References··
Alexander, J. M., & Levine, J. M. (2019). Earlier phenology of a nonnative plant increases the impacts on native competitors. Proceedings of the National Academy of Sciences of the United States of America, 116 , 6199– 6204.
Bai, L., Lv, S. J., Qu, Z. Q., Ren, H. Y., Wu, Q., Han, G. D., & Li, Z. G. (2022). Effects of a warming gradient on reproductive phenology ofStipa breviflora in a desert steppe. Ecological Indicators, 136 , 108590.
CaraDonna, P. J., & Inouye, D. W. (2015). Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community. Ecology ,96 , 355-361.
Chen, J., Luo, Y., Chen, Y., Felton, A. J., Hopping, K. A., Wang, R. W., & Jørgensen, U. (2020). Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Science of the Total Environment728 , 138891.
Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany60 , 2529-2539.
Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A., & Field, C. B. (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America , 103 , 13740-13744.
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change.Trends in Ecology & Evolution , 22 , 357-365.
Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., & Wolkovich, E. M. (2012). Phenological tracking enables positive species responses to climate change. Ecology ,93 , 1765– 1771.
Collins, C. G., Elmendorf, S. C., Hollister, R. D., Henry Greg H. R., & Suding, K.N. (2021). Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications , 12 , 3442.
Crimmins, T. M., Crimmins, M. A., & David Bertelsen, C. (2010). Complex responses to climate drivers in onset of spring flowering across a semi‐arid elevation gradient. Journal of Ecology , 98 , 1042-1051.
Curtis, J. T., & Mcintosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. Ecology31 , 434-455.
Dorji, T., Totland, Ø., Moe, S. R., Hopping, K. A., Pan, J., & Klein, J. A. (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet.Global Change Biology , 19 , 459-472.
Dunne, J. A., Harte, J., & Taylor, K. J. (2003). Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs ,73 , 69-86.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology20 , 3256-3269.
Food & Agriculture Organization of the United Nations. Land, & Water Development Division. (1993). Global and National Soils and Terrain Digital Databases: Procedures Manual, 74 .
Forrest, J., Inouye, D. W., & Thomson, J. D. (2010). Flowering phenology in subalpine meadows: Does climate variation influence community co‐flowering patterns?Ecology , 91 , 431-440.
Fracheboud, Y., Luquez, V., Bjorken, L., Sjodin, A., Tuominen, H., & Jansson, S. (2009). The control of autumn senescence in European aspen. Plant Physiology149 , 1982-1991.
Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G. Y., & Janssens, I. A. (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature , 526 , 104–107.
Fanin, N., Mooshammer, M., Sauvadet, M., Meng, C., Alvarez, G., Bernard, L., & Nottingham, A. T. (2022). Soil enzymes in response to climate warming: Mechanisms and feedbacks. Functional Ecology , 36 , 1378-1395.
Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science296 , 1689-1691.
Forrest, J. R. (2015). Plant–pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos124 , 4-13.
Godoy, O., & Levine, J. M. (2014). Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology95 , 726-736.
IPCC. (2023). Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland .
Jiang, L. L., Wang, S. P., Meng, F. D., Duan, J. C., Niu, H. S., Xu, G. P., & Wang, G. J. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events.Ecology , 97 , 1961-1969.
Lindsey, A. A. (1956). Sampling methods and community attributes in forest ecology. Forest Science , 2 , 287-296.
Liu, H., Wang, H., Li, N., Shao, J., Zhou, X., Groenigen, K. J., & Thakur, M. P. (2022). Phenological mismatches between above- and belowground plant responses to climate warming. Nature Climate Change , 12 , 97-102.
Liu, Z., Liu, K., Zhang, J., Yan, C., Lock, T. R., Kallenbach, R. L., & Yuan, Z. (2022). Fractional coverage rather than green chromatic coordinate is a robust indicator to track grassland phenology using smartphone photography. Ecological Informatics68 , 101544.
Liu, Y., Li, G., Wu, X., Niklas, K. J., Yang, Z., & Sun, S. (2021). Linkage between species traits and plant phenology in an alpine meadow. Oecologia , 195, 409-419.
Menzel, A. (2002). Phenology: its importance to the global change community. Climatic Change54 , 379.
Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., & Cavanagh, A. P. (2021). The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of Experimental Botany72 , 2822-2844.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature , 386 , 698-702.
Nord, E. A., & Lynch, J. P. (2009). Plant phenology: a critical controller of soil resource acquisition. Journal of Experimental Botany60 , 1927-1937.
Pallas Jr, J. E., Michel, B. E., & Harris, D. G. (1967). Photosynthesis, transpiration, leaf temperature, and stomatal activity of cotton plants under varying water potentials. Plant Physiology42 , 76-88.
Post, E. S., Pedersen, C., Wilmers, C. C., & Forchhammer, M. C. (2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology , 89 , 363-370.
Prevéy, J. S., & Seastedt, T. R. (2014). Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi‐arid grassland. Journal of Ecology102 , 1549-1561.
Piao, S., Liu, Q., Chen, A. P., Janssens, I. A., Fu, Y. S., Dai, J. H., & Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology , 25 , 1922-1940.
Price, M. V., & Waser, N. M. (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology ,79 , 1261-1271.
Ren, H., Han, G., Li, M. H., Gao, C., & Jiang, L. (2021). Ethylene‐regulated leaf lifespan explains divergent responses of plant productivity to warming among three hydrologically different growing seasons. Global Change Biology27 , 4169-4180.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E., Seyednasrollah, B., & Hanson, P. J. (2018). Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature560 , 368-371.
Sadok, W., Lopez, J. R., & Smith, K. P. (2021). Transpiration increases under high‐temperature stress: Potential mechanisms, trade‐offs and prospects for crop resilience in a warming world. Plant, Cell & Environment44 , 2102-2116.
Shen, X. J., Liu, B. H., Henderson, M., Wang, L., Wu, Z. F., Wu, H. T., & Lu, X. G. (2018). Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China.Agricultural and Forest Meteorology , 259 , 240-249.
Sherry, R. A., Zhou, X., Gu, S., Arnone III, J. A., Schimel, D. S., Verburg, P. S., & Luo, Y. (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America , 104 , 198-202.
Shivanna, K. R., & Tandon, R. (2014). Reproductive ecology of flowering plants: a manual (No. 14769).New Delhi: Springer India .
Stone, G. N., Willmer, P., & Rowe, J. A. (1998). Partitioning of pollinators during flowering in an African Acacia community. Ecology79 , 2808-2827.
Sun, S., & Frelich, L. E. (2011). Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology ,99 , 991-1000.
Tilman, D., & Wedin, D. (1991). Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology72 , 685-700.
Wang, J., Defrenne, C., McCormack, M. L., Yang, L., Tian, D., Luo, Y., & Niu, S. L. (2021). Fine‐root functional trait responses to experimental warming: a global meta‐analysis. New Phytologist230 , 1856-1867.
Wang, H., Liu, H., Cao, G., Ma, Z., Li, Y., Zhang, F., & He, J. S. (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters , 23 , 701-710.
Weih, M., & Karlsson, P. S. (2001). Growth response of Mountain birch to air and soil temperature: is increasing leaf‐nitrogen content an acclimation to lower air temperature? New Phytologist150 , 147-155.
Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., & Cleland, E. E. (2012). Warming experiments underpredict plant phenological responses to climate change.Nature , 485 , 494-497.
Wolf, A. A., Zavaleta, E. S., & Selmants, P. C. (2017). Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America ,114 , 3463-3468.
Wu, Q., Ren, H. Y., Wang, Z., Li, Z., Liu, Y., Li Y., & Chang, S. (2020). Additive negative effects of decadal warming and nitrogen addition on grassland community stability.Journal of Ecology , 108 , 1442-1452.
Xia, J., & Wan, S. (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany , 111 , 1207-1217.
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., & Luo, Y. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America , 112 , 2788-2793.
Yang, L., Zhao, S., & Liu, S. (2023). Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. Global Change Biology , 29 , 4383-4396.
Zettlemoyer, M. A., Schultheis, E., & Lau, J. (2019). Phenology in a warming world: differences between native and non-native plant species.Ecology Letters, 22, 1253-1263.
Zhang, G., Kang, Y., Han, G., & Sakurai, K. (2011). Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology17 , 377-389.
Zhang, X., Tarpley, D., & Sullivan, J. T. (2007). Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters , 34 , 255-268.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., & Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment84 , 471-475.
Zhou, H., Min, X., Chen, J., Lu, C., Huang, Y., Zhang, Z., & Liu, H. (2023). Climate warming interacts with other global change drivers to influence plant phenology: A meta‐analysis of experimental studies. Ecology Letters , 26 , 1370-1381.
Zhou, H. M., Min, X. T., Chen, J. H., Lu, C. Y., Huang, Y. X., & Liu, H. Y. (2023). Climate warming interacts with other global change drivers to influence plant phenology: A meta-analysis of experimental studies.Ecology Letters, 26, 1370-1381.
Table 1 Effects of warming (W), nitrogen addition (N), year (Y) and their interactions on plant dominance, flowering time and duration of flowering of C3 and C4 plants group from 2013 to 2022, based on a repeated-measures analysis of variance (ANOVA).