References
Abatzoglou, J. T. et al. 2018. TerraClimate, a high-resolution global
dataset of monthly climate and climatic water balance from 1958-2015. -
Sci Data 5: 170191.
Abrahms, B. et al. 2019. Dynamic ensemble models to predict
distributions and anthropogenic risk exposure for highly mobile species.
- Diversity and Distributions 25: 1182–1193.
Anderson, R. P. 2003. Real vs. artefactual absences in species
distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in
Venezuela. - J. Biogeogr. 30: 591–605.
Andrew, M. E. and Fox, E. 2020. Modelling species distributions in
dynamic landscapes: The importance of the temporal dimension. - J.
Biogeogr. 159: 2533.
Arguez, A. and Vose, R. S. 2011. The Key to Deriving Alternative Climate
Normals. - Bull. Am. Meteorol. Soc. 92: 699–704.
Barber, R. A. et al. 2022. Target‐group backgrounds prove effective at
correcting sampling bias in Maxent models. - Divers. Distrib. 28:
128–141.
Bateman, B. L. et al. 2012. Nice weather for bettongs: using weather
events, not climate means, in species distribution models. - Ecography
35: 306–314.
Bauerfeind, S. S. and Fischer, K. 2014. Simulating climate change:
temperature extremes but not means diminish performance in a widespread
butterfly. - Popul. Ecol. 56: 239–250.
Berrar, D. 2019. Cross-Validation. - In: Ranganathan, S. et al. (eds),
Encyclopedia of Bioinformatics and Computational Biology. Academic
Press, pp. 542–545.
Bland, J. M. and Altman, D. G. 1986. Statistical methods for assessing
agreement between two methods of clinical measurement. - Lancet 1:
307–310.
Bland, J. M. and Altman, D. G. 1995. Comparing methods of measurement:
why plotting difference against standard method is misleading. - Lancet
346: 1085–1087.
Boria, R. A. et al. 2014. Spatial filtering to reduce sampling bias can
improve the performance of ecological niche models. - Ecol. Modell. 275:
73–77.
Bouckaert, R. R. 2003. Choosing between two learning algorithms based on
calibrated tests. - Proceedings of the Twentieth International
Conference on International Conference on Machine Learning 3: 51–58.
Brodie, S. et al. 2021. Exploring timescales of predictability in
species distributions. - Ecography 44: 832–844.
Crego, R. D. et al. 2022. Implementation of species distribution models
in Google Earth Engine. - Divers. Distrib. 28: 904–916.
Dobson, R. et al. 2023. dynamicSDM : An R package for species
geographical distribution and abundance modelling at high spatiotemporal
resolution. - Methods Ecol. Evol. in press.
Feldmeier, S. et al. 2018. Climate versus weather extremes: Temporal
predictor resolution matters for future rather than current regional
species distribution models. - Diversity and Distributions 24:
1047–1060.
Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1-km spatial
resolution climate surfaces for global land areas. - Int. J. Climatol.
37: 4302–4315.
Frederiksen, M. et al. 2008. The demographic impact of extreme events:
stochastic weather drives survival and population dynamics in a
long-lived seabird. - J. Anim. Ecol. 77: 1020–1029.
Gardner, A. S. et al. 2021. Accounting for inter‐annual variability
alters long‐term estimates of climate suitability. - J. Biogeogr. 48:
1960–1971.
GBIF.org 2022. GBIF. - GBIF Occurrence Download
Guevara, L. 2020. Altitudinal, latitudinal and longitudinal responses of
cloud forest species to Quaternary glaciations in the northern
Neotropics. - Biol. J. Linn. Soc. Lond. 130: 615–625.
Guevara, L. and Sánchez-Cordero, V. 2018. Patterns of morphological and
ecological similarities of small-eared shrews (Soricidae, Cryptotis) in
tropical montane cloud forests from Mesoamerica. - System. Biodivers.
16: 551–564.
Guevara, L. et al. 2018. Toward ecologically realistic predictions of
species distributions: A cross-time example from tropical montane cloud
forests. - Glob. Chang. Biol. 24: 1511–1522.
Hansen, M. C. et al. 2013. High-resolution global maps of 21st-century
forest cover change. - Science 342: 850–853.
Harris, I. et al. 2020. Version 4 of the CRU TS monthly high-resolution
gridded multivariate climate dataset. - Sci Data 7: 109.
Hernández-Flores, S. D. and Rojas-Martínez, A. E. 2010. Lista
actualizada y estado de conservación de los mamíferos del Parque
Nacional El Chico, Hidalgo, México. - Acta Zool. Mex. 26: 563–583.
Hijmans, R. J. 2022. Spatial Data Analysis [R package terra version
1.5-17]. in press.
Hijmans, R. J. et al. 2021. Species distribution modeling [R package
dismo version 1.3-5]. in press.
Hirzel, A. H. et al. 2006. Evaluating the ability of habitat suitability
models to predict species presences. - Ecol. Modell. 199: 142–152.
Ingenloff, K. and Peterson, A. T. 2021. Incorporating time into the
traditional correlational distributional modelling framework: A
proof‐of‐concept using the Wood Thrush Hylocichla mustelina. - Methods
Ecol. Evol. 12: 311–321.
Karger, D. N. et al. 2017. Climatologies at high resolution for the
earth’s land surface areas. - Sci Data 4: 170122.
Kass, J. M. et al. 2021. ENMeval 2.0: Redesigned for customizable and
reproducible modeling of species’ niches and distributions. - Methods
Ecol. Evol. 12: 1602–1608.
Levin, S. A. 1992. The problem of pattern and scale in ecology: The
Robert H. macarthur award lecture. - Ecology 73: 1943–1967.
Livezey, R. E. et al. 2007. Estimation and Extrapolation of Climate
Normals and Climatic Trends. - J. Appl. Meteorol. Climatol. 46:
1759–1776.
Marcelino, J. et al. 2020. Extreme events are more likely to affect the
breeding success of lesser kestrels than average climate change. - Sci.
Rep. 10: 7207.
Mayen-Zaragoza, M. et al. 2019. First record of shrews (Eulipotyphla,
Soricidae) in the Sierra de Otontepec, an isolated mountain in Veracruz,
Mexico. - Therya 10: 59.
Merow, C. et al. 2022. Operationalizing expert knowledge in species’
range estimates using diverse data types. - Frontiers of Biogeography
14: e53589.
Milanesi, P. et al. 2020. Integrating dynamic environmental predictors
and species occurrences: Toward true dynamic species distribution
models. - Ecol. Evol. 10: 1087–1092.
Moran-Ordonez, A. et al. 2018. Modelling species responses to extreme
weather provides new insights into constraints on range and likely
climate change impacts for Australian mammals. - Ecography 41: 308–320.
Nadeau, C. and Bengio, Y. 2003. Inference for the Generalization Error.
- Mach. Learn. 52: 239–281.
Nadeau, C. et al. 2017. Coarse climate change projections for species
living in a fine-scaled world. - Glob. Chang. Biol. 23: 12–24.
Pacifici, M. et al. 2013. Generation length for mammals. - Nature
Conservation 5: 89–94.
Pang, S. E. H. et al. 2022. Occurrence–habitat mismatching and niche
truncation when modelling distributions affected by anthropogenic range
contractions. - Divers. Distrib. 28: 1327–1343.
Paz, A. et al. 2022. A framework for near-real time monitoring of
diversity patterns based on indirect remote sensing, with an application
in the Brazilian Atlantic rainforest. - PeerJ 10: e13534.
Perez-Navarro, M. A. et al. 2022. Comparing climatic suitability and
niche distances to explain populations responses to extreme climatic
events. - Ecography 2022: e06263.
Peterson, A. T. 2001. Predicting species’ geographic distributions based
on ecological niche modeling. - Condor 103: 599.
Peterson, A. T. et al. 2005. Time-specific ecological niche modeling
predicts spatial dynamics of vector insects and human dengue cases. -
Trans. R. Soc. Trop. Med. Hyg. 99: 647–655.
Phillips, S. J. and Dudík, M. 2008. Modeling of species distributions
with Maxent: new extensions and a comprehensive evaluation. - Ecography
31: 161–175.
Phillips, S. J. et al. 2009. Sample selection bias and presence-only
distribution models: implications for background and pseudo-absence
data. - Ecol. Appl. 19: 181–197.
Phillips, S. J. et al. 2017. Opening the black box: an open-source
release of Maxent. - Ecography 40: 887–893.
Pinilla-Buitrago, G. E. 2023. Predicting potential range shifts using
climatic time series and niche models: A Neotropical montane shrew’s
case. - Ecol. Inform. 77: 102212.
Reside, A. E. et al. 2010. Weather, not climate, defines distributions
of vagile bird species. - PLoS One 5: e13569.
Roubicek, A. J. et al. 2010. Does the choice of climate baseline matter
in ecological niche modelling? - Ecol. Modell. 221: 2280–2286.
Sánchez-Cordero, V. and Guevara, L. 2016. Modelado de la distribución
potencial de las musarañas (Mammalia, Soricidae). - Instituto de
Biología. Universidad Nacional Autónoma de México. Comisión nacional
para el conocimiento y uso de la biodiversidad.
Schloss, C. A. et al. 2012. Dispersal will limit ability of mammals to
track climate change in the Western Hemisphere. - Proc. Natl. Acad. Sci.
U. S. A. 109: 8606–8611.
Smith, A. B. et al. 2019. Alternatives to genetic affinity as a context
for within-species response to climate. - Nat. Clim. Chang. 9: 787–794.
Stewart, S. B. et al. 2021. Climate extreme variables generated using
monthly time‐series data improve predicted distributions of plant
species. - Ecography 44: 626–639.
Syfert, M. M. et al. 2013. The Effects of Sampling Bias and Model
Complexity on the Predictive Performance of MaxEnt Species Distribution
Models. - PLoS One 8: e55158.
Urban, M. C. et al. 2013. Moving forward: dispersal and species
interactions determine biotic responses to climate change. - Ann. N. Y.
Acad. Sci. 1297: 44–60.
VanDerWal, J. et al. 2013. Focus on poleward shifts in species’
distribution underestimates the fingerprint of climate change. - Nat.
Clim. Chang. 3: 239–243.
Warren, D. L. and Seifert, S. N. 2011. Ecological niche modeling in
Maxent: the importance of model complexity and the performance of model
selection criteria. - Ecol. Appl. 21: 335–342.
Welch, H. et al. 2018. Using temporally explicit habitat suitability
models to assess threats to mobile species and evaluate the
effectiveness of marine protected areas. - J. Nat. Conserv. 41:
106–115.
Wilcoxon, F. 1945. Individual Comparisons by Ranking Methods. -
Biometrics Bulletin 1: 80–83.
Wilks, D. S. and Livezey, R. E. 2013. Performance of Alternative
“Normals” for Tracking Climate Changes, Using Homogenized and
Nonhomogenized Seasonal U.S. Surface Temperatures. - J. Appl. Meteorol.
Climatol. 52: 1677–1687.
Williams, H. M. et al. 2017. A temporally explicit species distribution
model for a long distance avian migrant, the common cuckoo. - J. Avian
Biol. 48: 1624–1636.
Zimmermann, N. E. et al. 2009. Climatic extremes improve predictions of
spatial patterns of tree species. - Proceedings of the National Academy
of Sciences 106: 19723–19728.
Zizka, A. et al. 2019. CoordinateCleaner : Standardized cleaning of
occurrence records from biological collection databases. - Methods Ecol.
Evol. 10: 744–751.