively simple TH model without the mechanical process, 417 

meaning that the impact of thermal stress on aperture is ignored and the aperture field remains 418 

constant during the thermal simulation. Since the posterior realization better resolves the fracture 419 

flow pattern than the prior realization does, the fracture temperature evolution simulated with the 420 

posterior realization also resembles the reference model results better (Figure 5). The production 421 

temperature predicted by the posterior realization agrees with the production temperature of the 422 

reference model quite well (Figure 6b). Besides the selected realizations in Figure 5, we 423 

randomly select 30 additional prior realizations and their corresponding posterior realizations for 424 

TH modeling to further examine their predictive capability (Figure 6). Compared with the 425 

considerable uncertainty in thermal predictions from the prior realizations (Figure 6a), the 426 

uncertainty from the posterior realizations is significantly reduced, and most of the posterior 427 

production temperature curves reasonably match the reference temperature curve. 428 

 429 

Figure 6. Predictions of production temperature from TH simulation for the randomly selected 30 430 

prior (a) and posterior (b) realizations. The gray solid lines represent the results for the randomly 431 

selected realizations from the prior and posterior ensembles. The red solid line indicates the 432 

production temperature for the reference model from TH simulation. The blue dashed line in (a) 433 

is the production temperature curve for the selected prior realization in Figure 5, and its 434 

corresponding posterior curve is denoted by the dashed purple line in (b). 435 

4.1.3 Effects of thermal stress on aperture evolution and thermal performance 436 

The above results indicate that the posterior realizations can properly predict long-term 437 

thermal performance under the constant aperture scenario (i.e., TH model). However, in a more 438 

realistic scenario that incorporates mechanical process, fracture aperture will dynamically evolve 439 

under the thermoporoelastic effect (Gee et al., 2021; Guo et al., 2016). To further verify the 440 

predictive capability of the posterior realizations under the impact of thermoporoelastic effect, 441 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

we perform THM simulations using the randomly selected realizations in Figure 5. We compare 442 

the aperture distribution, fracture flow field as well as fracture temperature distribution at 443 

different production times between the posterior and reference models (Figure 7). Due to the 444 

presence of thermal stress, the aperture fields in both the posterior and reference models evolve 445 

significantly during heat extraction, and the fracture flow fields gradually become more and 446 

more concentrated, i.e., thermal-drawdown induced flow channeling (Guo et al., 2016). Since 447 

heat transfer highly relies on fracture flow pattern, flow channeling reduces effective heat 448 

transfer area and accelerates thermal breakthrough (Figure 7). Compared with the results from 449 

TH modeling, the production temperature from THM modeling decreases remarkably, for both 450 

the reference model and the posterior realizations (Figure 8). 451 
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Figure 7. Evolution of fracture aperture, flow field, and fracture temperature in THM 453 

simulations. Both the reference model and the selected posterior realization from Figure 5 are 454 

shown. 455 

An interesting observation is that the evolution of aperture and flow fields from the 456 

posterior realization is similar to that from the reference model (Figure 7). After 30 years 457 

production, both the reference and posterior models show a dominating flow channel between 458 

the injection and production wells. The secondary channel almost disappears in both posterior 459 

and reference realizations. However, there exists a major difference of the flow field between the 460 
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reference and posterior models, that a branch flow path still exists alongside the dominating 461 

channel from the posterior realization but not in that from the reference model. The effect of this 462 

branch flow path on thermal performance is nonnegligible as it increases the effective heat 463 

transfer area between fluid and rock formation (temperature distribution in Figure 7). With the 464 

consideration of dynamic aperture evolution, the predicted production temperature from the 465 

posterior realization gradually deviates from the reference result (Figure 8b). Specifically, due to 466 

the presence of the branch flow channel, the posterior realizations tend to exhibit a relatively 467 

slower thermal breakthrough compared with the reference model. Such a result indicates that 468 

although the posterior realization is able to capture the primary features of the initial flow field in 469 

the reference model by fitting tracer data, it may produce a biased flow field due to the dynamic 470 

variation of the aperture field during heat extraction, ultimately leading to an overestimated 471 

production temperature. 472 

 473 

Figure 8. Predictions of production temperature from THM simulation for the randomly selected 474 

30 posterior realizations. (a) Temperature breakthrough cuves from the reference model and 475 

posterior realizations. The green dashdot line is the production temperature curve obtained from 476 

the selected posterior realization shown in Figure 7, and its corresponding curve from TH 477 

simulation is represented by the purple dashed line for comparison. (b) Difference in heat 478 

production temperature between the reference and the 30 posterior realizations at different 479 

production times. TH and THM results are compared. The box plots show the maximum, 480 

minimum and mean of temperature difference. 481 

4.2 Multi-stage aperture inversion and the corresponding thermal prediction 482 

The above analysis demonstrates that ignoring the dynamic evolution of fracture aperture 483 

during inversion renders the posterior model with compromised long-term thermal prediction 484 

capability. To assess the capability of the proposed multi-stage inversion framework in capturing 485 

dynamic aperture evolution, we further performed the second and third tracer inversions after 486 

five and fifteen years production. 487 
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4.2.1 Second aperture inversion 488 

We first use the aperture field from the reference model after five years production 489 

(Second row, first column in Figure 7) to generate a new tracer and pressure dataset for the 490 

second aperture inversion. Model parameters and tracer injection conditions are the same as that 491 

used for the first tracer modeling at the initial stage (Table 1). Due to the variation of fracture 492 

aperture and flow field, both the conservative and sorptive tracer breakthrough curves exhibit 493 

noticeable changes in terms of peak magnitude and the arrival time of the peak (Figure 9). For 494 

the conservative tracer, the arrival time is slightly delayed, accompanied by a reduction in its 495 

peak magnitude. The secondary peak becomes almost negligible as most of the injected fluid 496 

concentrates in the primary flow channel corresponding to the first peak. Conversely, for the 497 

sorptive tracer, the arrival time slightly advances, along with an increase in peak magnitude. The 498 

pressure difference between the injection and production wells decreases significantly from 54.4 499 

kPa to 24.24 kPa because of the increase of fracture aperture under the thermal stress effect. 500 

 501 

Figure 9. Tracer breakthrough curves obtained from the reference model. The dashed lines are 502 

the tracer results from the initial aperture field while the dots represent the tracer results after 5 503 

years production. 504 

The second inversion follows the same steps as the initial inversion. Note that tracer 505 

dataset is still augmented by adding the difference between the conservative and sorptive tracer 506 

breakthrough curves to achieve an appropriate inversion result. The settings for measurement 507 

errors remain consistent with those of the initial inversion. Through the initial ES-MDA 508 

inversion, we have acquired a posterior ensemble that successfully resolves the initial fracture 509 

flow pattern, and therefore it is appropriate to use the posterior ensemble as the prior ensemble 510 

for this second inversion. It is noteworthy that at the fifth year of heat production, the impact of 511 

thermal stress is not particularly pronounced such that the changes in the fracture aperture field 512 

are limited compared to the initial state and the majority of features remain preserved (Figure 7). 513 
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Therefore, the secondly inversed fracture apertures should, theoretically, not deviate excessively 514 

from the one in the first inversion. In this regard, we suggest adopting the following modification 515 

scheme to update the latent parameters during the ES-MDA inversion process, 516 

 1 1 1 1 1

ZY YY obs( ) ( )i i i i i

j j i i j j           z z C C R y ye  (3) 517 

where 𝛾 is a user-defined parameter to scale the error variance 𝐂ZZ of latent parameter 𝐳, which 518 

is set to 0.02 in this study. The modified formula is inspired by the ensemble representation of 519 

model gradient in the derivation of the ES-MDA algorithm (Evensen, 2018). 520 

 521 

Figure 10. Numerical results of tracer and well pressure difference from the prior and posterior 522 

realizations for the second inversion. (a) Comparison between the reference and predicted tracer 523 

breakthrough curves. (b) Evolution of the predicted well pressure difference with ES-MDA 524 

iterations. 525 

Since the initial aperture/flow fields share many common features with the aperture/flow 526 

fields after five years production (Figure 7), the uncertainty of the prior results is relatively low 527 

(Figure 10). The inversion achieves a stable result after six iterations. Posterior realizations from 528 

the second inversion match perfectly with the reference model in terms of tracer breakthrough 529 

and well pressure difference (Figure 10). We still use the selected realization in Figure 5 to 530 

analyze the aperture and flow fields. The posterior aperture/flow fields from the second inversion 531 

closely resemble that from the initial inversion, but with appropriate local modifications to match 532 

the tracer and pressure data obtained at the fifth year of production (Figure 11). An important 533 

modification in the flow field is that the primary flow channel undergoes slight downward 534 

movement, and one of the branch flow paths almost disappears, making the overall flow field 535 

more similar to the reference flow field compared with that from the initial inversion. 536 
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Figure 11. Comparison of the fracture aperture and flow field at the fifth and fifteenth year of 538 

production between the reference model and the selected posterior realization. At the fifth year, 539 

we compare the results from the first stage (initial stage) and the second stage to illustrate the 540 

change of aperture and flow fields due to the second inversion. At the fifteenth year, we compare 541 

the results from the second and third stages to illustrate the change caused by the third inversion. 542 

4.2.2 Thermal prediction with the posterior ensemble from the second inversion 543 

We then use the posterior realizations from the second inversion to perform a second-544 

stage THM simulation to model the thermal process of the EGS model after the fifth year. Note 545 

that the temperature field at the fifth year simulated by the posterior realizations from the first 546 

inversion is used as the initial temperature field for this second-stage THM simulation. We 547 

compare the reference model with the selected posterior realization (from the second inversion) 548 

in terms of aperture field, flow field and fracture temperature distribution at the 5
th

, 15
th

, 30
th

 and 549 

50
th

 year respectively (Figure 12). As one of the branch flow channel resolved by the initial 550 

inversion merges into the secondary flow channel, the effective heat transfer area is reduced and 551 

the fracture temperature distributions (eighth column in Figure 12) modeled by the posterior 552 

realization after the second inversion resemble the reference model results better than that 553 

modeled by the posterior realization after the first inversion (sixth column in Figure 7). The 554 

predicted production temperature from the second inversion stage is lower than the previous 555 

predictions from the first inversion stage, and agrees better with the reference temperature 556 

breakthrough curve (Figure 13). 557 
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 558 

Figure 12. Comparison of fracture aperture, flow field, and temperature distribution between the 559 

reference model and the selected posterior realization after the second and third inversions. 560 

 561 

Figure 13. Production temperature for the reference model, as well as the selected posterior 562 

realizations after the initial, second and third inversions. Note that the temperature curves for the 563 

posterior realizations after the second and third inversions start from the fifth and fifteenth year, 564 

respectively. 565 
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We further examine thermal predictions from the previously selected 30 realizations after 566 

the second inversion (Figure 14). The prediction uncertainty decreases remarkably compared 567 

with the predictions after the initial inversion. Although there is a sudden and subtle change in 568 

the predicted temperature curve at the fifth year (Figure 14a) due to the sudden change of 569 

fracture aperture, the overall long-term thermal performance under the thermal-hydro-570 

mechanical coupled conditions is appropriately covered by the posterior predictions from the 30 571 

realizations. We also calculate the production lifespan of the EGS model according to the 572 

predicted temperature curves (Figure 14b). As annotated in Figure 14b, the production lifespan 573 

of the reference model is 18.4 years, and the average production lifespan predicted by the 574 

posterior predictions after the second inversion (20.0 years) is more accurate than that predicted 575 

by the posterior predictions after the initial inversion (21.3 years). More importantly, the 576 

prediction range of the production lifespan reduces from 17.4-25.5 years for the first inversion, 577 

to 18.6-21.9 years for the second inversion. 578 

 579 

Figure 14. Predictions of production temperature from THM simulation for the randomly 580 

selected 30 posterior realizations after the second inversion. (a) Temperature breakthrough cuves 581 

from the reference model and posterior realizations. Note that predictions at the first five years 582 

are obtained from the initial inversion, while predictions after the fifth year are from the second 583 

inversion. (b) Comparison of heat production lifespan between the reference and posterior 584 

realizations. Both the results from the initial and second inversions are shown. 585 

4.2.3 Third aperture inversion 586 

As the second inversion shows a remarkable improvement in thermal prediction, we 587 

further perform a third inversion at the fifteenth year of production (Figure 12). The posterior 588 

ensemble from the second inversion is employed as the prior ensemble for the third inversion. 589 

Given the favorable match of the flow field obtained in the second inversion with the reference 590 

model, the third inversion theoretically requires only minor adjustments on the aperture fields 591 

from the second inversion. Therefore, we continue to adopt the scaling approach, as discussed in 592 
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Section 4.2.1, for the error variance (𝐂zz) of latent parameters, with the scale parameter 𝛾 set as 593 

0.004. The third inversion quickly yields a stable result after six iterations (Figure 15). A key 594 

modification is that the branch channel alongside the primary channel is further weakened, 595 

making the overall flow field even closer to the reference flow field compared with that from the 596 

second inversion (Figure 11). 597 

 598 

Figure 15. Numerical results of tracer and well pressure difference from the prior and posterior 599 

realizations for the third inversion. 600 

4.2.4 Thermal prediction with the posterior ensemble from the third inversion 601 

We then perform THM simulations using the posterior realizations from the third 602 

inversion to predict the thermal performance of the EGS model after 15 years. The temperature 603 

field at the fifteenth year simulated by the second-stage realizations is used as the initial 604 

temperature field for this third-stage THM simulation. We compare the selected posterior 605 

realizations from the second and third inversions with the reference model in terms of 606 

aperture/flow fields and fracture temperature distribution at the 15
th

, 30
th

 and 50
th

 year 607 

respectively (Figure 12). As a result of localized modification in the aperture field during the 608 

third inversion, the branch flow path that appears in the second inversion progressively 609 

diminishes and merges into the primary channel. Such a modification further enhances the 610 

thermal prediction capability of the inversion model, mainly manifesting as the reduction of 611 

prediction uncertainty Figure 16. Notice that there are discontinuities in the predicted 612 

temperature curve at the fifteenth year between the second and third inversion realizations due to 613 

the sudden modification of fracture aperture (Figure 13 and 16). However, this discontinuity 614 

swiftly stabilized. After 20 years, the thermal production curve closely resembles the reference 615 

curve, with an overall average temperature error less than 3 °C (Figure 16b). This is mainly 616 
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attributed to the correction to the branch flow channel in the third inversion, leading to a further 617 

reduction in the effective heat transfer area. 618 

 619 

Figure 16. Predictions of production temperature from THM simulation for the randomly 620 

selected 30 posterior realizations after the third inversion. (a) Temperature breakthrough curves 621 

from the reference model and posterior realizations. Note that predictions at the first five years 622 

are obtained from the initial inversion, while predictions between years five and fifteen are 623 

obtained from the second inversion, and predictions after the fifteenth year are from the third 624 

inversion. (b) Comparison of the production temperature difference between the reference and 625 

posterior realizations. Both the results from the second and third inversions are shown. 626 

5 Discussions 627 

5.1 When to perform the second and subsequent aperture inversions? 628 

The proposed multi-stage inversion framework requires to perform multiple inversions 629 

during the operation of an EGS to accommodate the continuously varying reservoir conditions, 630 

i.e., dynamic fracture aperture evolution in the current study. Except for the initial inversion 631 

which is generally performed before heat extraction, the timing of subsequent inversions is an 632 

essential decision that needs to be carefully determined. For the EGS model in this study, we 633 

perform the second and third inversion at the fifth and fifteenth years after the commencement of 634 

heat extraction respectively. The two timings appear to be appropriate as the long-term thermal 635 

performance is accurately predicted after the second and third aperture inversions (Figure 16). 636 

In real-world applications, as a tracer testing can be completed in several weeks or 637 

months and the cost of tracer testing is relatively low compared with that of drilling and long-638 

term thermal operations, we could conduct tracer testing every year and perform frequent 639 

aperture inversion accordingly on a yearly base. Nevertheless, the necessity of such a frequent 640 

tracer testing and aperture inversion should be carefully considered. Since thermal conduction in 641 

rock formations is relatively slow, it generally requires a considerable amount of time to develop 642 
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significant thermal stress to alter fracture aperture field and affect thermal performance 643 

remarkably. This is evident from the thermal performance comparison in Figure 8a that the 644 

thermal curves predicted by the posterior realizations are very close to the reference thermal 645 

curves within the first several years. Therefore, although economically and technically viable, it 646 

is unnecessary to repeat tracer testing and aperture inversion too frequently. However, the time 647 

interval between two consecutive inversions should not be too long either, otherwise the thermal 648 

prediction during this time interval might significantly deviates from field measurements. To 649 

examine the effect of inversion timing on thermal prediction, we perform a second-stage 650 

inversion at the tenth year (Figure 17). The predicted production temperature at the tenth year 651 

shows considerable uncertainty compared with that in Figure 14 where the second-stage 652 

inversion happens at the fifth year. In addition, as the simulated temperature field at the end of 653 

the first inversion stage is used as the initial temperature field for THM modeling in the second 654 

stage, a large inversion time interval may lead to a significant deviation in temperature field, 655 

which may further compromise the thermal prediction capability of the inversion results. The 656 

second-stage inversion at the tenth year ultimately results in an underestimated thermal 657 

performance (Figure 17). 658 

 659 

Figure 17. Temperature breakthrough curves from the reference model and the randomly 660 

selected 30 posterior realizations after a second stage inversion at the tenth year. 661 

The timing of the second tracer testing and aperture inversion highly depends on the 662 

hydrogeological conditions of EGS reservoirs. For the single-fracture EGS model in the current 663 

study, a second-stage tracer testing and aperture inversion at the fifth year appears to be a 664 

reasonable choice, and two or three inversion stages seem to be sufficient to provide accurate 665 

long-term thermal predictions. In real-world applications, a straightforward principle to 666 

determine the inversion timing is to compare the simulated production temperature with field 667 

measurements. In presence of a large temperature difference, a new tracer testing can be 668 

performed to provide new data for another round of inversion to correct fracture aperture field. 669 
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5.2 Chemical reactions induced aperture evolution 670 

The present study focuses on the impact of thermal stress on fracture aperture evolution. 671 

As pointed out in the literature, there are some other processes, such as chemical reactions, that 672 

may also induce significant aperture alterations during heat extraction from EGSs (Ameli et al., 673 

2014; Pandey et al., 2014; Xu et al., 2004). The injection of low-temperature fluids into EGS 674 

reservoirs alters the chemical balance of pre-existing minerals, leading to mineral dissolution and 675 

precipitation on fracture surfaces. Coupled simulations investigating chemical reaction effects 676 

reveal that dissolution may enlarge fracture aperture, while precipitation tends to reduce aperture 677 

(Pandey et al., 2018; Salimzadeh & Nick, 2019; Song et al., 2022). The behavior and extent of 678 

chemical reactions in fractured reservoirs depend strongly on the host rock composition, fractural 679 

flow, and temperature fields. 680 

Our proposed multi-stage inversion framework is capable of addressing chemical 681 

reactions-induced aperture change during fracture inversion. In practical applications, inversions 682 

can be conducted at different production times to capture evolutions in fracture aperture resulting 683 

from chemical reactions. Between two inversion stages, the THM solver can be approximately 684 

employed for thermal prediction, eliminating the need to directly simulate the impact of chemical 685 

reactions on thermal performance. This approximation is reasonable because in most existing 686 

geothermal power plants located in sandstone and granite reservoirs, the chemical reactions 687 

occur much more slowly in comparison to thermoporoelastic effects, typically over a longer time 688 

scale (Pandey et al., 2014; Rawal & Ghassemi, 2014). However, in carbonate geothermal 689 

reservoirs, chemical reactions may proceed at a relatively fast pace (Goldscheider et al., 2010; 690 

Pandey et al., 2014). Relying solely on updating fracture apertures at each inversion stage and 691 

without explicitly simulating the effects of chemical reactions in the actual thermal simulation 692 

may lead to a reduction in the accuracy of heat production predictions within each stage. For 693 

such scenarios, we need to enrich the forward model to include chemical reactions module and 694 

necessary couplings with other physical fields, and thus the proposed inversion framework could 695 

still be applied for dynamic aperture inversion and thermal prediction. 696 

5.3 Implications for dynamic reservoir characterization 697 

The dynamic evolution of rock properties due to complex thermo-hydro-mechanical-698 

chemical coupled processes is well acknowledged in a broad range of subsurface reservoir 699 

applications, such as oil and gas extraction, CO2 geological sequestration, waste water disposal, 700 

nuclear waste disposal, as well as geothermal energy recovery presented in this study. An 701 

accurate characterization of the dynamic evolution of key reservoir parameters, including 702 

permeability, porosity, and fracture aperture, is essential for the modeling and prediction of 703 

reservoir performance. However, due to the inherent geological and physical/chemical 704 

complexities associated with subsurface reservoirs, the characterization of reservoir parameters 705 

is quite challenging, and most previous studies actually ignored the dynamic evolution of these 706 

parameters. The current study provides a novel method to infer the dynamic evolution of 707 

reservoir parameters through a newly proposed multi-stage inversion framework. The feasibility 708 

of the framework is tested through a synthetic EGS model, in which the dynamic evolution of 709 

fracture aperture caused by THM coupled processes is appropriately captured through the 710 

inversion of tracer data. Given the flexibility of the proposed framework, it can be easily 711 

extended to the dynamic characterization of other reservoir parameters, such as rock 712 
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permeability, porosity, and oil saturation, as long as a forward model connecting these 713 

parameters with available field measurements can be developed. 714 

Our current work primarily focuses on employing tracer data for reservoir inversion. 715 

Tracer tests, owing to their low cost and convenience of execution, are suitable for multiple tests 716 

in practical applications, making the proposed multi-stage inversion using tracer data applicable 717 

for real-world reservoir development. In addition to tracer data, other geophysical data, including 718 

seismic and electrical data, can also be repeatedly obtained with relatively low cost once the 719 

relevant sensors and devices are installed in the field. Therefore, these geophysical data are also 720 

suitable for the proposed multi-stage inversion framework, and can be used either separately or 721 

jointly with tracer data to provide further constraints on reservoir parameters. More importantly, 722 

as seismic and electrical data depend not only on flow properties but also on rock mechanical 723 

properties, the incorporation of seismic and electrical data may enable the dynamic 724 

characterization of other reservoir parameters such as rock modulus and water/oil saturation. Of 725 

course, the extension of the proposed framework to the characterization of other reservoir 726 

parameters using various geological, geophysical and hydrogeological data requires further 727 

investigation and verification. 728 

6 Conclusions 729 

This study proposes a multi-stage data assimilation framework to capture the dynamic 730 

evolution of fracture aperture during heat extraction from EGS reservoirs, and thus provide 731 

accurate long-term thermal predictions to guide field operations and optimizations. The 732 

framework involves multiple aperture inversions performed at different times throughout the 733 

lifetime of EGS reservoirs. In each inversion, we use ES-MDA method to invert for fracture 734 

aperture distribution from tracer and pressure data. Between two consecutive inversion stages, 735 

the later inversion stage utilizes the posterior aperture ensemble from the previous stage as the 736 

prior ensemble, enabling a progressively refined characterization of the fracture apertures. The 737 

temperature field obtained at the end of the previous THM simulation serves as the initial 738 

temperature field for the subsequent THM simulation, ensuring continuous long-term thermal 739 

performance predictions. 740 

A synthetic field-scale single-fracture EGS model is developed to demonstrate the 741 

efficacy of the proposed framework. Compared with previous one-time inversion, the proposed 742 

multi-stage inversion strategy effectively captures the dynamic evolution of fracture apertures 743 

and flow patterns. As a result, the accuracy of long-term heat performance predictions is 744 

enhanced, and the associated uncertainties are significantly reduced. Numerical results also show 745 

the importance of selecting an appropriate inversion timing. For the single-fracture EGS model 746 

in this work, two to three inversion stages seem to be sufficient, and performing the second and 747 

third stages at the fifth and fifteenth years appears to be appropriate. 748 

Since this study mainly focuses on single dominant fracture inversions and only considers 749 

the case of one injection well and one production well, it would be meaningful to extend the 750 

current framework to accommodate complex fracture networks and multi-well EGS reservoir 751 

applications. Additionally, we use conservative and sorptive tracer data for inversion. Although 752 

proved to be useful, the two types of data do not contain any temperature information, and it 753 

would be worth exploring in the future the use of thermo-sensitive tracers to further improve 754 

fracture characterization and thermal prediction in EGSs. 755 
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