Refernces
  1. Zafar, M.S., Muhammad, F., Javed, I., Akhtar, M., Khaliq, T., Aslam, B., Waheed, A., Yasmin, R., & Zafar, H. (2013). White Mulberry (Morus alba): A brief phytochemical and pharmacological evaluations Account,Internatiol Journal of Agriculture & Biology , 15(3), 612-620.
  2. Kalia AN. Textbook of industrial pharmacognosy. 1sted. New delhi: CBS publishers and distributers;2009.
  3. Singab, A.N.B., ElBeshbishy, H.A., Yonekawa, M., Nomura, T., & Fukai, T. (2005). Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J. Ethnopharmacol . 100, 333−338. doi: 10.10/j.jep.2005.03.013.
  4. Katsube, T., Imawaka, N., Kawano, Y., Yamazaki, Y., Shiwaku, K., & Yamane, Y. (2006). Antioxidant flavonolglycosides in mulberry (MorusalbaL.) leaves isolated based on LDL antioxidant activity.FoodChem . 97, 25−31. doi: 10.1016/j.foodchem.2005.03.019.
  5. Chen, J. J., & Li, X. R. (2007) Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac. J. Clin. Nutr . 16, 290−294.
  6. Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology.Plant Physiol . 126, 485−493. doi: 10.1104/pp.126.2.485.
  7. Lim, E.K., & Bowles, D.J. (2004). A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J23, 2915–2922. https://doi.org/10.1038/sj.emboj.7600295.
  8. Bowles, D., Isayenkova, J., Lim, E.K., & Poppenberger, B. (2005). Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol. 8, 254–263. doi: 10.1016/j.pbi.2005.03.007.
  9. Srivastava, S., Kapoor, R., Thathola, A., & Srivastava, R.P. (2003). Mulberry (Morus alba ) leaves as human food: a new dimension of sericulture. International Journal of Food Science and Nutrition , 54, 411-416. doi: 10.1080/09637480310001622288.
  10. Kim, S.Y., Gao, J.J., Lee, W.C., Ryu, K.S., Lee, R.R. & Kim, Y.C. (1999). Antioxidative flavonoids from the leaves of morus alba,Archiv der pharmazie , 22, 81-85. doi: 10.1007/BF02976442.
  11. Kimura, T., Kubota, H., Kojima, Y., Goto, Y., Yamagishi, K., et al. (2007). Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans.Journal of Agriculture and Food Chemistry , 55, 5869-5874. doi: 10.1021/jf062680g.
  12. Sanchez-Salcedo, E.M., Tass otti, M., Del Rio D., Hernandez, F., Martinz, J.J., & Mena, P., (2016), (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L. ) and black (Morus nigra L. ) mulberry leaves by using a non-targeted UHPLC-MS approach. Food chemistry , 212, 250-255. doi: 10.1016/j.foodchem.2016.05.121.
  13. Hong, H.C., Li, S.L., Zhang, X.Q., Ye, W.C., & Zhang, Q.W. (2013. Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chinese Medicine , 81(1), 19. doi: 10.1186/1749-8546-8-19.
  14. Tao, Ji., Jun, Li., Shu-Lan, Su., Zhen-Hua, Zhu., Sheng, Guo., Da-Wei, Qian & Jin-Ao, Duan. (2016). Identification and Determination of the Polyhydroxylated Alkaloids Compounds with α-Glucosidase Inhibitor Activity in mulberry Leaves of Different Origins, Molecules , 21(2), 206. doi: 10.3390/molecules21020206
  15. Hansawasdi, C., Kawabata, J. (2006). α-Glucosidase inhibitory effect of mulberry (Morus alba ) leaves on Caco-2. Fitoterapia , 77,568-573. doi: 10.1016/j.fitote.2006.09.003.
  16. Cui, X.Q., Wang, L., Yan, R.Y., Tan, Y.X., Chen, R.Y., & Yu. D.Q. (2008). A new Diels-Alder type adducts and two new flavones from the stem bark of Morus yunanensis koidz. J.Asian Nat Prod Res . 10(3-4), 361-366. doi: 10.1080/10286020701833537.
  17. Ozgen, M., Serce, S. & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin rich Morus nigra and Morus rubra fruits.Sci Hortic , 119: 275-279. doi: 10.1016/j.scienta.2008.08.007.
  18. Li, Y.G., Ji, D.F., Zhong, S., Lv, Z.Q., Lin, T.B., Chen, S., & Hu, G.Y. (2011). Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphate in alloxan-induced diabetic mice. Journal of Ethnopharmacology , 134(3), 961-970. doi: 10.1016/j.jep.2011.02.009.
  19. Katyama, H., Takano, R., & Sugimura, Y. (2008). Localization of mucilaginous polysaccharides in mulberry leaves. Protoplasma , 233(1-2), 157-163. doi:10.1007/s00709-008-0299-6.
  20. He, X., Fang, J., Ruan, Y., Wang, X., Sun, Y., Wu, N,I., Huang, L. (2018). Structure, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chemistry , 245, 899-910. doi: 10.1016/j.foodchem.2017.11.084
  21. Machii, K., & Katagiri, K. (1991). Varietal differences in nutritive values of mulberry leaves for rearing silkworms. Japan Agricultural Research Quaterly , 25, 202-208.
  22. Suryanarayanan, N., & Sivashankar Murthy, T.C. (2002). Differences in amino acid contents in leaf blades of mulberry (Morus spp.) varieties.Adv. Plant Sci . 15, 475-481.
  23. Park, S.R., Yoon, J.A., Paik, J.H., et al., (2009). Engineering of plant-specific phenylpropanoids biosynthesis in streptomyces venezuelae. Journal of Biotechnology , 141(3-4), 181-188. doi: 10.1016/j.jbiotec.2009.03.013.
  24. Wang, A., Zhang, F., Huang, L., et al. (2010). New progress in biocatalysis and biotransformation of flavonoids. Journal of Medicinal Plant Research , 4(10), 847-856. doi: 10.5897/JMPR10.030.
  25. do Nascimento, R.P., dos Santos, B.L., Amparo, J.A.O., Soares, J.R.P., da Silva, K.C., Santana, M.R., Almeida, A.M.A.N., da Silva, V.D.A., Costa, M.d.F.D., Ulrich, H., et al. (2022) Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics , 14, 116. doi: 10.3390/pharmaceutics14010116
  26. Dong, N.Q. & Lin, H.X. (2020). Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions.J. Integr. Plant Biol . 63, 180-209. doi: 10.1111/jipb.13054.
  27. Williams, J.S., Thomas, M. & Clarke, D.J. (2005). The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene in photorhabdus luminescens TT01.Microbiology . 151, 2543-2550. doi: 10.1099/mic.0.28136-0.
  28. Wohl, J. & Petersen, M. (2020) Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens. Plant Cell Resp . 39, 597-607. doi:10.1007/s00299-020-02517-z.
  29. Pietrowska-Borek, M., Chadzinikolau, T., Kozlowska, M., (2010) Effect of urban pollution on 4-coumarate: CoA ligase and flavonoid accumulation in Berberis thunbergii. Dendrobiology , 64, 79-85.
  30. Mizutani, M., Ohta, D., & Sato, R. (1997) Isolation of a cDNA and a Genomic Clone Encoding Cinnamate 4-Hydroxylase from Arabidosis and its Expression Manner in Planta. Plant Physiol . 113, 755-763. doi: 10.1104/pp.113.3.755.
  31. Austin, M.B., & Noel, J.P. (2003) the chalcone synthase superfamily of type III polyketide synthases. Natural Product Reports , 20(1), 79-110. doi:10.1039/B100917F.
  32. Baba, S.A., & Ashraf, N. (2019) Functional characterization of flavonoid 3-hydroxylase, CsF3H, from CrocussativusL: Insights into substrate specificity and role in abiotic stress.Arch.Biochem.Biophys , 667, 70-78. doi:10.1016/j.abb.2019.04.012.
  33. Li, H., Tian, J., Yao, Y., Zhang, J., Song, T., Li, K., & Yao, Y. (2019) Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes in proanthocyanidin biosynthesis inMalus crab apple plants. PlantPhysiol.Biochem . 139, 141-151. doi: 10.1016/j.plaphy.2019.03.003
  34. Ma, S., Hu, R., Ma, J., Fan, J., Wu, F., Wang, Y., Huang, L., Feng, G., Li, D., Nie, G. et al. (2022) Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of anthocyanins and proanthocyanidins biosynthesis in Trifolium repens . Ind.Crop.Prod , 187, 115529. doi:10.1016/j.indcrop.2022.115529.
  35. Rauf, A., Imran, M., Abu-Izneid, T., Haq, I.U., Pate, S., Pan, X., Naz, S., Silva, A.S., Saeed, F., & Suleria, H.A.R. (2019) Proanthocyanidins: A comprehensive review. Biomed.Pharmacother , 116, 108999. doi: 10.1016/j.biopha.2019.108999.
  36. Ni, J., Zhao, Y., Tao, R., Yin, L., Gao, L., Strid, A., Qian, M., Li, J., Li, Y., Shen, J., etal. (2020) Ethylene mediates the branching of the jasmonate-induces flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol.J , 18, 1223-1240. doi: 10.1111/pbi.13287
  37. Kim, M.J., Paramanantham, A., Lee, W.S., Yun, J.W., Chang, S.H., Kim, D.C., Park, H.S., Choi, Yh., Kim, G.S., Ryu, C.H., et al. (2020). Anthocyanins derived from Vitis coignetiae Pulliat contributes Anti-cancer effects by suppressings NF-κB Pathways in Hep3B human hepatocellular carcinoma cells and InVivo . Molecules , 25, 5445. doi: 10.3390/molecules25225445.
  38. Dwivedi, M.K., Sonter, S., Mishra, S., Patel, D.K., & Singh, P.K. (2020) Antioxidant, antibacterial activity and phytochemical characterization of Carica papaya flowers. J. Basic Appl. Sci.9, 23. doi:10.1186/s43088-020-00048-w.
  39. Ajitha, M., Rajnarayana, K. (2001). Indian Drugs . 38(11), 545-553.
  40. Singhania, N., Puri, D.., Madhu, S.V., & Sharma, S.B. (2008). Assessment of oxidative stress and endothelial dysfunction in Asian Indians with type 2 diabetes mellitus with and without macroangiopathy. QJM: An International Journal of Medicine.101(6), 449-455. doi: 10.1093/qjmed/hcn020.
  41. Pihlanto, A., Akkanen, S., & Korhonen, H.J. (2008). ACE-inhibitory and antioxidant properties of potato (Solanum Tuberosum). Food Chemistry . 109, 104-112. doi: 10.1016/j.foodchem.2007.12.023.
  42. Flaczyk, E., Kobus-Cisowska, J., Przeor, M., Korczak, J., Remiszewski, M., Korbas, E., et al. (2013). Chemical characterization and antioxidative properties of polish variety of Morus alba L. leaf aqueous extracts from the laboratory and pilot-scale processes.Agricultural Sciences . 4(5B), 141-147. doi: 10.3390/ijms13066651.
  43. Iqbal, S., Younas, U., Sirajuddin, Chan, K.W., Sarfraz, R.A., Uddin, K., et al. (2012). Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study. International Journal of Molecular Sciences . 13(6), 6651-6664. doi: 10.1155/2013/162750.
  44. Kumar, S., & Pandey, A.K., (2013). Chemistry and Biological activities of flavonoids: an overview. Scient. World . 162716-162750.
  45. Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia , 82, 513-523. doi:10.1016/j.fitote.2011.01.018.
  46. Enkhmaa, B., Shiwaku, K., Katsube, T., Kitajima, K., Anuurad, E., Yamasaki, M., et al. (2005). Mulberry (Morus alba L.) leaves and their major quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDLreceptor-deficiennt mice. The Journal of Nnutrition , 135(4), 729-734. doi: 10.1093/jn/135.4.729.
  47. Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F.O., Natali, P.G., Brunetti, M., Aiello, F.B., & Piantelli, M. 2000, Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential,Int. J. Cancer , 87, 595-600. doi: 10.1002/1097-0215(20000815)87:4<595::aid-ijc21>3.0.co;2-5
  48. Miyagi, Y., Om, A.S., Chee, K.M., & Bennink, M.R. (2000). Inhibition of azoxymethane-induced colon cancer by orange juice, Nutr Cancer , 36, 224-229. doi: 10.1207/S15327914NC3602_12.
  49. Deepa, M., & Priya, S. (2012). Purification and characterization of a novel anti-proliferative lectin from Morus Alba L. Leaves.Protein and peptide letters . 19(8), 839-845. doi: 10.2174/092986612801619516.
  50. Naowaratwattana, W., De-Eknamkul, W., & De Mejia, E.G. (2010). Phenolic containing organic extract of Mulbeery (Morus Alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis and inhibition of topoisomerase IIa activity. Journal of Medicinal Food . 13, 1045-56. doi:10.1089/jmf.2010.1021
  51. Kim, D.O., Jeong, S.W., & Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivators of plums, 81(3), 321-326. doi:10.1016/S0308-8146(02)00423-5.
  52. Tan, Y.X., Liu, C., & Chen, R. (2010). Phenolic constituents from stem bark of Morus wittiorum and their anti-inflammation and cytotoxicity. Zhongguo Zhong Yao Za Zhi . 35(20), 2700-2703.
  53. Yagi, M., Kouno, T., Aoyagi, Y., & Murai, H. (1976). Structure of moranoline, a piperidine alkaloid from Morus sspecies. J. Agric Chem Soc. Japan . 50(11), 571-572.
  54. Asano, N., Oseki, K., Tomioka, E., Kizu, H., & Matsui, K. (1994). N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res . 17, 243-255. doi:10.1016/0008-6215(94)84060-1
  55. Asano, N., Yamashita, T., Yasuda, K., Ikede, K., Kizu, H., et al. (2001). POlyhydroxylates alkaloids isolated from mulnerry trees (MOrus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem . 49, 4208-4213. doi:10.1021/jf010567e
  56. Basnet, P., Kadota, S., Terashima, S., Shimizu, M., & Namba, T. (1993).Two new arylbenzofuran derivatives from hypoglycemic activity-bearing fractions of Morus insigniss. Chem Pharm Bull (Tokyo) . 41(7), 1238-43. doi: 10.1248/cpb.41.1238
  57. Qingyi, M., Guoqing, S., Chuntao, C., Jia, S., & Xiaoyan, C. (2006).Studies on inhibitor effects and activator of α-glucosidase in mulberry leaves. Shipin Kexue (Beijing, China) . 27(2), 108-111.
  58. Sohn, H.Y., Son, K.H., Kwon, C.S., & Kang, S.S. (2004) Antimicrobial and cytotoxicity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., mongolica Schneider, Broussnetia papyrifera (L.), Vent Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine . 11, 666-672. doi: 10.1016/j.phymed.2003.09.005
  59. Gunjal, S., Ankola, A.W., & Bhat, K. (2015) In vitroantibacterial activity of ethanolic extract of Morus alba leaf against periodontal pathogens. Indian J Dent Res. 26(5), 533-536. doi: 10.4103/0970-9290.172082
  60. Paiva, P.M.G., Gomes, F.S., Napoleao, Th., Sa, R.A., Correia, M.T.S., Coelho, L.C.B.B. et al. (2010) Antmicrobial activity of secondary metabolites and lectins from plants.Current research, technology and education topics in applied microbiology and microbial biotechnology , 396-406.
  61. Doi, K., Kojima, T., & Fujimoto, Y. (2010) Mulberry leaf extract inhibits the oxidative modification of rabbit and human low density lipoprotein. Biological and Pharmaceutical Bulletin . 23(9), 1066-1071. doi: 10.1248/bpb.23.1066.
  62. Kadam, R.A., Dhumal, N.D., & Khyade, V. (2019) The mulberryMorus alba (L): The medicinal herbal source for human health.International Journal of Current Microbiology and Applied Sciences . 8(4), 270-274. doi:10.20546/ijcmas.2019.804.341.
  63. Kirisattayakul, W., Wattanathorn, J., Iamsaard, S., Jittiwat, J., Suriharn, B., & Lertrat, K. (2017) Neuroprotective and memory-enhancing effect of the combined extract of purple waxy corn cob and pandan in ovarietomized rats. Oxid Med Cell Longev , 5187102. doi: 10.1155/2017/5187102.
  64. Kawvised, S., Wattanathorn, J., & Thukham-Mee, W. (2017) Neuroprotective and Cognitive-Enhancing Effects of Microencapsulation of Mulberry Fruit Extract in Animal Model of Menopausal Women with Metabolic Syndrome. Oxid Med Cell Longev. 2962316. doi: 10.1155/2017/2962316.
  65. Kim, J., Yun, E.Y., Quan, F.S., Park, S.W., & Goo, T.W. (2017) Central administration of 1-deoxynojirimycin attenuates hypothalamic endoplasmic reticulum stress and regulates food intake and body weight in mice with high-fat diet-induced obesity. Evidence-based complementary and alternative medicine . 2017, 1-11. doi: 10.1155/2017/3607089.
  66. Tian, J., Fu, F., Gen, M., Jiang, Y., Yang, J., Jiang, W., Wang, C., & Liu, K. (2005) Neuroprotective effect of 20(S )-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett , 374, 92-97. doi: 10.1016/j.neulet.2004.10.030.
  67. Takahashi, K., Goto, Y., Goh, S.M., Tanaka, N., & Kamei, K. (2007) Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport . 18, 813-816. doi: 10.1097/WNR.0b013e3280dce5af.