References··
Alexander, J. M., & Levine, J.
M. (2019). Earlier phenology of a nonnative plant increases the impacts
on native competitors. Proceedings of the National Academy of
Sciences of the United States of America, 116 , 6199– 6204.
Bai, L., Lv, S. J., Qu, Z. Q., Ren, H. Y., Wu, Q., Han, G. D., & Li, Z.
G. (2022). Effects of a warming gradient on reproductive phenology ofStipa breviflora in a desert steppe. Ecological Indicators,
136 , 108590.
CaraDonna, P. J., & Inouye, D.
W. (2015). Phenological responses to climate change do not exhibit
phylogenetic signal in a subalpine plant community. Ecology ,96 , 355-361.
Chen, J., Luo, Y., Chen, Y., Felton, A. J., Hopping, K. A., Wang, R. W.,
& Jørgensen, U. (2020). Plants with lengthened phenophases increase
their dominance under warming in an alpine plant
community. Science of the Total Environment , 728 , 138891.
Craufurd, P. Q., & Wheeler, T.
R. (2009). Climate change and the flowering time of annual
crops. Journal of Experimental Botany , 60 , 2529-2539.
Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A., &
Field, C. B. (2006). Diverse responses of phenology to global changes in
a grassland ecosystem. Proceedings of the National Academy of
Sciences of the United States of America , 103 , 13740-13744.
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M.
D. (2007). Shifting plant phenology in response to global change.Trends in Ecology & Evolution , 22 , 357-365.
Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S.,
Travers, S. E., & Wolkovich, E. M. (2012). Phenological tracking
enables positive species responses to climate change. Ecology ,93 , 1765– 1771.
Collins, C. G., Elmendorf, S. C., Hollister, R. D., Henry Greg H. R., &
Suding, K.N. (2021). Experimental warming differentially affects
vegetative and reproductive phenology of tundra plants. Nature
Communications , 12 , 3442.
Crimmins, T. M., Crimmins, M. A., & David Bertelsen, C. (2010). Complex
responses to climate drivers in onset of spring flowering across a
semi‐arid elevation gradient. Journal of Ecology , 98 ,
1042-1051.
Curtis, J. T., & Mcintosh, R. P.
(1950). The interrelations of certain analytic and synthetic
phytosociological characters. Ecology , 31 , 434-455.
Dorji, T., Totland, Ø., Moe, S. R., Hopping, K. A., Pan, J., & Klein,
J. A. (2013). Plant functional traits mediate reproductive phenology and
success in response to experimental warming and snow addition in Tibet.Global Change Biology , 19 , 459-472.
Dunne, J. A., Harte, J., & Taylor, K. J. (2003). Subalpine meadow
flowering phenology responses to climate change: integrating
experimental and gradient methods. Ecological Monographs ,73 , 69-86.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T.,
Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted
responses of arctic and alpine ecosystems to altered seasonality under
climate change. Global Change Biology , 20 , 3256-3269.
Food & Agriculture Organization of the United Nations. Land, & Water
Development Division. (1993). Global and National Soils and
Terrain Digital Databases: Procedures Manual, 74 .
Forrest, J., Inouye, D. W., &
Thomson, J. D. (2010). Flowering phenology in subalpine meadows: Does
climate variation influence community co‐flowering patterns?Ecology , 91 , 431-440.
Fracheboud, Y., Luquez, V., Bjorken, L., Sjodin, A., Tuominen, H.,
& Jansson, S. (2009). The
control of autumn senescence in European aspen. Plant
Physiology , 149 , 1982-1991.
Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G. Y., &
Janssens, I. A. (2015). Declining global warming effects on the
phenology of spring leaf unfolding. Nature , 526 , 104–107.
Fanin, N., Mooshammer, M., Sauvadet, M., Meng, C., Alvarez, G., Bernard,
L., & Nottingham, A. T. (2022). Soil enzymes in response to climate
warming: Mechanisms and feedbacks. Functional Ecology , 36 ,
1378-1395.
Fitter, A. H., & Fitter, R. S.
R. (2002). Rapid changes in flowering time in British
plants. Science , 296 , 1689-1691.
Forrest, J. R. (2015).
Plant–pollinator interactions and phenological change: what can we
learn about climate impacts from experiments and
observations? Oikos , 124 , 4-13.
Godoy, O., & Levine, J. M.
(2014). Phenology effects on invasion success: insights from coupling
field experiments to coexistence theory. Ecology , 95 ,
726-736.
IPCC. (2023). Climate Change 2023: Synthesis Report. A Report of the
Intergovernmental Panel on Climate Change. Contribution of Working
Groups I, II and III to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee
and J. Romero (eds.)]. IPCC, Geneva, Switzerland .
Jiang, L. L., Wang, S. P., Meng, F. D., Duan, J. C., Niu, H. S., Xu, G.
P., & Wang, G. J. (2016). Relatively stable response of fruiting stage
to warming and cooling relative to other phenological events.Ecology , 97 , 1961-1969.
Lindsey, A. A. (1956). Sampling methods and community attributes in
forest ecology. Forest Science , 2 , 287-296.
Liu, H., Wang, H., Li, N., Shao, J., Zhou, X., Groenigen, K. J., &
Thakur, M. P. (2022). Phenological mismatches between above- and
belowground plant responses to climate warming. Nature Climate
Change , 12 , 97-102.
Liu, Z., Liu, K., Zhang, J., Yan, C., Lock, T. R., Kallenbach, R. L., &
Yuan, Z. (2022). Fractional coverage rather than green chromatic
coordinate is a robust indicator to track grassland phenology using
smartphone photography. Ecological Informatics , 68 ,
101544.
Liu, Y., Li, G., Wu, X., Niklas,
K. J., Yang, Z., & Sun, S. (2021). Linkage between species traits and
plant phenology in an alpine meadow. Oecologia , 195, 409-419.
Menzel, A. (2002). Phenology: its importance to the global change
community. Climatic Change , 54 , 379.
Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A.,
Benjamin, C., Bernacchi, C. J., & Cavanagh, A. P. (2021). The effect of
increasing temperature on crop photosynthesis: from enzymes to
ecosystems. Journal of Experimental Botany , 72 , 2822-2844.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R.
R. (1997). Increased plant growth in the northern high latitudes from
1981 to 1991. Nature , 386 , 698-702.
Nord, E. A., & Lynch, J. P. (2009). Plant phenology: a critical
controller of soil resource acquisition. Journal of Experimental
Botany , 60 , 1927-1937.
Pallas Jr, J. E., Michel, B. E., & Harris, D. G. (1967).
Photosynthesis, transpiration, leaf temperature, and stomatal activity
of cotton plants under varying water potentials. Plant
Physiology , 42 , 76-88.
Post, E. S., Pedersen, C., Wilmers, C. C., & Forchhammer, M. C. (2008).
Phenological sequences reveal aggregate life history response to
climatic warming. Ecology , 89 , 363-370.
Prevéy, J. S., & Seastedt, T. R.
(2014). Seasonality of precipitation interacts with exotic species to
alter composition and phenology of a semi‐arid grassland. Journal
of Ecology , 102 , 1549-1561.
Piao, S., Liu, Q., Chen, A. P., Janssens, I. A., Fu, Y. S., Dai, J. H.,
& Zhu, X. (2019). Plant phenology and global climate change: Current
progresses and challenges. Global Change Biology , 25 ,
1922-1940.
Price, M. V., & Waser, N. M. (1998). Effects of experimental warming on
plant reproductive phenology in a subalpine meadow. Ecology ,79 , 1261-1271.
Ren, H., Han, G., Li, M. H., Gao, C., & Jiang, L. (2021).
Ethylene‐regulated leaf lifespan explains divergent responses of plant
productivity to warming among three hydrologically different growing
seasons. Global Change Biology , 27 , 4169-4180.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M.
E., Seyednasrollah, B., & Hanson, P. J. (2018). Ecosystem warming
extends vegetation activity but heightens vulnerability to cold
temperatures. Nature , 560 , 368-371.
Sadok, W., Lopez, J. R., & Smith, K. P. (2021). Transpiration increases
under high‐temperature stress: Potential mechanisms, trade‐offs and
prospects for crop resilience in a warming world. Plant, Cell &
Environment , 44 , 2102-2116.
Shen, X. J., Liu, B. H., Henderson, M., Wang, L., Wu, Z. F., Wu, H. T.,
& Lu, X. G. (2018). Asymmetric effects of daytime and nighttime warming
on spring phenology in the temperate grasslands of China.Agricultural and Forest Meteorology , 259 , 240-249.
Sherry, R. A., Zhou, X., Gu, S., Arnone III, J. A., Schimel, D. S.,
Verburg, P. S., & Luo, Y. (2007). Divergence of reproductive phenology
under climate warming. Proceedings of the National Academy of
Sciences of the United States of America , 104 , 198-202.
Shivanna, K. R., & Tandon, R.
(2014). Reproductive ecology of flowering plants: a manual (No. 14769).New Delhi: Springer India .
Stone, G. N., Willmer, P., & Rowe, J. A. (1998). Partitioning of
pollinators during flowering in an African Acacia
community. Ecology , 79 , 2808-2827.
Sun, S., & Frelich, L. E.
(2011). Flowering phenology and height growth pattern are associated
with maximum plant height, relative growth rate and stem tissue mass
density in herbaceous grassland species. Journal of Ecology ,99 , 991-1000.
Tilman, D., & Wedin, D. (1991).
Plant traits and resource reduction for five grasses growing on a
nitrogen gradient. Ecology , 72 , 685-700.
Wang, J., Defrenne, C., McCormack, M. L., Yang, L., Tian, D., Luo, Y.,
& Niu, S. L. (2021). Fine‐root functional trait responses to
experimental warming: a global meta‐analysis. New
Phytologist , 230 , 1856-1867.
Wang, H., Liu, H., Cao, G., Ma, Z., Li, Y., Zhang, F., & He, J. S.
(2020). Alpine grassland plants grow earlier and faster but biomass
remains unchanged over 35 years of climate change. Ecology
Letters , 23 , 701-710.
Weih, M., & Karlsson, P. S.
(2001). Growth response of Mountain birch to air and soil temperature:
is increasing leaf‐nitrogen content an acclimation to lower air
temperature? New Phytologist , 150 , 147-155.
Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M.,
Betancourt, J. L., Travers, S. E., & Cleland, E. E. (2012). Warming
experiments underpredict plant phenological responses to climate change.Nature , 485 , 494-497.
Wolf, A. A., Zavaleta, E. S., & Selmants, P. C. (2017). Flowering
phenology shifts in response to biodiversity loss. Proceedings of
the National Academy of Sciences of the United States of America ,114 , 3463-3468.
Wu, Q., Ren, H. Y., Wang, Z., Li,
Z., Liu, Y., Li Y., & Chang, S. (2020). Additive negative effects of
decadal warming and nitrogen addition on grassland community stability.Journal of Ecology , 108 , 1442-1452.
Xia, J., & Wan, S. (2013).
Independent effects of warming and nitrogen addition on plant phenology
in the Inner Mongolian steppe. Annals of Botany , 111 ,
1207-1217.
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., &
Luo, Y. (2015). Joint control of terrestrial gross primary productivity
by plant phenology and physiology. Proceedings of the National
Academy of Sciences of the United States of America , 112 ,
2788-2793.
Yang, L., Zhao, S., & Liu, S. (2023). Urban environments provide new
perspectives for forecasting vegetation phenology responses under
climate warming. Global Change Biology , 29 , 4383-4396.
Zettlemoyer, M. A., Schultheis, E., & Lau, J. (2019). Phenology in a
warming world: differences between native and non-native plant species.Ecology Letters, 22, 1253-1263.
Zhang, G., Kang, Y., Han, G., & Sakurai, K. (2011). Effect of climate
change over the past half century on the distribution, extent and NPP of
ecosystems of Inner Mongolia. Global Change Biology , 17 ,
377-389.
Zhang, X., Tarpley, D., & Sullivan, J. T. (2007). Diverse responses of
vegetation phenology to a warming climate. Geophysical Research
Letters , 34 , 255-268.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C.,
Gao, F., & Huete, A. (2003). Monitoring vegetation phenology using
MODIS. Remote Sensing of Environment , 84 , 471-475.
Zhou, H., Min, X., Chen, J., Lu, C., Huang, Y., Zhang, Z., & Liu, H.
(2023). Climate warming interacts with other global change drivers to
influence plant phenology: A meta‐analysis of experimental
studies. Ecology Letters , 26 , 1370-1381.
Zhou, H. M., Min, X. T., Chen, J. H., Lu, C. Y., Huang, Y. X., & Liu,
H. Y. (2023). Climate warming interacts with other global change drivers
to influence plant phenology: A meta-analysis of experimental studies.Ecology Letters, 26, 1370-1381.
Table 1 Effects of warming (W),
nitrogen addition (N), year (Y) and their interactions on plant
dominance, flowering time and duration of flowering of
C3 and C4 plants group from 2013 to
2022, based on a repeated-measures analysis of variance (ANOVA).