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Abstract — Glioblastoma is a common and fatal tumor presenting a poor survival rate. To choose the best course of treatment, patients and 

providers need to predict the survival rate of patients. Historically, statistical methods have helped analyze clinical features to forecast survival, while 

recently the same is being accomplished by applying artificial intelligence techniques. However, most of these works are limited to predicting 1-, 2-, 

or 10-year survivability with several of these works simulating data for balancing the dataset. Hence, there is a need for fine-grained prognosis without 

tempering the data. To achieve the same, we employ data from Surveillance, Epidemiology, and End Results (SEER) along with an ensemble of 

classification and regression models to develop a fine-grained model to predict the survival period of glioblastoma patients. The proposed framework 

titled 'Peshnaja' presents higher resolution in the prognosis of glioblastoma while showcasing an accuracy of 70% with an overall RMSE of 2.65. 

Moreover, a comparison of Peshnaja with other frameworks shows that we did not impute missing values nor employed synthetic data to force good 

results, thereby keeping Peshnaja true to the existing data. 

Keywords: Cancer survival analysis, Glioblastoma, Machine learning, Classification, survival rate, SEER 

I. INTRODUCTION 

 

Glioblastoma (brain tumors) are mostly secondary tumors, with primary tumors occurring within lungs, breast, colon, 

kidney, or melanoma [1]. Patients affected by brain cancer exhibit unregulated cell growth resulting in headaches, reduced 

hearing and vision, seizures, and difficulty maintaining balance [2].  As of today (July 2023), the 5-year survival for Brain 

Cancer patients stands at a meager 36%, as it is difficult to treat [3].  

 

 Brain tumors are usually diagnosed using magnetic resonance imaging (MRI) which helps in not only diagnosing the 

disease but also its subtypes, prognosis, and management. However, MRIs are not fruitful for predicting the survival of a 

patient [4]. Therefore, scientists are moving towards cohort studies to predict survival periods. One such database is provided 

Surveillance, Epidemiology, and End Results (SEER) which details cancer incidence and survival in the USA [5]. 

Researchers are not only improving the survivability of brain cancer by applying novel Machine Learning approaches on 

these databases to obtain accurate results, but also concentrating their efforts on developing a finer-grained predictive model 

to anticipate how long the patient will survive.  

 

II. LITERATURE REVIEW 

 

Fewer studies have employed SEER data for predicting the survivability of glioblastoma patients. Earlier works 

employ traditional statistical methods for survival analysis. In 2019, Senders [6] designed an online calculator for 1-year 

survival prediction of Glioblastoma patients using Cox proportional hazards regression (CPHR) and the accelerated failure 

time (AFT) algorithms. CPHR with the best performance in terms of discrimination (concordance index= 0.70) was deployed 

in the calculator. 

 

In 2020, another study by Yang [7] developed nomograms to predict 3-year and 5-year survival using Univariate and 

multivariate Cox analysis models with 0.759 and 0.768 concordance indexes respectively. Although statistical methods help 

in understanding the relationship between a limited number of variables, they cannot effectively handle the complex datasets 

required to generate diagnostic and prediction models that can improve clinical decision-making [8].  

 

From 2021 onwards, there was a substantial increase in the use of supervised machine learning and deep learning 

algorithms offering reliable prediction results across complex variables. A study done in 2021 by Samra [9] recommends a 

framework to determine (i) short (6 months with 86% accuracy), (ii) intermediate (12 - 18 months with 70% accuracy), and 

(iii) long-term survival (2 years with 81% accuracy) based on SEER data. Even though Samra presents good accuracy, they 

employed simulated data to balance short, intermediate, and long-term survival classes, which are not recommended in 

clinical studies. 

 



 

 In 2022, another researcher B. Bakirarar [10] proposed a hybrid model for predicting one-year survival, with 74% 
accuracy, and two-year survival with 84% accuracy. 

 
 This year, 2023, another work presented by G. Nath [11] improved accuracies for three survivability periods, i.e., 1 year 

(89%), 5 years (90%), and 10 years (92% accuracy). However, this work also employed the use of simulated data for balancing 
different classes, which is not recommended in clinical studies. 

 
 Again, a paper by G. Nath [12] presents a web-based tool for predicting 10-year survivability of glioblastoma patients 

with an accuracy of 98%. However, as this work also employs simulated data, and only presents a binary classification 
framework with survivability less or greater than 10 years, the work does not hold any clinical merit. 

 

TABLE I. DETAILED COMPARISON CARRIED OUT ENCOMPASSING STUDIES REPORTING SURVIVAL PREDICTION OF GLIOBLASTOMA 

PATIENTS USING SEER DATA. NOTE: LAST TWO STUDIES DO NOT REPORT ACCURACY SCORES SINCE THEY CONDUCTED 

STATISTICAL ANALYSIS 

Year Ref. Time 

Frame 

taken 

Registries Survival 

Prediction 

Classes 

Use of 

simulated 

date 

Feature selection Parameters Accuracy 

score 

2023 [12] 1975-2018 1 – 18  10-year (120 

months) 

SMOTE 20 features using 

LASSO 

Accuracy, 

AUC 

 

98.9% 

2022 [11] 1975-2018 1 – 9  12, 60, 120 

months 

SMOTE for 

train data 

only 

12 features using 

Anova, RF, 

Sequential Forward 

search 

AUC 

 

73.1 

2022 [10] 2007-2018 1 – 18 

 

12, 24 months -- 7 features using 

Kaplan Mier method  

 

Accuracy, F 

measure, 

MCC 

 

84% and 

74% 

2021 [9] 2004-2015 1 – 17  

 

6, 12, 18, 24 

months  

Miss Forest, 

SMOTE 

31 features using 

literature and 

RF 

AUROC, 

accuracy, 

sensitivity, 

specifity 

 

86% 

2020 [7] 2004 – 

2015 

1-17 3-year, 5-year -- Univariate and 

multivariate Cox 

regression 

model 

3-year (c-

index=0.759), 

5-year (c-

index=0.768 

-- 

2019 [6] 2005-2015 1 – 18 12 months Missing data 

imputed 

-- C-index=0.70 -- 

III. RESEARCH GAP 

 

As highlighted, most of these works convert their target variable ("Survival months") into binary classification, with the 

majority opting for 1 or 2 – year survivability, while others even carry out 10 – year survival prediction. Moreover, several of 

these works employ simulated data via balancing techniques like SMOTE, and RUS.  

 

The collective use of bins, along with simulated data to present higher accuracies renders most of these works irrelevant 

from a clinical standpoint. Therefore, this humble effort aims to employ SEER data to develop a clinically useful, fine – 

grained model that helps doctors assist their patients by predicting the survival of glioblastoma patients, all done, without 

simulating data to fill – in missing entries. 

 



 

IV. METHODS 

[1] Data: Data was derived from SEER [13]. Specifically, through its “Case listing sessions,” we obtained 166,516 

records from Cancer incidence database comprising 22 registries ranging from 2000 – 2021, with a total of 78 

features. 

[2] Preprocessing and Filtering: Features pertaining to brain cancer were retained, while attributes corresponding 

to other cancers were discarded. The following steps were conducted: 

(a) Removed records containing empty features (blank/NA).  

(b) Discarded data points with unknown survival months. 

(c) Excluded features unrelated to glioblastoma. 

(d) Retained one of each duplicate feature. For instance, “Primary site,” and “Primary site labeled” are 

duplicate features, where one is numeric and the other is categorical, both providing the same information. 

(e) Converted categorical features into equivalent numeric values.  

(f) Eliminated patient data, where the subject passed away for causes other than glioblastoma. 

(g) Removed features which were constant in the entire dataset.  
 

The above helped derive 9,960 records comprising the following 34 features: 

 

TABLE II: LIST OF ALL FEATURES RETAINED AFTER PREPROCESSING. HERE ‘C’ STANDS FOR CATEGORICAL FEATURES WHILE ‘N’ 

DENOTES FEATURES THAT ARE NUMERIC 

# 

Feature Attributes 

Feature Names Symbol Feature Specification 
Type 

C/N 

1. Race and origin recode  𝑂 
It includes the five mutually exclusive race and ethnicity categories (NHW, NHB, 

NHAIAN, NHAPI, Hispanic) which SEER uses for reporting cancer statistics. 
C 

2. Race  𝑅𝑅 
It is based on race variables: White (W), Black (B), American Indian/Alaska Native 

(AI), and Asian Pacific Islander (API)  
C 

3. Race/ethnicity 𝑅𝐸 The race of patients belonging to more diverse groups C 

4. Aya site Recode 𝛼 A site/histology recode that is used to analyze data on adolescent and young adults C 

5. Sex 𝑋𝑌 Gender C 

6. Primary Site - labeled 𝑃 
Sites where primary tumor originated. This provides the primary site code in ICD-O-3 

and a descriptive primary site label. 
C 

7. 
Grade Recode (thru 

2017) 
𝐺 Appearances of cancer cells and how fast they may grow. C 

8. 
Diagnostic 

Confirmation 
𝑇𝑇 Methods used to confirm the presence of brain cancer. C 

9. Laterality 𝐿 Describes the site of the body on which the reportable tumor originated. C 

10. 
Combined Summary 

Stage 2004 
𝑆04 

A descriptor of the extent cancer has spread, taking into account the size of the tumor, 

depth of penetration, metastasis 
C 

11. 
RX Summ – Surg Prim 

Site  
𝑅𝑋(𝑃) Surgical procedure to remove or destroy tissues of the primary site. C 

12. 

RX Summ – 

Systemic/Sur Seq (2007 

) 

𝑅𝑋(07) 
The sequence of any systemic therapy and surgery given as first course of therapy for 

those patients who had both systemic therapy and surgery. 
C 

13. 
RX Summ – Surg/Rad 

Seq (2006 ) 
𝑅𝑋(06) 

The order in which surgery and radiation therapies were administered for those patients 

who had both surgery and radiation. 
C 

14. COD to site rec KM 𝐶𝐾𝑀 
This is a recode based on underlying cause of death to designate cause of death into 

groups similar to the incidence site recode with KS and mesothelioma 
C 

15. 
Radiation recode (2003 

) 
𝛾 Records the type of Radiation treatment delivered  C 

16. 
Chemotherapy recode 

(2004) 
𝐶04 

Records the chemotherapy given as a part of the first course of treatment or the reason 

that chemotherapy was not given i.e., (yes, no/unk). 
C 

17. 
EOD Schema ID 

Recode (2010 ) 
𝐸 

Extent of Disease (EOD) is a set of three data items that describe how far a cancer has 

spread at the time of diagnosis. 
C 

18. 

ICCC site recode 

extended 3rd 

edition/IARC 2017 

𝐼𝐶𝐶𝐶 A site/histology recode that is mainly used to analyze data on children C 

19. 
SEER Brain and CNS 

Recode 
𝑆𝛽 To analyze brain tumors according to major histological categories. C 



 

# 

Feature Attributes 

Feature Names Symbol Feature Specification 
Type 

C/N 

20. 
Site recode - rare 

tumors 
𝐶𝑅 Table of recodes for rare cancer sites. C 

21. ICD-O-3 Hist/behav 𝐵 Definitions of major cancer sites based on the primary site and histology. C 

22. 
Histologic Type ICD-

O-3 
𝐻𝐼𝐶𝐷 

Microscopic composition of cells and/or tissues for specific primary. Used for staging 

and treatment determination 
C 

23. IHS Link 𝐼 
Indian Health Service (IHS) Link reports the result of linkage between the registry 

database and the Indian Health Service patient registration database 
C 

24. Reason for no surgery 𝑅𝑆̅ The reason why surgery was not performed (if not) C 

25. PRCDA 2020 𝑃 
This data item identifies whether or not the county of diagnosis is served by 

Purchased/Referred Care Delivery Area (PRCDA) 
C 

26. Survival months 𝑆 Number of months that patient is alive from date of diagnosis. N 

27. 
Months from diagnosis 

to treatment 
Μ 

Estimates month of diagnosis to treatment, based on other known dates for that patient, 

when actual month of diagnosis is unknown. 
N 

28. 
Age recode with single 

ages and 90 
𝐴 Age at time of diagnosis. N 

29. 

Total number of in 

situ/malignant tumors 

for patient 

Τ𝑀 The number of malignant tumors in the patient’s lifetime N 

30. 

Total number of 

benign/borderline 

tumors for patient 

Τ𝐵 The number of benign tumors in the patient’s lifetime N 

31. 
Year of follow-up 

recode 
𝐹 Records year of last follow up N 

32. Year of death recode 𝑌𝛾 Records year of Death N 

33. Year of diagnosis 𝑌𝐷 

The year of diagnosis is the year the tumor was first diagnosed by a recognized 

medical practitioner, whether clinically or microscopically 

confirmed. 

N 

34. 
SS seq # 2000 - mal ins 

(most detail) 
𝑆𝑆 

Site specific sequence number of the tumor associated with the site classification 

scheme in the variable Site - mal+ins (most detail). Based on all the tumors in SEER. 
N 

 

 

[3] Binning Target variable: We chose “survival months” as the target variable for each patient.  

(a) For experiment 1, we employed regression, thereby using ‘survival months’ as-is.  

(b) For experiment 2, we binned the 'survival months' into three classes (i) 0-7 months, (ii) 8 - 19 months, and 

(iii) 19 - 140 months. Equal distribution was ensured. 

(c) In experiment 3, we employed ensemble learning, using cart-classification approach, wherein each layer 

comprised of binary classification, see figure 7. 

 

[4] Normalization: We first performed 'Min-Max Scaler' normalization on the dataset.  

 

[5] Train – test – validation split: We split the data into two parts i.e., (i) 90% as the combined train/test set, and 

(ii) 10% as the validation set. Thereafter, we used the train/test split using 10× cross-validation. These splits 

were conducted using random sampling. 

 

[6] Feature Selection: In experiment 1, we conducted both sequential forward and sequential backward search. 

The performance graph shown below shows that beyond 3 features there is hardly any difference in performance 

indicated by the graph’s straight line. Therefore, we decided to retain the first 5 features for further processing. 
 

 



 

  

Figure 1: Performance Graph for Sequential Forward search Figure 2: Performance Graph for Sequential Backward search 

 

However, in experiments 2, we employed the Random Forest Classifier (RFC) to determine the top 15 features 

as per their “feature importance scores.” In experiment 3, RFC was again employed for Layers 1 and 2 during 

classification, while carrying out sequential searches for Layer 3. 

 

[7] Machine learning Models: We applied several tools to the dataset.  

(a) For classification, we applied (1) Logistic Regression (LR), (2) Decision tree (DT), (3) Linear discriminant 

analysis (LDA), (4) Support vector machine (SVM), (5) Gradient Boost classifier (GB), (6) Random Forest 

classifier (RFC), (7) Gaussian Naïve Bayes (GNB), (8) Perceptron (Perc), (9) Ad-booster (AB), (10) 

Quadratic Discriminant (QDA), (11) One vs. rest classifier using Logistic Regression (OvR-LR), (12) One 

vs. rest classifier using perceptron (OvR-P), (13) Multi-Layer Perceptron (MLP), (14) Artificial Neural 

Network (ANN), and (15) Voting classifier (Vote).  

(b) For regression, we applied (1) Linear Regression (LR), (2) SVM, (3) Ridge regression (RR), (4) Elastic-

net regression (Elas), (5) LASSO, (6) LARS, (7) Automatic Relevance Determination (ARD), (8) Gradient 

Boosting regression (GBR), (9) Stochastic Gradient Descent (SGD), and (10) Random Forest regression 

(RFR), (11) Decision Tree, and (12) Linear SVM. 
 

[8] Measurements: As the train/test set was employed using 10x Cross-Validation, therefore, our results report 

the average accuracy for the training and test sets. Whereas we report the accuracy, as-is, for the validation set. 

As for regression, we report RMSE. 
 

V. RESULTS 

  

  We conducted the following three experiments to devise Peshnaja: 

 

[1] Exp. 1: Regression: The first experiment involves applying regression models, and then comparing them as 

per their RMSE values. Hereinbelow, table III highlights the performance of the models with respect to the 

training, test, and validation sets. As shown in Table III, as the overall RMSE values are large, we need to try 

a different approach for obtaining a better solution. 

 
TABLE III: The table shows the performance of different regression models when applied to SEER dataset. For ease, the table is sorted as per the 

RMSE values of the validation set with the top model at #1. 

S. No. Models 
RMSE scores for Regression 

Train set Validation set  

1. Gradient Boosting  4.33 4.32 

2. Random Forest  1.85 4.52 

3. Ridge regression 4.73 4.79 

4. Linear Regression 4.73 4.79 

5. ARD regression 4.73 4.79 

6. LASSO Regression 4.74 4.79 

7. SGD Regression 4.74 4.80 



 

S. No. Models 
RMSE scores for Regression 

Train set Validation set  

8. Linear SVR 4.94 5.10 

9. Decision Tree Regression 0.51 5.93 

10. Elastic net  6.32 6.73 

11. SVR 5.88 6.82 

12. LARS regression 17.02 18.31 

 

[2] Exp. 2: Multi-Class Classification: As regression models in experiment 1 presented large RMSE values, we 

opted to bin 'survival months' as equally as possible into three bins i.e., (a) 0 - 7 months, (b) 8 - 19 months, and 

(c) 20-140 months, and try a 3-class classification framework. 

 

We applied different classification models on the training/test set (90% of the data) using 10x cross-validation 

and verified these models on the validation set (remaining 10% of the data). The results are shown in Table IV. 

As for the voting classifier, we took the top 3 models and used them together. Upon inspecting the confusion 

matrices shown in Table V, we conclude that the classifiers exhibit a bias for class 1 (0 - 7 months) over classes 

2 and 3, due to unbalanced data, as shown in Figure 3. 

 

 
TABLE IV: The table shows the performance of different classification models when applied to SEER dataset. For ease, the table is sorted as per the 

accuracy score of the validation set with the top model at #1. 

S. No. Models 
Accuracy scores 

Train set Validation set 

1. Gradient Boost 59 61 

2. AdaBoost  59 60 

3. Multi-Layer Perceptron 47 58 

4. Random Forest 56 57 

5. Support Vector Machine 56 56 

6. Logistic Regression 56 56 

7. 
Linear Discriminatinant 

Analysis 
56 56 

8. One vs Rest using LR 55 56 

9. Gaussian Bayes 54 55 

10. Perceptron 44 52 

11. Decision Tree 49 49 

12. Quadratic Discriminant Analysis 45 43 

13. One vs Rest using Perceptron 46 43 

14. Voting Classifier 59 60 

 

TABLE V: Confusion matrices for the validation set reveal, (i) the classifiers favor class 1 over classes 2 and 3, and (ii) the performances of the classifiers 

for classes 2 and 3 is poor. (Top 3) 

Models Gradient Boost AdaBoost MLP Voting Classifier 

Confusion 
Matrices 

[
267 82 16
194 177 61
37 95 167

] [
260 89 16
97 169 66
39 90 170

] [
284 80 1
119 197 16
46 147 106

] [
265 85 15
98 172 62
38 93 168

] 

 



 

 

Figure 3: Distribution of records in 3 classes reveal (i) most glioblastoma patients die within the first year of diagnosis, and (ii) the data is unbalanced. 

[3] Exp. 3: Multi-layer Classification: To improve the previous solution, we opted to undertake multi-layered 

classification, ensuring that classes within each layer contain the same number of patients. 

 

(a) Layer 1: Data is first classified into 2 classes, i.e., (a) '0 - 12' months, and (b) 'above 12 months'. This 

ensures an (almost) equal distribution of records within each class, as shown in Figure 4. Tables VI and 

VII present the results of the classification models when applied to layer 1. As shown in Table VI, SVC, 

ANN, LOG, and ONE-Log are all equivalent presenting 90% accuracy on the validation set. Moreover, as 

shown in Table VII, confusion matrices do not exhibit the bias shown in the previous experiment. 

 
Figure 4: Equal Distribution of Records during Layer 1 Classification as Class A (0-12 months) and Class B (13-140 months) 

 
TABLE VI. LAYER 1 CLASSIFICATION RESULTS FOR CLASS A AND CLASS B 

S. No. Models 

Accuracies scores  

Train set 
Validation 

set 

1. Support Vector Classifier 87 90 

2. ANN 87 90 

3. Logistic Regression 87 90 

4. One vs Rest using Logistic regression 87 90 

5. Gradient Boost 87 89 

6. AdaBoost 86 88 

7. Linear Discriminatinant Analysis 85 88 

8. Perceptron 81 86 

9. One vs Rest using Perceptron 81 86 

10. Random Forest 84 85 

11. Multi-Layer Perceptron 85 84 

12. Decision Tree 83 84 

13. Quadratic Discriminant Analysis 65 79 

14. Gaussian Bayes 70 72 

15. Voting classifier 87 90 



 

TABLE VII. Top 3. COMPARISON OF CONFUSION MATRIXES OF CLASSIFICATION MODELS 

Models SVC ANN Log Voting 

Confusion 
Matrices 

[
527 2
93 374

 ] [
505 24
76 391

 ] [
511 18
80 387

] [
519 10
84 383

] 

 

(b) Layer 2: Classes (A) and (B) are further divided into two classes, as shown in Figure 8. Class A is further 

divided into Class 1 (0 – 5 months) and Class 2 (6 – 12 months) while Class B is divided into Class 3 

(13 – 23 months) and Class 4 (24 – 140 months). Here again, the division of the classes ensures (almost) 

equal distribution of patients within each class shown in Figures 6 – 8. Finally, Class 4 is divided into 

Class 4A (24 – 36 months) and Class 4B (37 – 140 months). This additional step is performed to obtain 

survival prediction till 3 years at maximum, while survival periods above 3 years are grouped in one 

individual class (Class 4B). Table VIII presents the results of different classifiers when applied to Layer 

2.  

 

Figure 5: Distribution of Records in Layer 1 and Layer 2 involving Classification framework 

 
  

Figure 6: Distribution of Records in Class 1 
and Class 2 

Figure 7: Distribution of Records in Class 3 
and Class 4 

Figure 8: Distribution of Records in Class 4a 
and Class 4b 

 

TABLE VIII. LAYER 2 CLASSIFICATION RESULTS WITH HIGHLIGHTED RESULTS SHOWING TOP 3 MODELS, FURTHER EMPLOYED FOR 

VOTING CLASSIFER 

S. No. Models 
Accuracy Scores 

Class 1 vs. 2 Class 3 vs. 4 Class 5 vs. 6 

1. Logistic Regression 78 79 83 

2. Decision Tree 64 74 83 

3. Linear Discriminatinant Analysis 79 81 83 

4. Support Vector Classifier 79 81 82 

5. Gaussian Bayes 68 59 66 

6. Random Forest 73 76 84 

7. Gradient Boost 77 80 83 

8. Perceptron 67 81 81 

9. AdaBoost 75 81 83 



 

S. No. Models 
Accuracy Scores 

Class 1 vs. 2 Class 3 vs. 4 Class 5 vs. 6 

10. Quadratic Discriminant Analysis 57 64 72 

11. One vs Rest using Logistic regression 78 79 83 

12. One vs Rest using Perceptron 67 81 81 

13. MLP 79 64 83 

14. ANN using Keras Classifier 79 80 83 

15 Performance of Voting Classifiers 79 81 83 
 

 

To obtain accuracies of Peshnaja, we first employed the top classifiers for each layer. For instance, we 

chose SVC for Layer 1 with an accuracy of 90% on the validation set, while presenting a confusion 

matrix with 527 true positives (TP), and 374 true negatives (TN).  

 

Thereafter, these 527 TPs were fed to Class ‘1 vs. 2’ classification (in Layer 2), while the 374 TNs were 

fed to Class ‘3 vs. 4’ classification (also in Layer 2).  

 

Finally, the TNs obtained from Class ‘3 vs. 4’ classification is directed to Class ‘4A vs. 4B’ classification. 

The step – by – step evaluation of accuracy is shown in Table (X-XIII). 

 
TABLE IX. BEST MODEL FROM EACH CLASSIFCATION IN LAYER 2, ALONG WIH ITS ACCURACY SCORES AND CONFUSUON MATRICES 

 

S. No. Classification Classifier Accuracy 
Confusion 

Matrix 

1. Class 1 vs. Class 2 LDA 79 [
251 47
60 169

 ] 

2. Class 3 vs. Class 4 AB 81 [
133 0
69 172

 ] 

3. Class 4A vs. Class 4B RFC 84 [
37 5
22 108

 ] 

 

 
Table X: Layer 1 Binary Classification predicting survival period 

till 12 months (1 year), Accuracy = 90% 
Table XI: 527 TPs of Layer 1 are used in Class 1 vs. 2 Classification 

 
 0 – 12 13 – 140 

0 – 12 527 2 

13 – 140 93 374 

 
 
 

 
 0 – 12 13 – 140 

 0 – 5 6 – 12  

0 – 5 251 47 
2 

6 – 12 60 169 

13 – 140 93 374 
 

Table XI: 374 TNs of Layer 1 were directed to classification in 
Layer 2 predicting survival period of either (0 – 5, 6 – 12) or (12 – 
24, 25 – 140) months, with an accuracy of 72.7% 

Table XII: 172 TNs of Class 4A vs. 4B were fed for further classification into 
Class 4A vs. 4B, presenting an accuracy of 70.0% 

 
 0 – 12 13 – 140 

 0 – 5 6 – 12 13 – 24 25 – 140 

0 – 5 251 47 
2 

6 – 12 60 169 

13 – 24 
93 

133 0 

25 – 140 69 172 

 
 

 

 0 – 12 13 – 140 

 0 – 5 6 – 12 13 – 24 25 – 36 37 – 140 
0 – 5 251 47 

2 
6 – 12 60 169 

13 – 24 

93 

133 0 

25 – 36 
69 

37 5 

37 – 140 22 108 
 

 

Peshnaja′s Accuracy =  
∑(TP + TN)

∑(TP + FP + FN + TN)
=

251 + 169 + 133 + 37 + 108

996
=

698

996
= 70.0 % 



 

 

(c) Layer 3: Finally, to obtain a fine-tuned model, wherein we can predict the exact number of months a 

glioblastoma patient may survive, we applied different regression models separately to each class and 

results are recorded in Table XIV. 
 

The accuracy score for the proposed Peshnaja framework comes to be 70.0%. However, the RMSE scores 
of the individual five classes show excellent scores, as shown above in Table XIV. The overall solution, 
exhibited in Figure 9, is a fine-tuned model capable of predicting the exact number of months a 
glioblastoma patient is expected to survive. 

 

TABLE XIII. COMPARISON OF RMSE SCORES ON VALIDATION SETS FOR ALL CLASSES 

# Models Class 1 Class 2 Class 3 Class 4A Class 4B 

1. Linear Regression 1.45 1.88 3.18 2.78 4.76 

2. SVR 1.44 1.93 3.06 3.68 13.57 

3. Ridge regression 1.45 1.88 3.18 2.78 4.77 

4. Elastic net  1.45 1.94 3.05 3.50 6.81 

5. LASSO regression 1.45 1.90 3.08 2.83 4.75 

6. LARS regression 1.49 1.95 3.08 3.77 19.12 

7. Linear SVR 1.43 1.90 3.02 3.32 9.64 

8. ARD Regression 1.44 1.89 3.18 2.73 4.73 

9. Gradient Boosting  1.42 1.86 3.15 3.17 4.64 

10. SGD Regression 1.45 1.88 3.14 2.82 4.77 

11. Random Forest  1.57 2.04 3.21 3.50 4.78 

12. Decision Tree Regression 2.10 2.79 3.45 4.31 5.94 
 

 

Figure 9: Complete Schematic diagram of proposed model showing its 3-layered architecture along with division of 

classes. Best Model along with their performance parameter is also mentioned  

Finally, to show the goodness – of – fit of Peshnaja, hereinbelow, we took two samples from each 

class and compared Peshnaja’s prediction with actual values to see its performance (see Table XV). 

The RMSE of Peshnaja is shown for different survival month periods. We can see that for the first 

year (0 – 12 months) Peshnaja shows excellent RMSE of 1.61, dipping slightly for the third year to 

2.09, to final 2.65 RMSE for the 10 year (0 – 140 months) survival period, (see Table XVI).  

 



 

TABLE XIV. COMPARISON BETWEEN ACTUAL VALUES AND PESHNAJA’S PREDICTED VALUES 

Class 
Time period 

(months) 
Model 

Survival Months 

Actual Value Predicted Value 

Class 1 0 – 5 RFR 
1 1.4 

4  3.22 

Class 2 6 – 12 LR 
6 8.5 

11  8.9 

Class 3 

 
13 – 24 SVM 

18 17.30 

22  18.66 

Class 4A 25 – 36 Linear SVM 
28   31.3 

34 33.1 

Class 4B 37 – 140 GBR 
42   43.36 

89 92.16 
 

TABLE XV. OVERALL RMSE SCORES WITH RESPECT TO DIFFERENT SURVIVAL PERIODS 

S. No. Survival months RMSE scores 

1 0 – 5  1.42 

2 0 – 12 1.61 

3 0 – 24 2.04 

4 0 – 36 2.09 

5 0 – 120 2.65 
 

VI. DISCUSSION 

 

  This paper introduces Peshnaja – a clinically relevant, finely–tuned framework for predicting the survivability of 
Glioblastoma patients.  

  We conducted three experiments to achieve the desired accuracy. The first experiment employed regression on the 
entire dataset resulting in high RMSE scores, proving that regression alone is unfit to provide a decent solution. 

  Secondly, we carried out a 3-ary classification with an equal distribution of data. The three classes (0 – 7 months, 7 – 
19 months, and 20 – 140 months) present skewed class limits owing to the low survivability of glioblastoma patients. However, 
no model could fit the data well, showing poor accuracy, indicating that simplistic classification alone is unsuitable for this 
problem. 

  Lastly, we embarked on developing a prediction framework employing both classification and regression. The resulting 
ensemble learning model comprised a binary tree, wherein each level of the tree divided the data into equal sets, allowing us to 
try different classification models at each layer. Once suitable classes (survival periods) were made, we applied different 
regression models to each survival period to determine the exact possible survival month for each glioblastoma patient. 

 While developing Peshnaja, we (i) avoided filling in missing values using synthetic data, and (ii) did not forcefully 
balance classes to achieve equal class limits. The above two techniques, if done, improve the accuracy, making the solution 
theoretically relevant, but rendering the entire exercise clinically useless, as generating synthetic data for cancer is highly 
deplorable. 

 The resulting framework, Peshnaja presents a decent accuracy of 70% with an overall RMSE of 2.65, allowing for exact 
prediction of survival months making it clinically relevant. A comparison of Peshnaja with other frameworks is shown in Table 
XVII.   

 

TABLE XVI: COMPARISON OF PESHNAJA WITH OTHER GLIOBLASTOMA STUDIES. ALL THESE STUDIES HAVE DEVELOPED THEIR 

MODELS USING SEER DATA. COMPARISON SHOWS THAT PESHNAJA IS (I) FINE-TUNED, AND (II) DOES NOT EMPLOY SYNTHETIC DATA, 

RENDERING IT CLINICALLY RELEVANT.  

Components Peshnaja 
G. Nath 

[12] 

G.Nath 

[11] 

B. Bakirarar 

[10] 

Samara 

[9] 

Yang 

[7] 

Senders 

[6] 

Fine – tuned results. ✓       

Did not employ synthetic data.  ✓     ✓ ✓ 

Did not imputed missing values. ✓ ✓ ✓ ✓  ✓  

 



 

We employed a systematic approach for feature extraction. For Layers 1 and 2, we used RFC to extract important 

features from the dataset. Whereas, for Layer 3, we used Sequential forward and Backward searches. By conducting feature 

selection for each classifier and regressor separately, we greatly improved the accuracy of our model. 

 
Table XVII: TABLE SHOWING FEATURES EMPLOYED FOR THE FINAL MULTI-TIER MODEL (‘PESHNAJA’)  

 Features Classification Regression 

 Symbols O A B 4 R1 R2 R3 R4A R4B 

1. 𝑂  ✓ ✓ ✓  ✓    

2. 𝑅𝑅          

3. 𝑅𝐸          

4. 𝛼          

5. 𝑋𝑌 ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

6. 𝑃 ✓ ✓ ✓ ✓ ✓ ✓    

7. 𝐺   ✓ ✓   ✓   

8. 𝑇𝑇         ✓  

9. 𝐿 ✓ ✓ ✓ ✓ ✓  ✓   

10. 𝑆04  ✓ ✓ ✓ ✓ ✓  ✓  

11. 𝑅𝑋(𝑃) ✓ ✓ ✓ ✓      

12. 𝑅𝑋(07) ✓ ✓    ✓   ✓ 

13. 𝑅𝑋(06) ✓ ✓   ✓   ✓  

14. 𝐶𝐾𝑀      ✓ ✓ ✓  

15. 𝛾  ✓  ✓ ✓     

16. 𝐶04 ✓ ✓   ✓  ✓  ✓ 

17. 𝐸          

18. 𝐼𝐶𝐶𝐶     ✓     

19. 𝑆𝛽         ✓ 

20. 𝐶𝑅          

21. 𝐵 ✓ ✓ ✓ ✓   ✓   

22. 𝐻𝐼𝐶𝐷  ✓  ✓ ✓     ✓ 

23. 𝐼          

24. 𝑅𝑆̅          

25. 𝑃 ✓ ✓ ✓ ✓      

26. 𝑆 Target Variable 

27. Μ ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

28. 𝐴 ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

29. Τ𝑀  ✓ ✓       

30. Τ𝐵        ✓ ✓ 

31. 𝐹 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

32. 𝑌𝛾 ✓ ✓ ✓ ✓      

33. 𝑌𝐷 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

34. 𝑆𝑆          

Total Features (N) 15 18 16 16 12 10 8 8 10 

 

Lastly, Peshnaja is trained on SEER dataset ranging from year 2000 – 2021. We did not employ the entire dataset 

available in SEER (1975 – 2021) as some important features like ‘Radiation’ and ‘Chemotherapy’ are only available from 2000 

onwards.  

 

 



 

VII. CONCLUSION 

 

This humble effort presents Peshnaja – a clinically relevant, finely–tuned framework for predicting the survivability 

of Glioblastoma patients. Peshnaja presents a decent accuracy of 70% with an overall RMSE of 2.65, allowing for exact 

prediction of survival months making it clinically relevant. A comparison of Peshnaja with other frameworks shows that we 

did not impute missing values nor employed synthetic data to force good results, thereby keeping Peshnaja true to the existing 

data, with state – of – the – art finesse. 

 

As cancer treatment is expensive, Peshnaja could help oncologists determine the likelihood of a patient's survival, 

which in turn will help the patient and their doctor determine the optimal course of the treatment, based on available finances, 

and expected chances of survival. 

 

As of now, Peshnaja is limited to survival time prediction for Glioblastoma. In future, the authors wish to extend the 

framework for other types of cancer. 

 

Lastly, the authors chose the word Peshnaja for the proposed framework as it is a combination of two words ‘predict’ 

and ‘survival.’ The word for predict in Urdu is یگوئ یشنپ  (transliterated as Peshangui), while the same in Persian is ینی ب یشپ  

(transliterated as Peshbini). Similarly, the word for survival in Arabic is نجاة (transliterated as Naja). Hence, we decided to 

combine the two words ‘predict’ and ‘survival’ to ‘Peshnaja.’   
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Highlights: 

  

­ Need: Glioblastoma is a deadly tumor with poor survival rates. As cancer treatment is expensive, Peshnaja could help 

oncologists determine the likelihood of a patient's survival, which in turn will help determine the optimal course of the 

treatment. 

­ Proposed model: Peshnaja is an ensemble learning, hybrid model combining 4 classifiers and 5 regressors, showcasing 

70% accuracy, and an overall RMSE of 2.65. Together, Peshnaja can predict exact survival months for glioblastoma 

patients. 

­ Improvement: Most of the previous works limit their survival model to 1 –, 2 –, or 10 – year survival prediction, hence 

limiting their usability in clinic. Moreover, several of these works simulate data to balance their proposed classes, rendering 

their work unreliable. Here, we did not impute missing values nor employed synthetic data to force good results. Moreover, 

Peshnaja 70% accuracy and an overall RMSE of 2.65, allows for exact prediction of survival months, making it significantly 

better than previous works and clinically relevant. 


