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Abstract

1)We propose a way to solve the arbitraty Youngs modulus effects
on the charge transfer by stiffness scaling.
2)This is the first study combining tribocharging, electrostatics of
granular materials, and fluidization. Earlier fluidization studies con-
centrated to bubbling fluidized beds.
3)The time needed for a fluidized bed to reach uniformly charged state
is very long.
4)There is a nonuniform charge distribution inside the fluidized bed.
5)The wall tends to become couted with highly charged particles.
6)The particle charging effects the bed height oscillations, and in cer-
tain cases the bed expansion.
7)The slugging behavior of the fluidized bed was changed in a complex
way with increasing particle charging.
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1 Introduction

It has been known for centuries that during a mechanical contacts
materials may develop static charges. This phenomenon is observed
when one rubs a balloon against wool cloth, and observes the bal-
loon sticking to the cloth and is known as tribocharging. It has also
been known for decades that granular material in transport lines and
fluidized beds tend to create charges [12]. This charging may cause
spark generation leading even to powder explosions [10]. Triboelectric
charging is generally been considered unwanted phenomenon, such as
particle wall fouling in polyethylene reactors [6], but is also crucial
in certain applications such as photocopying and laser printing where
toner particles are charged via triboelectric charging.

Triboelectric charging is still very poorly understood phenomenon
and multiple different mechanism have been proposed for this in past
decades [12]. The most widely cited mechanism for the tribocharging
is electron transfer [4], where the charge transfer is believed to happen
due to electrons transfering from material surface to another material
surface. While this mechanism is found to be in good agreement with
experiments for metals, there is some debate weather it is applicable
to insulators [15].

In electron transfer model materials tendency to pick up charges
is described by a work function value. For metals this work function
value is defined as the energy needed to remove one electron form
the metal surface [4]. For insulators this work function value cor-
relates poorly with the tribocharging behavior, and instead effective
work function value is often used to describe the charging behavior of
insulators in numerical simulations [14]. Unfortunately, there is no di-
rect way to measure the effective work function value due to its vague
definition.

Moreover, it is well-known that the triboelectric charging of insu-
lators depends on the ambient humidity [3] and on the particle size
[17, 2, 18]. It is not straght forward to determine these effects and the
effective work function would need to modelled for these parameters.
There has also been more direct simulation approaches to take the
insulator charge size dependency into account by modelling the elec-
trons on the particle surface [1] or by introducing high and low energy
electrons [11]. While these models can capture the size dependency to
some extent, it is hard to incorporate charge transfer of different ma-
terials into these models. Furthermore, modelling the electrons in the
particle surface is computationally very demanding and not suitable
for fluidized bed simulations with more than thousand particles.

It was proposed in [13] that the effective work function value could
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be determined from macroscopic charging behavior. Laurentie et. al.
charged the particles by a vibrated bed, and determined run series of
simulations with various effective work function values to match the
simulations and experiments. The determined work function value was
validated by similar experiments, and the results showed very good
agreement. For these reasons, this study will also base the triboelectric
charging behavior to effective work functions as they seem a promising
tool for simulating triboelectric charging.

There has been multiple studies concentrating in electrostatic ef-
fects on fludized beds. Earlier computational studies were based on
Eulerian-Eulerian simulations that model the solid and gas phase as
continuum [16, 8]. These studies assumed constant charge on parti-
cles, and solved the electric field by solving a Poisson equation for
electric potential. If the permittivity of the varying solid content is
taken into account the large scale electric field can be solved accurately
[16]. These studies found that the electrostatics altered the bubbling
behavior of fluidized beds by squeezing bubbles at the center of the
bed [16, 7, 9].

The shortcoming of the Eulerian-Eulerian approach is that it re-
quire additional modeling for particle drag and particle stresses since
the local electrostatic effects may alter these parameters. These local
effects have not been addressed in any of these simulations. Fur-
thermore, it is not easy to simulate non uniform charge distributions
with Eulerian-Eulerian simulations. To overcome this recent article
[5] simulated bubbling fluidized bed by employing four-way-coupled
CFD-DEM simulations that model particles individually, and use Eu-
lerian modeling for the solid phase. The study used also predefined
charges on particles and considered both monodisperse (same charge
on all the particles) and bidisperse case where particles had different
prefixed charges.

In the article [5] concluded that the bubble size decreased with
introduction of charge on particles in mono charged case that is in-line
with the Eulerian studies of Jalalinejad [8, 7, 9]. In the bidisperse case,
the oppositely charged particles formed chains inside the bubbling bed,
and interestingly caused the bubbles that were similar to the neutrally
charged case.

The aim of this study is to inspect the interplay between the tri-
boelectric charging and electrostatic effects. The triboelectric model
chosen was similar to [13] while the electrostatic force was modelled in
a similar way to [5]. The fluidization regime was chosen slightly above
the bubbling regime as its more relevant for polyethylene reactors.
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2 Computational Model

2.1 Overview

2.2 Hydrodynamic Model

2.3 Triboelectricity and Electrostatics

The electrostatics were introduced to the simulation by allowing par-
ticles to experience triboelectric charging. The triboelectric charging
was based on an effective work function model that characterized tri-
boelectric charging tendency of each material by an effective work
function φ.

The charge transfer rate during a collision is given by

dq

dt
= H

(

dA

dt

)

dA

dt

ε

δce
(∆φ + Eij ·nijδce) , (1)

where A is the contact area, H( · ) is Heaviside function, δc is the max-
imum distance where the charge can transfer from object to object,
typically taken to be 500nm, e is the charge of an electron, ε is the
electric permittivity, and Eij is the electric field at the contact point.

The Heaviside function is used to stop the charge transfer back to
where it came from. It is generally accepted that there is some level
of charge relaxation happening when particles are coming apart that
is neglected in the Eq. (1). However, there is no prior work or model
to determine this backflow of charge, and it will be neglected in this
study. Therefore, the Eq. (1) will slightly overestimate the charge
transfer between the particles.

The electron field at the contact point was computed from the
neighboring particles that included also the colliding particles by direct
sum

Eij = − 1

4πε

∑

k

qkrk

‖rk‖3
, (2)

where rk is vector pointing from k:th particles center to the center of
the contact. The neighboring particles are defined by setting a cut-off
radius for the electrostatic interactions. Any particles that are further
than the predefined cut-off radius are neglected from the sum.

During the simulation the charge transfered between the particles
i and j between timesteps n and n + 1 becomes

∆qn+1 = H(∆A)∆A
ε

δce

(

∆φ − E
n
ij ·nijδce

)

, (3)
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where the electric field E
n
ij is evaluated at the previous time step n,

and ∆A is the change of contact area between the timesteps. The
transfered charge ∆qn+1 is typically small, and the stiffness of the Eq.
(1) does not become an issue with timesteps typically used for the
soft sphere model. The good sides of the triboelectric model of Eq.
(1) is that it can capture collisions of different materials, the effect
of surrounding electric field, and the effect of contact force via the
contact area. The subtle physics can be introduced by making the
effective work function φ as a function of various parameters such as
particle size or ambient humidity.

The electrostatic force on a particle was evaluated as

Fi = qiE(xi), (4)

where qi is the charge of the particle, xi is the location of the i:th
particle, and E(xi) is the electric field at the particles location. The
electric field is evaluated from neighboring particles as before by the
pairwise summation

E(xi) = − 1

4πε

∑

k 6=i

qk(xk − xi)

‖xk − xi‖3
. (5)

In our simulations each particle presented individual particles and not
collection of particles like in parcel simulations, hence no screening is
needed in Eq. (5).

2.4 Effects of Particle Stiffness

Recall that the charge transfer of a particle during a collision is given
by

dq

dt
= H

(

dA

dt

)

dA

dt

ε

δce
(∆φ − Eij ·nijδce) , (6)

where Eij is electric field in the contact point, and ∆φ is the work-
function difference. The electric field in the contact point will depend
on the particles charge. Therefore, the right hand side of Eq. (6) will
depend on the particles charge. The Eq. (6) can be written in terms
of particles charge transfered by splitting the charge to initial charge
q0 and denoting the transfered charge by q. In particular, we have
q(0) = 0 as at the beginning of contact no charge is transfered. This
allows us to write

dq(t)

dt
=

dA

dt
(β − αq(t)) , (7)
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where α is a qeometrical coefficient depending only on particle radius,
and β is coefficient depending on the collision type (wall or other
particle) and initial charge(s). The detailed formulas for α and β
are given in the appendix. Solving the ODE (7) for q with initial
condition q(0) = 0 and A(0) = 0, and assuming that the contact area
is independent function of charge q(t) yields

q(t) = αβ
(

1 − e−αA(t)
)

. (8)

Let t = T be time where contact area A(t) obtains its maximum
value Amax. Inserting now t = T to Eq. (8) yields charge transfered
during one collision

∆q = αβ
(

1 − e−αAmax

)

. (9)

For typical collisions in a fluidized bed we have Amax ≪ πr2
eff

where reff is the effective radius of the Hertzian model. This yields
‖ − αAmax‖ ≪ 1. Proof of this is given in the appendix. Invoking
Taylors series expansion for exp(−αAmax) and neglecting higher order
terms gives

∆q = α2βAmax. (10)

The ratio between charge transfer of a real and simulated soft
particle is therefore,

∆qreal

∆qsoft
=

βrealAreal
max

βsoftAsoft
max

. (11)

To tackle the problem of soft particles againts the real hard parti-
cles we assume for time being that the maximum area is independent
on the coefficient of restitution with. Setting coefficient of restitution
to one allows us to inspect the energy balances of the collision. The
potential energy of Hertzian spring is given by

Ep =

∫

Fdδ =
8

15
Yeff

√
reffδ5/2, (12)

where Yeff is the effective Youngs modulus, and δ is the overlap dis-
tance. The overlap distance is connected to contact area by

A = πreffδ. (13)

When the contact area obtains its maximum value we have

dA

dt
= πreff

dδ

dt
= πreffv⊥ = 0, (14)
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where v⊥ is the normal velocity. Hence at the maximum contact area
we have v⊥ = 0, and the normal kinetic energy is transformed totally
to Hertzian springs potential energy and to potential energy of the
electric field. Assuming that the potential energy of the electricfield
is negligible to the springs potential at the maximum contact area
energy yields Ep = 1

2mv2
⊥.

Solving for δmax from Eq. (12) we obtain

Areal
max

Asoft
max

=

(

Y soft

Y real

)2/5 (

vreal
⊥

vsimu
⊥

)2

, (15)

where Y stands for particles Youngs modulus. The initial collision ve-
locities may change slightly due to Youngs modulus, but are assumed
to depend mainly on the hydrodynamics and the overal charge, hence
we have vreal

⊥ ≈ vsimu
⊥ . Hence, to correct the charge transfer in a single

collision in a soft simulation one has to multiply the charge transfer
by

σ =
∆qreal

∆qsoft
=

(

Y soft

Y real

)2/5

. (16)

Shifting our attention to particles charge over the total simulation
time, and denoting that by Q(t) we have

dQ(t)

dt
= ω(t)∆q(t), (17)

where ω(t) is number of collisions per time unit, and ∆q charge trans-
fered during one collision that is obtained from Eq. (10). We assume
here that the collision rate would be only function of time and particle
parameters even it may depend on the charge in a complicated way.

As noted before ∆Q(t) depends on β(t) and v⊥ (now function of
time as it depends on Q(t)) that is an affine function of the particles
charge before each collision. Therefore we have

dQ(t)

dt
= ω(t)a (Qeq − Q(t)) , (18)

where a is a coefficient that depends on v⊥ and Younds modulus, and
Qeq is coefficient that depend only on the particles initial charge at
the beginning of the whole simulation and on the imposed work func-
tions. The exact values of the coefficients are given in the appendix
and depend on the collision type. In particular coefficient a depends
linearly on the maximum contact area, and Qeq is independent on the
Youngs modulus.

Solving again the familiar ODE (18) yields
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Q(t) = Qeq

(

1 − e−a
R

ω(t)dt
)

. (19)

Assume that the maximum contact area of soft simulation would
be multiplied by a number, say σ. Setting the right hand sides of
Eq. (19) as equal for soft and hard particles, and after some algebraic
manipulation we obtain

σ(t) =

(

Y soft

Y real

)2/5 (

vreal
⊥ (t)

vsimu
⊥ (t)

)2 ∫ t
0 ωreal(τ)dτ

∫ t
0 ωsoft(τ)dτ

(20)

The Eq. (19) is valid if the charging does not affect the maximum
contact area during one collision. The Eq. (19) has few implications.
Firstly, to simulate a system of hard particles with soft particles it is
enough to multiply soft particles contact area by coefficient given in
Eq. (16) to obtain correct charging rate. This correction is valid as
long as charges in the system are small enough not to alter the collision
rate function ω(t). If the collision rate is changed the coefficient is
given by Eq. (20).

The second implications is that if we have simulated a charging
rate of a system with soft particles the results should be shown with
time scaled by the coefficient of Eq. (20) or by a coefficient of Eq.
(16) if the collision dynamics is not changed by the charging.

The proposed correction of Eq. (16) was tested in number of two
particle collision with varying coefficients of restitution, Youngs mod-
ulus, and various initial velocities. The charge on the particles was
fixed as ±1.0−13C, and the work function difference was zero.

The uncorrected case is shown in Fig. 1 showing very different
values of charge transfer. The same case was run again with corrected
charge transfer, and the results are shown in Fig. 2. The corrected
case shows very neat collapse of all the cases to the base case with
Youngs modulus 108. The cases in Fig. 1 and 2 are computed with
high coefficient of restitution 0.9 that is close to coefficient of resti-
tution 1.0 assumed in our theoretical reasoning. We also tested the
correction in lower coefficient restitution 0.3 case to see if the results
still showed good agreement. The results are shown in Fig. 3, and the
curves collapsed fully. In the very small velocity limit, the coefficient
of restitution caused the particles to come at full stop. Suprisingly,
the corrected charge transfer was still to correct value even the co-
efficient of restitution would dominate the collision in such case. In
addition we also tested multiple particle simulations with wall with
different Youngs modulus, namely 105 and 5106, with the correction.
The correction was taken respect to Youngs modulus 3×109 that cor-
responds to polyethylene. The results showed very good fit, and the

8



10-17

10-16

10-15

10-14

10-13

 0.01  0.1  1  10

Y = 105

Y = 106

Y = 107

Y = 108

v [m/s]

∆
q

[C
]

e = 0.9

Figure 1: Figure showing charge transfer between two particles with coeffi-
cient of resitution 0.9, and with varying Youngs modulus and initial velocities.
There is no correction employed to the charge transfer, and the results are
widely different.
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Figure 2: Figure showing corrected charge transfer between two particles
with coefficient of resitution 0.9, and with varying Youngs modulus and initial
velocities.
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Figure 3: Figure showing corrected charge transfer between two particles
with coefficient of resitution 0.3, and with varying Youngs modulus and initial
velocities.
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curves resembled each other exactly. This is not that suprising, since
once the charging of each individual collision is captured accurately,
the overall physics should remain the same.
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3 Results

3.1 Overview

We simulated a slugging fluidized bed with various work function val-
ues and two different superficial velocities, namely 0.2Vt and 0.3Vt

where Vt is the terminal velocity of 150µm polyethylene particle with
density of 910g/cm3. The geometry was a long pipe with funnel at-
tached at the top of pipe. The pipe was 640 particle diameters tall
and 20 particle diameters wide. Particles had initially a zero charge
and 36410 particles were evenly distributed through out the fluidized
bed.

We imposed an uniform superficial velocity boundary condition at
the grate, and a constant pressure boundary condition at the out-
let. The mesh was a hexahedra butterfly mesh with each cell having
roughly three particle diameter witdth. This setup is was chosen to
obtain grid independent CFDEM simulation.

The maximum particle charge was estimated from the charge trans-
fer equation by setting the local electricfield term equal to the work
function difference at the wall. This gave maximum charge qeq

qeq =
2πε0

δce
∆φr2

i , (21)

where δc is the electron cut-off distance, ∆φ the work function dif-
ference between the particle and the wall which was varied between
different simulation cases, and ri particle radius.

In this study we studies monodisperse suspensions of particles that
had ri = 150µm and density similar to polyethylene 910kg/m3.

We characterized the strength of the electrostatic effects by looking
at the ratio of the electricfield at the contact of two particles with
charge qeq and the gravitational force. More formally we have

e/g =
qeqE

mg
, (22)

that becomes effectively a function of work function via Eq. (21).
The cut-off radius of the electrostatic effects was chosen such that the
electricfield coming from a particle with charge qeq would be neglected
when the force between two particles with charge qeq was less than
10 percent from the gravitational force. The particles typically had
charge less than qeq, hence the 10 percent characterizes the largest pos-
sible cut-off error. The cut-off radius varied between 0.5 to 7 particle
diameters in our simulations depending on the imposed work function
difference. Six different work function cases were investigated, namely
e/g = 0, e/g = 0.1, e/g = 0.5, e/g = 1.0, e/g = 1.5, and e/g = 3.0.
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The tribocharging is generally a slow phenomenon, and takes min-
utes to hours to reach a steady state. To overcome this issue we
accelerated the charge transfer by employing a coefficient similar to
Eq. (20) that multiplied the charge transfer by 50.

Fig. 4 shows snapshots taken from the simulations. From the
figure one can observe that the amount of particles sticking to the
wall (green particles that have zero velocity) increases with increasing
charge. Also the bed homogenuity increases with increasing charge,
and there are no visible slugs in the highly charged cases. Interestingly,
the

3.2 Tribocharging Rate

We computed the average charge on a particle at given time instance.
As predicted by the Eq. (18), the charge increased by an exponential
law, and approached the equilibrium charge. The charge evolution
of the fluidized bed is shown in Fig. 5. The scaled total charge for
all the three presented cases is very similar in the beginning of the
simulations. However, once the particles charge the charging rate
respect to equilibrium charge slows down. The charging rate decrease
seems to be larger with larger charge.

One likely explanation for this is that the highly charged particles
form a layer at the wall. This layer repels other charged particles
ultimately decreasing the collision rate and collision velocity of these
particles with the wall. Hence, in the highly charged cases this mecha-
nism will cause increasing decrease in the charging rate as the particle
charge increases.

Fig. 6 shows charging of the system with two different work func-
tion differences, and two different superficial velocities. The higher
superficial velocity case charges slightly faster, but the difference is
small. Hence, the superficial velocity had no major effects on the
particle charging rate.

Fig. 7 shows the probability density functions of charge of the sys-
tem with three different work function differences. As the work func-
tion values increase the distribution shifts to larger levels of charge.
Interestingly, the density function also becomes wider, ans shows two
separate peaks for the e/g = 3 case. To inspect this behavior further
we computed charge distributions from particles that are in one diam-
eter radius from wall, and the particles that are in the inner region.
These results are shown in the Fig. 8. As can be seen from the figure,
the particles at the wall have different density function than the parti-
cles at the inner region. The difference between the density functions
increases with increasing charge leading to two separate peaks in the
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Figure 4: Snapshot taken at 1.8 s of eight different fluidization cases. Cases
(A)-(D) have superficial velocity of 0.2Vt while cases (E)-(H) have superficial
velocity of 0.3Vt. The background is colored by the solids volume fraction,
and particles are colored based on the vertical velocity. Every 20:th particle
is shown in the figure from total of 36410 particles.
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Figure 5: Charging rate of the fluidized bed with various rations of electro-
static forces to gravity.
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Figure 8: Probability distribution of charge respect to walls and interior.

case e/g = 3.

3.3 Particle Volume and Charge Distribution

The effect of charging to particle radial distribution and to radial
charge distribution was investigated. These distributions were com-
puted from time averages taken after the bed was reached to at least
70% percent from the equilibrium charge. The particle radial distribu-
tion is shown in Fig. 9. The charged particles tend to move at the wall
due to attractive electrostatic force between the wall and the particles.
Interestingly there is a low solid volume fraction area next to the wall.
Possible cause for this could be the repeling force between the parti-
cles at the wall and particles approaching the wall which would also
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Figure 9: Radial particle distribution.

explain the decreases in the charging rate in Fig. 5. Fig. 10 shows
fraction of the particles that is at the wall. We can see that the frac-
tion increases to certain limit until the e/g = 1 case, and stays after
that effectively constant. Furthermore, the higher superficial velocity
has larger fraction of particles at the wall probably due to particles
being able to also stick at the higher parts of the fluidized bed.

Fig. 11 shows the radial charge distribution for particle. The
particles at the wall had the heighest charge, but interestingly the
the particle charge decreased sharply after the wall, and started again
slowly increasing. The possible cause for this behavior is that highly
charged particles at the wall repel other particles with high charge.
Hence it is more likely to find a particles with lower charge next to
the wall layer than another particle with high charge. Authors believe
that the gap between the interior and the wall might be effected by
the high acceleration factor, since with low acceleration factor the
particles would have more time to collide with the wall before they
form the protective layer at the wall.

3.4 Particle Velocity Distribution

We computed the average particle velocity at different distances from
particle center. The results are shown in Fig. 12. The lowly charged
cases show particles moving up in the center of the bed, and falling
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Figure 10: Particle fraction at the wall.
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Figure 12: Time averaged vertical velocity distribution at different distances
from the center of the bed. Various work function values and superficial
velocities are shown.

down at the wall that is consistent with the uncharged case. However,
when the charge on the particles increases the center of bed has a
falling slug, and the intermediate particles next to the wall move up.
This behavior could be caused by the reduced volume fraction next to
the wall. Once the charge is increased even more, the bed returns to
similar velocity distribution that the lowly charged cases have. It is
also visible from the Fig. 12 that the particles form a static layer at
the wall around e/g = 1 as the wall particle velocity goes effectively
to zero.

3.5 Effects on Bed Height and to Pressure Loss

Fig. 13 shows bed heights at different times that contain 95% of
the particles. The particles fall quicly to the hydrodynamical pseudo
steady state. In the higher superficial gas velocity case, the bed height
seems to be effected only slightly due to particle charging. However,
the bed height oscillations are reduced clearly with the increasing
charge. This is consistent with the prementioned observation of par-
ticles sticking at the wall and with the observation of Hassani [5] that
monodispersed charged particles tend to produce more homogenous
fluidization than uncharged particles.

For the lower superficial gas velocity case we also observe the de-
crease in the bed height oscillations, but also the bed height is de-
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Figure 13: Figure showing instantenous bed heights that contain 95% of the
particles.

creased with at first by increased particle charge, and then expanded
again by increasing charge. This behavior can be explained by two
mechanism: particle repelling force and particles sticking to the wall.
When particles stick to the wall, the volume fraction in the center of
the bed is decreased, and in-turn the particle drag is reduced. The
reduced drag causes bed to collapse. When the particle charge is in-
creased even further the repelling force of particles cause particles to
stay farther away from each other. This will effectively cause the bed
to expans and explains the increase seen form e/g = 1 to e/g = 3. The
first case where particle sticking is observed is the case with e/g = 1,
and we would expect a sudden drop at this point in the bed height
that is visible in the lower superficial velocity case, but not with the
higher superficial gas velocity.

The time averaged gas pressure curve at the center of the bed is
shown in Fig. 14. The pressure loss over the bed decreases with with
increasing particle charge.
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Figure 14: Time averaged pressure curves from bed bottom to the outlet
with varying electrostatic force.
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4 Conclusions
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A: Parameters

Consider first the parameters α and β for two colliding particles. As-
sume that the colliding particles have initial charges qj0, and qi0, and
work function difference ∆φ. Denote the transfered charge by qi(t)
and qj(t), and let t = 0 stand for the beginning of the collision. The
charge transfer rate is then given by

dqi(t)

dt
∝ ε

δce

(

∆φ − δce

4πε

(

qi0 + qi(t)

r2
i

− qj0 + qj(t)

r2
j

))

. (23)

For the charge rates we have

d

dt
(qi + qj) =

dqi

dt
+

dqj

dt
(24)

=
dqi

dt
− dqi

dt
= 0. (25)

Hence, the charge is conserved and we may write

qj(t) = qi(0) + qj(0) − qi(t) = −qi(t). (26)

Inserting Eq. (26) to Eq. (23) we obtain

dqi

dt
∝ ε

δce

(

∆φ − δce

4πε

(

qi0

r2
i

− qj0

r2
j

)

− δce

4πε

(

1

r2
i

+
1

r2
j

)

qi(t)

)

. (27)

We recognize that the α and β are now given by

β =
ε

δce

(

∆φ − δce

4πε

(

qi0

r2
i

− qj0

r2
j

))

(28)

and

α =
1

4π

(

1

r2
i

+
1

r2
j

)

. (29)

For the walls the charge transfer rate is obtained by mirroring the
particle respect to wall, and assuming an imaginary charge that has
equal charge with opposite sign in the other side of the wall. Hence
we substitute for qj0

qj0 = −qi0. (30)

Therefore, the α and β for the wall-particle collisions become
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β =
ε

δce

(

∆φ − δceqi0

2πεr2
i

)

(31)

and

α =
1

2πr2
i

. (32)

B: Contact Area

The contact area in the softsphere model is given by

Amax = πδmax
rirj

ri + rj
, (33)

where δmax is the maximum overlap distance, ri and rj are the particle
radiuses. The overlap δmax for similarly sized particles satisfies

δmax ≪ (ri + rj)
ri

rj
. (34)

The coefficient α can be writen as

α =
1

4π

r2
i + r2

j

r2
i r

2
j

. (35)

Consider first a collision between two particles

αAmax =
1

4π

r2
i + r2

j

r2
i r

2
j

πδmax
rirj

ri + rj
(36)

=
1

4

(

riδmax

rj(ri + rj)
+

rjδmax

ri(ri + rj)

)

(37)

≪ 1

4
(1 + 1) < 1. (38)

For wall collisions the the overlap distance satisfies δmax ≪ ri,
hence

αAmax =
1

2πr2
i

πδmaxri (39)

=
δmax

2ri
(40)

≪ 1

2
< 1. (41)
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