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Abstract
This paper is concerned with the stability analysis of the static output-feedback polynomial fuzzy-model-
based (SOF PFMB) control systems through designing a novel membership grade integration (MGI) approach.
The nonconvex problems of the SOF PFMB control systems are convexificated into the convex conditions
by introducing block diagonal positive-definite Lyapunov matrix and nonsingular transformation matrix.
We proposed a new approximated membership functions, i.e. Lagrange Membership Functions (LMFs)
method, which can be introduced into the stabilization process to relieve the stability conservativeness
results. The LMFs are general representations of piecewise-linear membership functions (PLMFs), which
makes the number of stability conditions not limited by the number of sample points. In a fixed subdomain,
arbitrary sample points can be employed by the LMFs method and achieve higher approximation capability
by increasing more sample points, so that membership grades can be incorporated into the system analysis.
Furthermore, a novel MGI approach including the information of premise variables and LMFs are proposed,
which can make the stability conditions more relaxed. Finally, a simulation example is given to show the
merits of the developed techniques.
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1 INTRODUCTION

As most applications that actually exist are nonlinear, the stability and performance analysis of nonlinear systems received
considerable attention of many researchers1. Based on the Lyapunov stability theory, a variety types of controllers are proposed,
among which the state feedback controller is the most basic and simplest one. However, in practical systems, the full system
states are always unmeasurable. Compared with the control method based on full system states, the static output-feedback (SOF)
control method only uses the output states, meanwhile, it is simpler than dynamic output-feedback control2. Therefore, SOF
designs have received more and more attention.

Due to the existence of the output matrix, there will be nonconvex terms in the stability conditions. To circumvent the problem,
some achievements based on linear matrix inequalities (LMIs) algorithm have been published, such as, cone complementary
linearization3,4, iterative LMI algorithm5,6, min/max algorithm7, transformation algorithm8, equality constraints9, etc. Based on
these algorithms10,11,3,4,5,6,7,8,9, many SOF Takagi-Sugeno (T-S) fuzzy system control and synthesis methods12,13,14,15,16 have
been published, for example, in14, the robust H∞ control of T-S fuzzy systems with parameter uncertainty has been investigated;
In15, a novel sufficient condition for the existence of SOF controllers based on parallel distributed compensation (PDC) design
was proposed; In16, a piecewise affine SOF controller was designed for T-S fuzzy system with H∞ performance.

In recent years, the polynomial fuzzy system17 has been proposed, which could expand the range of expressing a nonlinear
systems. It is worth noting that for the polynomial fuzzy systems, the sum of squares (SOS)18 technique must be employed
instead of the LMI algorithm to obtain feasible solutions. Until now, there are relatively few research results on polynomial
fuzzy systems with SOF controller. In19,20, a SOF controller was designed to control the positive polynomial fuzzy system.
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However, different from the stability analysis of positive polynomial fuzzy systems, the general polynomial fuzzy system
stability conditions usually contain the output matrix and Lyapunov matrix, which makes the non-convexity more complicated.
In21, a homogeneous polynomial Lyapunov function was designed to synthesize the SOF controller. Nonetheless, this approach
is relatively complex and requires two steps to achieve the control of systems. In22, a two-step approach was proposed for
the first time to remove the long-standing constraint that only the state variables associated with the rows of zeros in the
input matrix can be employed to construct the Lyapunov function candidate. Since any state variables can be selected when
designing Lyapunov function candidate, the elimination of this constraint will result in more relaxed stability conditions.
Furthermore, the imperfect premise matching (IPM) concept was widely employed to achieve a lower computational complexity
and higher design flexibility of the controllers1,23,24,25,26, which makes the controller design not be restricted by the PDC
approach, and can freely design the shape and/or the number of fuzzy rules related. However, it cannot apply the properties of
some PDC-based analysis approaches, which may lead to relative conservative stability conditions. To deal with this problem
caused by the IPM design concept, the membership grade integration (MGI) analysis was designed in26,24, which can decrease
the conservativeness of stability conditions by means of considering the membership grades into the performance/stability
analysis27,28,23,26,24,29,25,30,31,32,33,34,35,36,37,38.

In terms of the MGI analysis method, some types of approximate membership functions have been proposed, for example,
polynomial membership functions (PMFs)30,31, Chebyshev membership functions (CMFs)32 and so on33,34,35. In30,31, the
stability including PMFs are given, nonetheless, the algorithm for determining PMFs is not illustrated. In32, the CMFs can get
the best implementation approach of PMFs through Remez iterative algorithm. However, the systematic way of determining the
basis functions of CMFs is not given. In33, PLMFs was proposed, where the values of sample points are considered, and as the
number of sample points increases, the stability results can be more relaxed. Nonetheless, the increased stability conditions will
also increase the computational burden. In34,35, a novel method to approximate original membership functions, i.e., TSMFs
method, was proposed, which was obtained by interpolating the Taylor expansion of sample points and was a systematic way
of PMFs method. However, it is similar to the PLMFs method that the number of stability conditions is directly related to the
number of sample points. On one hand, more sample points will lead to more relaxed stability conditions. On the other hand,
more sample points will result in high computational complexity. Therefore, how to obtain the relaxed stability conditions
without increasing the number of sample points is a concern, which is worth of further research effort.

Inspired by the above IPM concept and these MGI methods, this paper proposed a novel approximate membership function
method to achieve the less conservativeness results. In this paper, more sample points can be chosen in a fixed subdomain
to construct the approximate membership functions, which is different to the PLMFs and TSMFs method that only two
endpoints in each system state variable are selected as sample points. The formulation of approximate membership functions,
i.e., Lagrange membership functions (LMFs), are represented as a weighted sum of membership grades of chosen sample points
with corresponding interpolation basis functions based on the Lagrange interpolation theory39. According to the LMFs method,
PLMFs are only a special case of LMFs when the sample points are two endpoints in each system state variable in a given
domain. Meanwhile, LMFs are a systematic way of PMFs, because they are finally introduced in the form of polynomials in
stability conditions, and can be used as the specific implementation method of the basic functions in the CMFs method. Thus,
without increasing the number of stability conditions, LMFs can use more membership function information to obtain the relaxed
stability conditions.

To summarize, the main work in the paper is to design the novel MGI approach for nonlinear systems, and design the feedback
gains of the SOF controllers under the IPM concept. The contributions in this paper can be summarized as follows:

1) The nonconvex terms are transformed into convex terms in the stability analysis by choosing block diagonal positive-definite
Lyapunov matrix and nonsingular transformation matrix.

2) A novel method of approximate membership functions is proposed. Unlike the existing techniques such as PLMFs and
TSMFs, the proposed LMFs method demonstrates a favourable characteristic that the number of sample points can be
selected discretionarily without increasing the number of stability conditions. In addition, LMFs are incorporated in the
form of polynomials in the stability conditions, which is a systematic way of PMFs method, and can be used as the specific
implementation method of the basic functions of CMFs method.

3) Under the proposed novel MGI technique, the obtained stability conditions can include both the regional premise variable
information and the membership function information provided by LMFs, which leads to the relaxed stability results.

The remainder of this paper is as follows. The polynomial fuzzy model of nonlinear plants and the corresponding static
output-feedback controllers are introduced in Section 2. Section 3 gives the main results, including basic stability conditions,
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LMFs algorithm implementation and the novel MGI analysis method combining LMFs and premise variables. Section 4 show
the merits of the developed techniques by a nonlinear example. Finally, this paper is concluded in Section 5.

Notations: Throughout this paper, the form of a monomial is a function of xz1
1 (t), xz2

2 (t), . . . , xzn
n (t), where zi, i = 1, . . . , n, is a

non-negative integer. A finite number of monomials can be formed to a polynomial Υ(x(t)) by the linear combination. An SOS
refers to the polynomial Υ(x(t)) with the property of Υ(x(t)) =

∑m
j=1 Φj(x(t))2, where Φj(x(t)) can be an arbitrary polynomial

and m is a positive integer. Furthermore, a positive (negative) definite matrix P means P > 0 (P < 0).

2 PRELIMINARIES

2.1 Polynomial Fuzzy Model with Output

A polynomial fuzzy model for the nonlinear plant composed of p fuzzy rules, where the ith rule:

Rule i : IF f1(x(t)) is Mi
1 AND · · ·AND fψ(x(t)) is Mi

ψ

THEN ẋ(t) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t),

y(t) = Cx̂(x(t)), i = 1, ..., p, (1)

where x̂(x(t)) ∈ <N is a monomial vector that is arbitrary independent of the system states x(t); Ai(x(t)) ∈ <n×N , Bi(x(t)) ∈
<n×m are the given polynomial matrices; C ∈ <d×N is the constant matrix; y(t) ∈ <d is the vector.

According to the above description of fuzzy rules, the whole system dynamics are described as:

ẋ(t) =
p∑

i=1

ωi(x(t))(Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)),

y(t) =Cx̂(x(t)), (2)

where
p∑

i=1
ωi(x(t)) = 1; ωi(x(t)) =

ψ∏
α=1

µMi
α

(fα(x(t)))

p∑
k=1

ψ∏
α=1

µMk
α

(fα(x(t)))
≥ 0, where µMi

α
(fα(x(t))) is the grade of membership corresponding to the

fuzzy set of Mi
α.

2.2 Static Output-Feedback (SOF) Polynomial Fuzzy Controller

With the IPM concept, let c be the number of fuzzy rules describing the controller, and the jth rule is of the following format:

Rule j : IF g1(y(t)) is N j
1 AND · · ·AND gΩ(y(t)) is N j

Ω

THEN u(t) = Gj(y(t))y(t), j = 1, ..., c, (3)

where Gj(y(t)) ∈ <m×d, j = 1, ..., c, are the polynomial feedback gains to be obtained; N j
β is the fuzzy set of rule j corresponding

to the premise variable gβ(x(t)), with β = 1, ..., Ω.
The dynamics of SOF polynomial fuzzy controller are:

u(t) =
c∑

j=1

mj(y(t))Gj(y(t))y(t), (4)

where
c∑

j=1
mj(y(t)) = 1; mj(y(t)) =

Ω∏
β=1

µ
Nj
β

(gβ (y(t)))

c∑
k=1

Ω∏
β=1

µNk
β

(gβ (y(t)))
≥ 0; uN j

β
(gβ(y(t))) is the grade of membership corresponding to the fuzzy set

N j
β .
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Due to y(t) = Cx̂(x(t)), we have

u(t) =
c∑

j=1

mj(y(t))Gj(y(t))Cx̂(x(t)). (5)

According to (2) and (5), the SOF PFMB control system is obtained as:

ẋ(t) =
p∑

i=1

c∑
j=1

ωi(x(t))mj(y(t))
(
Ai(x(t)) + Bi(x(t))Gj(y(t))C

)
x̂(x(t)). (6)

Remark 1. The IPM concept1,24,36 means that the control engineers can freely design the shape of the membership functions
and/or the number of fuzzy rules of the polynomial fuzzy controller. However, it should be noted that the increased design
flexibility of the controller also brings about the problem of conservative stability conditions.

Through the above description, the system can be established, as the structure diagram of polynomial fuzzy system control
scheme is shown in Figure 1 .

Rule(1) :  10 1( ( ));  ( ( ))A x t B x t

p

1å

1 1, xw
1 1
x

p p, xw
p p
x

p pp p

Rule(p) :  p0 p( ( ));   ( ( ))A x t B x t

( )u t ( )Y tRule(1) :  

Rule(c) :  

c

1å

1 1,m u

c c,m u

1( (t))G x

( ( ))
c
G x t

( )CY t

C

F I G U R E 1 Structure diagram of SOF PFMB system control scheme.

3 STABILITY ANALYSIS

3.1 Stability Analysis of SOF PFMB Control System

In the following of this paper, for brevity, x(t), y(t), x̂(x(t)), ωi(x(t)) and mj(y(t)) are denoted as x, y, x̂, ωi(x) and mj(y),
respectively. From (6), we obtain

˙̂x =
∂x̂

∂x

dx

dt
= T(x)ẋ

=
p∑

i=1

c∑
j=1

ωi(x)mj(y)(T(x)Ai(x) + T(x)Bi(x)Gj(y)C)x̂, (7)

where the (i, j)th element of the polynomial matrix T(x) has Tij(x) = ∂x̂i(x)/∂xj.
The nonconvex stability conditions may be caused by the polynomial feedback gain and the Lyapunov function matrix. To

circumvent this problem, a constant transformation matrix Γ ∈ <N×N 8 is introduced as follows:
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Lemma 1. Define

Γ = [CT (CCT )–1 ortc(CT )] ∈ <N×N , (8)

where ortc(CT ) is the orthogonal complement of CT . Thus, for identity matrix Id ∈ <d×d, we can get

CΓ = [Id 0] ∈ <d×N , (9)

Assuming that Γ–1 exists, we transform the state vector x̂ according to ẑ = Γ–1x̂, then

˙̂z = Γ–1 ˙̂x

=
p∑

i=1

c∑
j=1

ωi(x)mj(y)(Ãi(x)Γ + B̃i(x)Gj(y)CΓ)ẑ, (10)

where Γ is as defined in Lemma 1, Ãi(x) = Γ–1T(x)Ai(x), and B̃i(x) = Γ–1T(x)Bi(x).

Remark 2. Since Γ is a non-singular matrix, the stability of the transformed SOF PFMB system (10) and the SOF PFMB system
(6) is consistent.

A Lyapunov function is given to study the stability of the system (10), and its format is

V(x) = ẑTP(x̃)–1ẑ, (11)

where x̃ = (xk1 , ..., xkm ) is the vector to be selected, so that K = {k1, ..., km} represents the indices of the zero rows corresponding
to all i in Bi(x). Inspired by40, we choose 0 < P(x̃) = P(x̃)T ∈ <N×N , which is given as a block diagonal positive-definite
polynomial matrix and satisfies

P(x̃) =
[

P(x̃)11 0

0 P(x̃)22

]
, (12)

where P(x̃)11 ∈ <d×d and P(x̃)22 ∈ <(N–d)×(N–d).
Derivation of V(x) is given as:

V̇(x) = ˙̂zTP(x̃)–1ẑ + ẑTP(x̃)–1 ˙̂z + ẑTṖ(x̃)–1ẑ

=
p∑

i=1

c∑
j=1

ωi(x)mj(y)ẑT ((Ãi(x)Γ + B̃i(x)Gj(y)CΓ)TP(x̃)–1 + P(x̃)–1(Ãi(x)Γ + B̃i(x)Gj(y)CΓ))ẑ + ẑT dP(x̃)–1

dt
ẑ.

(13)

Due to the output vector y = Cx̂ is related to the system states x, Gj(y) is actually the function of x. Then, the polynomial
feedback gains of the controller are

Gj(y) = Nj(x)P(x̃)–1
11, (14)

where Nj(x) ∈ <m×d, j = 1, ..., c, can be selected as arbitrary polynomial matrices.
Referring to (13), with (9), (12) and (14), we obtain

B̃i(x)Gj(y)CΓ = B̃i(x)Gj(y)[Id 0]P(x̃)P(x̃)–1

= B̃i(x)Nj(x)P(x̃)–1
11[Id 0]P(x̃)P(x̃)–1

= B̃i(x)[Nj(x) 0]P(x̃)–1. (15)
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To handle the term dP(x̃)–1

dt in (13), we quote the results in17, thus,

dP(x̃)–1

dt
=
∑
k∈K

∂P(x̃)–1

∂xk

dxk

dt

=
∑
k∈K

–P(x̃)–1 ∂P(x̃)
∂xk

P(x̃)–1
p∑

i=1

c∑
j=1

ωi(x)mj(y)
(
Ak

i (x) + Bk
i (x)Gj(y)C

)
x̂. (16)

By choosing a specific vector x̃, we can get rid of the nonconvex term Bk
i (x)Gj(y)C in the stability conditions. Hence

dP(x̃)–1

dt
=
∑
k∈K

–P(x̃)–1 ∂P(x̃)
∂xk

P(x̃)–1
p∑

i=1

ωi(x)Ak
i (x)x̂. (17)

Defining z = P(x̃)–1ẑ, and from (13), (15) and (17), we can obtain

V̇(x) =
p∑

i=1

c∑
j=1

ωi(x)mj(y)zTQij(x)z, (18)

where Qij(x) = Ãi(x)ΓP(x̃) + P(x̃)ΓTÃi(x)T + B̃i(x)
[
Nj(x) 0

]
+
[
Nj(x) 0

]T
B̃i(x)T –

∑
k∈K

∂P(x̃)–1

∂xk
Ak

i (x)x̂, with i =
1, ..., p; j = 1, ..., c. Based on the aforementioned stability analysis results, we can draw the following theorem.

Theorem 1. A SOF PFMB control system (6) is asymptotically stable if there exist a block diagonal positive-definite polynomial

matrix P(x̃) = P(x̃)T =
[

P(x̃)11 0

0 P(x̃)22

]
∈ <N×N and polynomial matrices Nj(x) ∈ <m×d, j = 1, ..., c, such that the following

conditions hold:

ςT (P(x̃) – ι1(x̃)I)ς is SOS, (19)

–ςT (Qij(x) + ι2(x)I)ς is SOS ∀i, j, (20)

where ς ∈ <N is an arbitrary monomial vector in system states x; ι1(x̃) > 0 and ι2(x) > 0 are given scalar polynomials;
Qij(x) = Ãi(x)ΓP(x̃) + P(x̃)ΓTÃi(x)T + B̃i(x)

[
Nj(x) 0

]
+
[
Nj(x) 0

]T
B̃i(x)T –

∑
k∈K

∂P(x̃)–1

∂xk
Ak

i (x)x̂ for i = 1, ..., p,
j = 1, ..., c; and Gj(y) = Nj(x)P(x̃)–1

11.

Remark 3. Theorem 1 is valid for solving controllers with arbitrary shapes of membership functions. However, the absence of
membership function will make finding feasible solutions very conservative.

3.2 Stability Conditions of SOF PFMB Control Systems with MGI approach

To alleviate this problem, the global domain Θ is separated into L subdomains Θl, thus, Θ = ∪L
l=1Θl, l = 1, . . . , L. Consequently,

the nonlinearity of membership functions in a subdomain is less stronger as in the whole domain, which implies relatively
lower-order polynomial can be used instead. Specifically, each system state xr, r = 1, · · · , n, is separated into sr subdomains,
then, L =

∏n
r=1 sr. Therefore, one has:

hij(x) =
L∑

l=1

σl(x)(ĥijl(x) + ∆hijl(x)), (21)

where the σl(x) is a indication function, which satisfies σl(x) =
{

1, x ∈ Θl, l = 1, ..., L
0, otherwise;

∆hijl(x) is defined as the approxima-

tion error of membership functions in each subdomain Θl; ĥijl(x) is a polynomial approximate membership function in each
subdomain Θl,

From (21), we define γijl as the upper bound of absolute value of approximation error, which satisfies
∣∣∆hijl(x)

∣∣ ≤ γijl. In
addition, we introduce some slack matrices Yijl(x), which satisfies Yijl(x) = Yijl(x)T ≥ 0 and Yijl(x) ≥ Qij(x) to facilitate the
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integration of the approximation error
∣∣∆hijl(x)

∣∣ into the stability conditions. We get from (18) and (21) that

V̇(x) =
p∑

i=1

c∑
j=1

hij(x)zTQij(x)z

=
L∑

l=1

σl(x)
p∑

i=1

c∑
j=1

zT
(

ĥijl(x) + ∆hijl(x)
)

Qij(x)z

≤
L∑

l=1

σl(x)
p∑

i=1

c∑
j=1

zT
(

ĥijl(x)Qij(x) +
∣∣∆hijl(x)

∣∣Yijl

)
z

≤
L∑

l=1

σl(x)
p∑

i=1

c∑
j=1

zT
(

λ1∑
i1=1
· · ·

λn∑
in=1

n∏
r=1

vrir l(xr)hiji1···inlQij(x) + γijlYijl(x)
)

z, (22)

where vrir l(xr) are the Lagrange basis functions for variable xr, and defined as (31), hiji1···inl are the grades of sample points of
hij(x).

The regional information of premise variables is employed through S-procedure to further relax the stability analysis results.
In each subdomain Θl, each system state satisfies xk ∈ [xk1l, xk2l], k = 1, ..., n, l = 1, ..., L, where xk1l and xk2l are the boundary
values of the system state xk in Θl. Moreover, considering 0 ≤Ml(x) = Ml(x)T ∈ <N×N , l = 1, ..., L, the following inequality is
obtained as

L∑
l=1

σl(x)
n∑

k=1

(xk – xk1l)(xk2l – xk)Ml(x) ≥ 0. (23)

where the indication function σl(x) has σl(x) =
{

1, x ∈ Θl, l = 1, ..., L;
0, otherwise.

Furthermore, it can be derived from (22) and (23) that

V̇(x) ≤
L∑

l=1

σl(x)
p∑

i=1

c∑
j=1

zT
(

λ1∑
i1=1
· · ·

λn∑
in=1

n∏
r=1

vrir l(xr)hiji1···inlQij(x) + γijlYijl(x)
)

z

≤
L∑

l=1

σl(x)zT

(
p∑

i=1

c∑
j=1

(
λ1∑

i1=1
· · ·

λn∑
in=1

n∏
r=1

vrir l(xr)hiji1···inlQij(x) + γijlYijl(x)
)

+
n∑

k=1
(xk – xk1l)(xk2l – xk)Ml(x)

)
z. (24)

Next, a theorem can be derived from the above analysis results.

Theorem 2. A SOF PFMB control system (6) is asymptotically stable if there exist a block diagonal positive-definite polynomial

matrix P(x̃) = P(x̃)T =
[

P(x̃)11 0

0 P(x̃)22

]
∈ <N×N , Yijl(x) = Yijl(x)T ∈ <N×N , Ml(x) = Ml(x)T ∈ <N×N , for all i = 1, ..., p,

j = 1, ..., c, l = 1, ..., L, such that:

ςT (P(x̃) – ι1(x̃)I)ς is SOS, (25)

ςT (Ml(x) – ι2(x)I)ς is SOS ∀l, (26)

ςT (Yijl(x) – ι3(x)I)ς is SOS ∀i, j, l, (27)

ςT (Yijl(x) – Qij(x) – ι4(x)I)ς is SOS ∀i, j, l, (28)

– ςT

(
p∑

i=1

c∑
j=1

(
λ1∑

i1=1
· · ·

λn∑
in=1

n∏
r=1

vrir l(xr)hiji1···inlQij(x) + γijlYijl(x)
)

+
n∑

k=1
(xk – xk1l)(xk2l – xk)Ml(x) + ι5(x)I

)
ς is SOS ∀l, (29)
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where ς ∈ <N is an arbitrary monomial vector in system states x; ι1(x̃) > 0, ι2(x) > 0, ι3(x) > 0, ι4(x) > 0 and
ι5(x) > 0 are given scalar polynomials; Qij(x) = Ãi(x)ΓP(x̃) + P(x̃)ΓTÃi(x)T + B̃i(x)

[
Nj(x) 0

]
+
[
Nj(x) 0

]T
B̃i(x)T –∑

k∈K
∂P(x̃)–1

∂xk
Ak

i (x)x̂, for i = 1, ..., p; j = 1, ..., c; and the feedback gains of the controllers can be obtained as Gj(y) =
Nj(x)P(x̃)–1

11.

Remark 4. The number of stability conditions in Theorem 2 is 2pcL+2L+1, which is directly related to the number of subdomains
L. However, the division of domains is positively correlated with computational power consumption. One advantage of LMFs is
that when the partition is fixed, using LMFs to represent membership function information can obtain better approximation
capacity by using more sample points. When the whole domain is not partitioned, the number of stability conditions will be
minimized, which is 2pc + 3.

Remark 5. According to Remark 8, the LMFs are the extension of PLMFs. When the sample points are two endpoints in each
partition, the stability conditions of LMFs and PLMFs are the same. However, LMFs can use more sample points in each
partition, thus, more membership function information can be employed to obtain the relaxed stability conditions.

3.3 Lagrange Membership Functions

The LMFs are proposed in this section, which can be incorporated into the stability conditions of the proposed Theorem 1 to
relax the stability analysis results. The output vector y = Cx̂ is related to the system states x, therefore, mj(y) is actually a
function of x. Moreover, we denote hij(x) = ωi(x)mj(y) as the original membership functions.

We define a known bounded n-dimensional operating domain Θ, and make the system states x ∈ Θ, x = [x1, · · · , xn]T . In
order to improve the approximation capability of LMFs, higher-order polynomial functions are required, which will also require
high computational power to find the feasible solutions.

which can be achieved by LMFs method. The LMFs in each subdomain are defined as

ĥijl(x) =
λ1∑

i1=1

· · ·
λn∑

in=1

n∏
r=1

vrir l(xr)hiji1···inl, (30)

where hiji1···inl ∈ [0, 1] is a constant value of membership functions hij(x) at the sample points of x in each subdomain Θl; vrir l(xr)
is the Lagrange basis function and defined as

vrir l(xr) =
λr∏

iβ=1,iβ 6=ir

xr – xriβ l

xrir l – xriβ l

=
(xr – xr1l)(
xrir l – xr1l

) · · · (xr – xr(iβ–1)l
)(

xrir l – xr(iβ–1)l
) (xr – xr(iβ+1)l

)(
xrir l – xr(iβ+1)l

) · · · (xr – xrλr l
)(

xrir l – xrλr l
) , (31)

where the xr1l, ..., xrλr l, r = 1, ..., n are the values of the system state xr selected for sampling in the corresponding region; xr is
a dimension of x, and x ∈ Θl. It should be noted that the Lagrange basis function vrir l(xr) only applies in the subdomain Θl.
Meanwhile, when x /∈ Θl, vrir l(xr) = 0.

The order of Lagrange basis function is related to the number of sample points, which can be different and equals to λr – 1 in

each system state. Hence, the order of LMFs are
n∏

r=1
(λr – 1). According to the property of Lagrange interpolation functions39,

the sum of Lagrange basis functions is equal to 1, that is
λr∑

ir=1
vrir l(xr) = 1. Thus, we can get the property as follows:

λ1∑
i1=1

v1i1l(x1)× · · · ×
λn∑

in=1

vninl(xn) =
λ1∑

i1=1

· · ·
λn∑

in=1

n∏
r=1

vrir l(xr) = 1. (32)

Remark 6. For the LMFs (30), different sample points will lead to different approximation errors. In this paper, for each system
state xr, two endpoints are taken as the sample points, and then other sample points are selected by means of average distribution.
In a fixed subdomain, smaller approximation errors require higher-order LMFs, but Runge phenomenon may occur as the order
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of LMFs increases. To circumvent this problem, it is not appropriate to employ the high order LMFs in each fixed subdomain,
but to increase the number of partitions appropriately.

Remark 7. For univariate LMFs, choosing Chebyshev nodes as sample points can obtain the same optimal polynomial
approximated membership functions as CMFs, which can minimize the maximum absolute approximation errors. The design
principle of Chebyshev nodes can refer to reference [30] in the revised paper. The calculation algorithm of Chebyshev nodes is:

x1i1l =
(

s + s
2

)
+

s – s
2

cos
2i1 – 1

2λ1
π, i1 = 1, ...,λ1, (33)

where s is the lower bound of subdomain; s is the upper bound of subdomain; λ1 is the number of sample points in a subdomain
and can be given different value for different subdomain; l is the index of the subdomain.

For multivariate LMFs, the average grid can be selected as the sample point to obtain the shape information of the membership
function more comprehensively. Since there is no Chebyshev node of multiple LMF, it is not recommended to select many
sample points in the subdomain to avoid the Ronge’s phenomenon. The calculation algorithm of average grid points is:

xrir l =
{(

s +
(i1 – 1)(s – s)

λ1 – 1

)
,
(

s +
(i2 – 1)(s – s)

λ2 – 1

)
, · · · ,

(
s +

(in – 1)(s – s)
λn – 1

)}
,∀i1, i2, · · · , in,

where λ1,λ2, · · · ,λn are the number of sample points in each system state xr, r = 1, · · · , n, respectively, and can be given different
value for different subdomain; i1 ∈ {1, · · · ,λ1}, i2 ∈ {1, · · · ,λ2}, · · · , in ∈ {1, · · · ,λn} are the index of the sample points on
each system state; s is the lower bound of subdomain; s is the upper bound of subdomain; l is the index of the subdomain.

Remark 8. In a subdomain, when only two endpoints are taken as sample points on each system state xr, we can get λ1 = · · · =
λn = 2, and the LMFs (30) will be reduced to PLMFs33, which are

ĥijl(x) =
2∑

i1=1

· · ·
2∑

in=1

n∏
r=1

vrir l(xr)hiji1···inl, (34)

where hiji1···inl is a constant; vrir l(xr) are xr–xr2l
xr1l–xr2l

and xr–xr1l
xr2l–xr1l

, where xr1l and xr2l are the two endpoints of x selected for sampling.
Here, the vrir l(xr) of LMFs and PLMFs are identical.

Furthermore, when two endpoints are taken as sample points on each system state xr and the sample points hiji1···in turn to
Taylor series expansion δiji1···inl(x), the LMFs (30) will be converted to the TSMFs34, which are

ĥijl(x) =
2∑

i1=1

· · ·
2∑

in=1

n∏
r=1

vrir l(xr)δiji1···inl(x), (35)

where δiji1···inl(x) is the Taylor expansion at the sample points, and its order is determined by users. vrir l(xr) are xr–xr2l
xr1l–xr2l

and xr–xr1l
xr2l–xr1l

,
where xr1l and xr2l are the two endpoints of x selected for sampling.

For different approximate membership function methods, Table 1 shows the type of MGI terms incorporated into the stability
conditions, the selection approach of sample points in each subdomain, and the number of stability conditions including MGI
terms.

T A B L E 1 Comparison of different approximate membership functions

method Terms sample points No. of conditions
PLMFs hiji1···inl endpoints

∏n
r=1 (sr + 1)

PMFs polynomial none
∏n

r=1 sr

TSMFs δiji1···inl(x) endpoints
∏n

r=1 (sr + 1)
LMFs polynomial arbitrary

∏n
r=1 sr

From the Table 1, the number of stability conditions in LMFs is the same as that in PMFs, but less than that in PLMFs and
TSMFs. In addition, the LMFs method can discretionarily select the number and location of sample points in each subdomain,
thereby improving the capability of approximating the original membership functions.
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Example 1. An example is considered to show the merits of LMFs method. We choose the membership function of control
system as h21(x) = w2(x)m1(y), where the membership function of model is w2(x) = 1

1+e–(x1+4) – 1
1+e–(x1–4) and the membership

function of controller is m1(y) = e–x1
2/12. Consider dividing the whole domain x1 ∈ [–10, 10] into five subdomains, which are

x1 ∈ [–10, –6), [–6, –2), [–2, 2), [2, 6) and [6, 10]. For each subdomain, we use PLMF33, TSMF34 and LMF methods to obtain
the approximate membership function. To further illustrate the difference between LMF and PLMF, TSMF method, we take
a subdomain x1 ∈ [6, 10] as an example, where l is 5. In this subdomain, only 6 and 10 are choose to construct the PLMF or
TSMF, while for LMF, we can choose more sample points, for example, 6, 8 and 10 are selected for sampling according to the
Remark 6. The approximate function ĥ215(x1) is obtained by LMFs (30), and we have

ĥ215(x1) = v115(x1)× h21(6) + v125(x1)× h21(8) + v135(x1)× h21(10)

= 0.0007199x2
1 – 0.013x1 + 0.05803, (36)

where v115(x1) = (x1–8)(x1–10)
(6–8)(6–10) , v125(x1) = (x1–6)(x1–10)

(8–6)(8–10) and v135(x1) = (x1–6)(x1–8)
(10–6)(10–8) are the Lagrange basis functions.

Besides, we chose the order of the TSMF is 2, so that we can compare the approximation capability with LMF in the same
order. Table 2 gives the details of LMFs obtained by (30). The comparison for using different approximate membership function
methods are shown in Fig. 2.

T A B L E 2 Lagrange membership functions in different subdomain

Subdomain LMF

[–10, –6) 0.0007199x2
1 + 0.013x1 + 0.05803

[–6, –2) 0.04648x2
1 + 0.5277x1 + 1.499

[–2, 2) 0.964 – 0.08367x2
1

[2, 6) 0.04648x2
1 – 0.5277x1 + 1.499

[6, 10] 0.0007199x2
1 – 0.013x1 + 0.05803

-10 -6 -2 2 6 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

subdomain1 subdomain2 subdomain3 subdomain4 subdomain5

F I G U R E 2 Solid line: LMF; Dashed line: TSMF; Dash-dot line: PLMF; Dotted line: original membership function; The
sample points of LMF are indicated by “◦” and the sample points of PLMF and TSMF are indicated by “∗” and “�”, respectively.

From Fig. 2, in the same subdomain, since more sample points can be interpolated into the LMFs, the capability of LMFs
approximating the original membership functions can be higher than that of PLMFs and TSMFs, so that more membership
information is employed to obtain the relaxed stability results.

Example 2. We use another example to show the proposed LMFs (30) can also be applied to approximate multi-variable
membership functions. We consider the system states x = [x1, x2]. The original membership function is h21(x) = w2(x)m1(y),
where the membership function of model is w2(x) = 1

1+e–(x1+4) – 1
1+e–(x1–4) and the membership function of controller is m1(y) =
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e–(x1+x2)2/12. The approximation result of LMF in the subdomains x1 ∈ [–2, 2] and x2 ∈ [–1, 1] is shown in Fig. 3. We select

F I G U R E 3 The plane of solid lines: original membership function. The plane of dashed lines: LMF. The sample points of LMF are indicated by “•”.

the sample points {–2, 0, 2} on x1 and {–1, 0, 1} on x2, and then we can get the LMFs h21(x) = 0.01481x2
1x2

2 – 0.08367x2
1 –

0.0983x1x2 – 0.07708x2
2 + 0.964. Furthermore, to facilitate the calculation efficiency of the stability conditions, we can delete the

terms whose coefficients are less than 10–10 through the interpolation method of LMFs. It can be concluded from Fig. 3 that the
original multi-variable membership function can also be effectively obtained by the LMFs method.

4 SIMULATION EXAMPLE

In the following, we provide a simulation example of SOF PFMB control system to demonstrate the validity of the proposed
stability conditions in the Theorem 1 and Theorem 2. The system states of the SOF PFMB control system are x̂ = x = [x1 x2]T .
The original nonlinear system is provided as

A1(x1) =
[

0.59 – 0.05x1
2 –7.29 – 0.01x1

0.01 –2.85

]
, A2(x1) =

[
1.02 – 0.25x1

2 –4.64 + 0.92x1

0.35 –8.56

]
,

A3(x1) =
[

–a – 0.15x1
2 –0.5

–5.01 –1.16 – 0.17x1
2

]
, B1(x1) =

[
1 + 1.62x1

1

]
, B2(x1) =

[
10 + 1.47x1

0

]
,

B3(x1) =
[

–b + 0.02x1

–1

]
, C = [1 0] ,

where a and b are constants to facilitate the comparison of the conservativeness of different stability conditions. According to

Lemma 1, the output matrix C offers Γ =
[

1 0
0 1

]
.

For the polynomial fuzzy model, the membership functions are w1(x) = 1 – 1
1+e–(x1+4) , w2(x) = 1 – w1(x1) – w3(x1) and

w3(x) = 1
1+e–(x1–4) . For the polynomial fuzzy controllers, the membership functions are designed as m1(y) = e–x1

2/12 and
m2(y) = 1 – m1(y) under the IPM design concept.

Next, three scenarios is to show the difference between the stability conditions of the Theorem 1 and Theorem 2 in relaxation
stability analysis.

1) Based on the membership grade non-integration (MGN) method, the stabilization region obtained by the Theorem 1 is a
baseline for comparison with other approaches.

2) The influence of the LMFs in Theorem 2 under different orders and subdomains on the size of stabilization region.
3) The influence of the number of subdomains, the order of LMFs and the order of slack matrices Ml(x) in Theorem 2 on the

size of the stabilization region.
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In the first scenario, we employ the Theorem 1 to investigate the stability of SOF PFMB control system. We choose P(x̃) as
0 degree, Nj(x) as 0 to 2 degrees, and use the SOSTOOLs to obtain the stabilization region, however, the result shows that there
is no stabilization region since Theorem 1 not contains the membership information and/or premise variables.

In terms of the second scenario, the Theorem 2 was employed to investigate the stabilization region by setting different LMFs.
In order to demonstrate the order of LMFs and the number of partitions can influence the stabilization regions, we consider
different settings as shown in Table 3.

T A B L E 3 Different order and subdomain settings of LMFs

Case Order of LMFs Partitions Points of Partitions
1 1 4 {–10, –5, 0, 5, 10}
2 3 4 {–10, –5, 0, 5, 10}
3 1 10 {–10, –8, ..., 8, 10}
4 3 10 {–10, –8, ..., 8, 10}

The LMFs are obtained by (30) with the settings in Table 3. By designing the LMFs in each subdomain, the upper bound of
absolute value of approximation error γij is given in Tables 4-7.

T A B L E 4 upper bound of absolute value of approximation error γij in Case 1, Case 5 and Case 6

subdomains γij

[–10, –5)

γ11 = 3.866 × 10–2, γ12 = 1.541 × 10–1, γ21 = 2.143 × 10–2

γ22 = 9.571 × 10–2, γ31 = 1.016 × 10–5, γ32 = 4.957 × 10–5

[–5, 0)

γ11 = 6.771 × 10–2, γ12 = 2.481 × 10–1, γ21 = 9.244 × 10–2

γ22 = 2.454 × 10–1, γ31 = 9.262 × 10–3, γ32 = 6.770 × 10–4

[0, 5)

γ11 = 9.262 × 10–3, γ12 = 6.770 × 10–4, γ21 = 9.244 × 10–2

γ22 = 2.454 × 10–1, γ31 = 6.771 × 10–2, γ32 = 2.481 × 10–1

[5, 10]

γ11 = 1.016 × 10–5, γ12 = 4.957 × 10–5, γ21 = 2.143 × 10–2

γ22 = 9.571 × 10–2, γ31 = 3.866 × 10–2, γ32 = 1.541 × 10–1

T A B L E 5 upper bound of absolute value of approximation error γij in Case 2

subdomains γij

[–10, –5)

γ11 = 1.971 × 10–3, γ12 = 4.504 × 10–3, γ21 = 4.396 × 10–3

γ22 = 2.271 × 10–3, γ31 = 2.605 × 10–6, γ32 = 3.566 × 10–6

[–5, 0)

γ11 = 7.358 × 10–3, γ12 = 2.981 × 10–2, γ21 = 1.906 × 10–2

γ22 = 4.114 × 10–2, γ31 = 7.032 × 10–4, γ32 = 1.614 × 10–4

[0, 5)

γ11 = 7.032 × 10–4, γ12 = 1.614 × 10–4, γ21 = 1.906 × 10–2

γ22 = 4.114 × 10–2, γ31 = 7.358 × 10–3, γ32 = 2.981 × 10–2

[5, 10]

γ11 = 2.605 × 10–6, γ12 = 3.566 × 10–6, γ21 = 4.396 × 10–3

γ22 = 2.271 × 10–3, γ31 = 1.971 × 10–3, γ32 = 4.504 × 10–3

Referring to Theorem 2, the values of ι1(x̃), ι2(x̃), ι3(x̃), ι4(x̃) and ι5(x̃) are chosen as 1× 10–3. P(x̃) is chosen as 0 degree;
Yijl(x) and Ml(x) both are chosen together 0, 2 and 4 degrees; Nj(x) is chosen from 0 to 2 degrees. Moreover, to reduce the
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computational complexity, Yij(x) and M(x) with the same order are employed instead of Yijl(x) and Ml(x). Based on the
Theorem 2 and the parameter settings in Table 3, the obtained stabilization region is shown in Fig. 4.

T A B L E 6 upper bound of absolute value of approximation error γij in Case 3, Case 7 and Case 8

subdomains γij

[–10, –8)
γ11 = 1.378 × 10–3, γ12 = 5.002 × 10–3, γ21 = 4.025 × 10–5

γ22 = 3.585 × 10–3, γ31 = 1.380 × 10–8, γ32 = 1.247 × 10–6

[–8, –6)
γ11 = 8.318 × 10–3, γ12 = 2.982 × 10–2, γ21 = 2.394 × 10–3

γ22 = 1.917 × 10–2, γ31 = 9.445 × 10–7, γ32 = 8.387 × 10–6

[–6, –4)
γ11 = 5.351 × 10–3, γ12 = 3.848 × 10–2, γ21 = 3.610 × 10–2

γ22 = 9.343 × 10–3, γ31 = 3.192 × 10–5, γ32 = 3.731 × 10–5

[–4, –2)
γ11 = 1.889 × 10–2, γ12 = 5.909 × 10–2, γ21 = 3.716 × 10–2

γ22 = 7.705 × 10–2, γ31 = 5.195 × 10–4, γ32 = 2.235 × 10–5

[–2, 0)
γ11 = 8.074 × 10–3, γ12 = 1.379 × 10–2, γ21 = 7.412 × 10–2

γ22 = 5.023 × 10–2, γ31 = 3.783 × 10–3, γ32 = 1.998 × 10–4

[0, 2)
γ11 = 3.783 × 10–3, γ12 = 1.998 × 10–4, γ21 = 7.412 × 10–2

γ22 = 5.023 × 10–2, γ31 = 8.074 × 10–3, γ32 = 1.379 × 10–2

[2, 4)
γ11 = 5.195 × 10–4, γ12 = 2.235 × 10–5, γ21 = 3.716 × 10–2

γ22 = 7.705 × 10–2, γ31 = 1.889 × 10–2, γ32 = 5.909 × 10–2

[4, 6)
γ11 = 3.192 × 10–5, γ12 = 3.731 × 10–5, γ21 = 3.610 × 10–2

γ22 = 9.343 × 10–3, γ31 = 5.351 × 10–3, γ32 = 3.848 × 10–2

[6, 8)
γ11 = 9.445 × 10–7, γ12 = 8.387 × 10–6, γ21 = 2.394 × 10–3

γ22 = 1.917 × 10–2, γ31 = 8.318 × 10–3, γ32 = 2.982 × 10–2

[8, 10]
γ11 = 1.380 × 10–8, γ12 = 1.247 × 10–6, γ21 = 4.025 × 10–5

γ22 = 3.585 × 10–3, γ31 = 1.378 × 10–3, γ32 = 5.002 × 10–3

T A B L E 7 upper bound of absolute value of approximation error γij in Case 4

subdomains γij

[–10, –8)
γ11 = 2.895 × 10–5, γ12 = 8.712 × 10–5, γ21 = 3.444 × 10–6

γ22 = 5.471 × 10–5, γ31 = 1.205 × 10–9, γ32 = 2.136 × 10–8

[–8, –6)
γ11 = 4.968 × 10–5, γ12 = 1.406 × 10–4, γ21 = 1.247 × 10–4

γ22 = 6.414 × 10–5, γ31 = 6.004 × 10–8, γ32 = 1.067 × 10–7

[–6, –4)
γ11 = 2.863 × 10–4, γ12 = 1.141 × 10–3, γ21 = 1.822 × 10–4

γ22 = 1.036 × 10–3, γ31 = 1.335 × 10–6, γ32 = 1.086 × 10–7

[–4, –2)
γ11 = 3.645 × 10–4, γ12 = 1.295 × 10–3, γ21 = 7.748 × 10–4

γ22 = 1.700 × 10–3, γ31 = 1.173 × 10–5, γ32 = 2.809 × 10–6

[–2, 0)
γ11 = 1.819 × 10–4, γ12 = 3.070 × 10–4, γ21 = 5.894 × 10–4

γ22 = 7.925 × 10–4, γ31 = 2.304 × 10–5, γ32 = 3.889 × 10–5

[0, 2)
γ11 = 2.304 × 10–5, γ12 = 3.889 × 10–5, γ21 = 5.894 × 10–4

γ22 = 7.925 × 10–4, γ31 = 1.819 × 10–4, γ32 = 3.070 × 10–4

[2, 4)
γ11 = 1.173 × 10–5, γ12 = 2.809 × 10–6, γ21 = 7.748 × 10–4

γ22 = 1.700 × 10–3, γ31 = 3.645 × 10–4, γ32 = 1.295 × 10–3

[4, 6)
γ11 = 1.335 × 10–6, γ12 = 1.086 × 10–7, γ21 = 1.822 × 10–4

γ22 = 1.036 × 10–3, γ31 = 2.863 × 10–4, γ32 = 1.141 × 10–3

[6, 8)
γ11 = 6.004 × 10–8, γ12 = 1.067 × 10–7, γ21 = 1.247 × 10–4

γ22 = 6.414 × 10–5, γ31 = 4.968 × 10–5, γ32 = 1.406 × 10–4

[8, 10]
γ11 = 1.205 × 10–9, γ12 = 2.136 × 10–8 γ21 = 3.444 × 10–6

γ22 = 5.471 × 10–5 γ31 = 2.895 × 10–5, γ32 = 8.712 × 10–5



14 TAYLOR ET AL.

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

F I G U R E 4 Combining the parameters in Table 3, stabilization regions are obtained and indicated by “×” for Case 1, “+”
for Case 2, “�” for Case 3,“◦” for Case 4, respectively.

From Fig. 4 for Case 1 and Case 2, the higher-order LMFs provide the larger stabilization region. This conclusion is consistent
with the comparison of Case 3 and Case 4. On the other hand, compared with Case 1 and Case 3, more partitions provide a
larger stabilization region. This conclusion is consistent with the comparison of Case 2 and Case 4. Therefore, in this example, it
demonstrates that as the order of LMFs or the number of partitions increases, more and more membership information is brought
into the stability conditions to achieve a larger stabilization region.

Next, we select some stable points on the boundary of the stabilization region and draw their phase plots to illustrate the
correctness of the simulation results. For example, the stable points we choose for Case 1 are a = 10 and b = 90, and G1(y) =
[–0.01692x1

2 + 0.007173x1 – 0.2368] and G2(y) = [0.009943x1
2 + 0.008498x1 – 0.05181]; The stable points we choose for Case

2 are a = 10 and b = 120, and G1(y) = [0.005296x1
2 – 0.003472x1 – 0.1584] and G2(y) = [0.002509x1

2 + 0.002225x1 – 0.1042];
The stable points we choose for Case 3 are a = 10 and b = 130, and G1(y) = [0.01197x1

2 – 0.002132x1 – 0.1659] and
G2(y) = [0.01204x1

2 – 0.002735x1 – 0.09658]; The stable points we choose for Case 4 are a = 10 and b = 160, and
G1(y) = [0.01017x1

2 – 0.009294x1 – 0.1579] and G2(y) = [0.005108x1
2 – 0.002238x1 – 0.086]. The corresponding phase plots

are obtained as shown in Fig. 5. From all the phase plots, it can be concluded that the SOF polynomial fuzzy controllers designed
in this paper can successfully stabilize the polynomial fuzzy system.

For the last scenario, the influence of the order of slack matrices Ml(x) on the stabilization region is investigated. The
following comparison is made as shown in Table 8.

T A B L E 8 Different order and subdomain settings of Ml(x)

Case Order of Ml(x) Partitions Points of Partitions
5 2 4 {–10, –5, 0, 5, 10}
6 4 4 {–10, –5, 0, 5, 10}
7 2 10 {–10, –8, ..., 8, 10}
8 4 10 {–10, –8, ..., 8, 10}

The LMFs are designed as first-order polynomial functions, which are obtained by (30). The partition settings of LMFs are set
in Table 8. γij can be achieved by LMFs designed in each subdomain, and is given in Tables 4 and 6.

Yij(x) and M(x) are employed to alleviate the computational burden. Meanwhile, according to the settings in Table 8, we
further set that when the order of M(x) is 2, only 0 and 2 terms are included, and when the order of M(x) is 4, only 0, 2 and 4
terms are included. The other parameters are chosen as discussed in scenario 2. By applying the above settings to Theorem 2, the
stabilization region is achieved and shown in Fig. 6.

By comparing the stabilization regions under Case 5 and Case 6 in Fig. 6, we can draw the conclusion that the higher the
order of slack matrices Ml(x), the larger the stabilization region. This is consistent with the comparison between Case 7 and
Case 8. The slack matrix Ml(x) with higher-order can introduce more regional information of premise variables to achieve the
relaxed stability conditions.
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F I G U R E 5 Top left phase plots are a = 10 and b = 90 (stabilization regions indicated by the symbols “×”), the top right
phase plots are a = 10 and b = 120 (stability region indicated by the symbols “+”). The bottom left phase plots are a = 10 and
b = 130 (stabilization regions indicated by the symbols “�”), the bottom right phase plots are a = 10 and b = 160 (stability
region indicated by the symbols “◦”) all referring to Fig. 4.

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

F I G U R E 6 Combining the parameters in Table 8, stabilization regions are obtained and indicated by “×” for Case 5, “+”
for Case 6, “�” for Case 7,“◦” for Case 8, respectively.

Next, we select some stable points on the boundary of the stabilization region and draw their phase plots to illustrate the
correctness of the simulation results. For example, the stable points we choose for Case 5 are a = 9 and b = 80, and the feedback
gains Gj(y) are G1(y) = [–0.003941x1

2 + 0.03958x1 – 0.2363] and G2(y) = [0.004184x1
2 + 0.003147x1 – 0.02939]; The stable

points we choose for Case 6 are a = 9 and b = 90, and the feedback gains Gj(y) are G1(y) = [–0.006518x1
2 +0.03247x1 –0.3616]

and G2(y) = [0.002878x1
2 + 0.003782x1 + 0.004202]; The stable points we choose for Case 7 are a = 1 and b = 70, and the

feedback gains Gj(y) are G1(y) = [0.001915x1
2 + 0.001635x1 – 0.2031] and G2(y) = [0.01655x1

2 – 0.001867x1 – 0.07937]; The
stable points we choose for Case 8 are a = 1 and b = 80, and the feedback gains Gj(y) are G1(y) = [0.03448x1

2 – 0.0002243x1 –
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F I G U R E 7 The top left phase plots are a = 9 and b = 80 (stabilization regions indicated by the symbols “×”), the top right
phase plots are a = 9 and b = 90 (stability region indicated by the symbols “+”). The bottom left phase plots are a = 1 and b = 70
(stabilization regions indicated by the symbols “�”), the bottom right phase plots are a = 1 and b = 80 (stability region indicated
by the symbols “◦”) all referring to Fig. 6.

0.3343] and G2(y) = [0.01968x1
2 – 0.000006x1 – 0.07016]. The corresponding phase plots are obtained as shown in Fig. 7 which

can be concluded that the SOF polynomial fuzzy controllers designed in this paper can successfully stabilize the polynomial
fuzzy system.

5 CONCLUSION

This paper designed a novel MGI technique to investigate the stabilization control problem for the SOF PFMB control system
under the IPM concept. Through the nonsingular transformation matrix and the diagonal positive-definite Lyapunov matrix,
the non-convex constraint of the stability conditions has been solved. Furthermore, the original membership functions are
approximated with LMFs which can achieve the relaxed stability analysis results. One of the advantages of LMFs method is that
it is an extension of PLMFs, which can employ more sample points to improve the approximation capability. Another advantage
of the LMFs method is that it can be regarded as a general representation of PMFs method, and can be used as the specific
implementation method of the basic functions of CMFs method. Combining the LMFs and premise variables into a novel MGI
method can further relax the stability conditions. Finally, we use a simulation example to validate the advantages of the proposed
stability analysis results.
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