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Abstract—The digital transformation of power distribution
system has increased the demand for Distribution System State
Estimation (DSSE) techniques that are robust to adversarial
perturbations in addition to noise. We design a versatile method
for detecting stealthy data manipulation attacks on DSSE, draw-
ing on a model-agnostic attribution method that quantifies the
contribution of each input feature to the state estimation result.
The key intuition for this work is that data manipulation attacks,
including adversarial and false data injection attacks, generally
have a discernible effect on this feature saliency measure.
Through extensive numerical simulation, we corroborate that
the proposed method reliably detects various data manipulation
attacks, outperforming the most prominent detection methods
from the previous work.

Index Terms—State estimation, bad data detection, false data
injection attack, adversarial attack.

I. INTRODUCTION

Ensuring the reliable operation of power distribution net-
works has become increasingly challenging owing to the rapid
installation of Distributed Energy Resources (DER) that could
cause reverse flow, transformer overloading, wide voltage
fluctuations, and voltage limit violations. This warrants com-
prehensive monitoring and control of distribution networks,
both of which rely on telemetry data and Distribution System
State Estimation (DSSE) to augment this data [1].

Existing DSSE approaches can be broadly classified into
model-based and data-driven. Model-based approaches, such
as Weighted Least Squares (WLS) [2] use the distribution
system model for state estimation. Data-driven approaches, on
the other hand, do not require knowledge of the distribution
system model. Instead, they train a machine learning model
to estimate the state given the sensor data [3]-[5]. Although
these approaches differ in terms of accuracy and computation
cost, both are found susceptible to data manipulation attacks
that occur by comprising sensors, network devices, or servers
that store or process the sensor data, allowing the attacker to
manipulate this data before it is used for DSSE [6]-[9].

Early work that explored the robustness of state estimation
has primarily focused on showing that stealthy false data
injection attacks (FDIAs) can bypass the conventional Bad
Data Detection (BDD) mechanism [10], [11]. Several detection
strategies have been developed in recent years to mitigate
these FDIAs [12]-[15].However, the landscape is different for
adversarial attacks which can be generated through access to
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the input and output of DSSE, without even knowing what
approach is used for state estimation. While it is established
that the conventional BDD is unable to detect such attacks [7],
[9], [16], an effective strategy to protect DSSE from adver-
sarial attacks is yet to be developed. The previous work on
detecting malicious data uses either statistical techniques, e.g.
analyzing the distance between the distribution of measure-
ment variations from a known distribution [17], or learning-
based techniques, e.g. feeding the measurement data to a
pretrained neural network [7]. Nevertheless, none of these
techniques is fully effective against the wide range of stealthy
FDIAs and adversarial attacks.

We propose an effective detection-based DSSE safeguarding
strategy by analyzing the dispersion of feature attribution
scores. Specifically, we borrow the idea of attributing the
decisions made by a machine learning model to its input
features from the explainable Artificial Intelligence (xAI)
literature [18], and adapt it to work with DSSE, which is a
multivariate regression problem. We use a perturbation-based
attribution method [19], because it does not assume differ-
entiability of the DSSE model and can therefore be used to
protect both model-based and data-driven DSSE approaches.
We show that data manipulation attacks that are designed
to circumvent the conventional BDD, under the white-box
or black-box assumption, change the dispersion of feature
attribution scores in a way that is distinct from the effect of
measurement noise. We use this insight to detect the presence
of malicious data regardless of whether it is crafted using a
FDIA or adversarial attack. Our contribution is threefold:

o We propose Detection by Feature Attribution (DEFEAT),
a novel safeguarding strategy for both model-based and
data-driven DSSE that distinguishes between malicious
and benign (but possibly noisy) measurement data by
analyzing the dispersion of feature attribution scores and
classifying it using a logistic regression model.

o We show the efficiency of DEFEAT against two classes
of data manipulation attacks, and analyze its sensitivity
to the noise that might be introduced by phasor measure-
ment units and smart meters.

e We compare the performance of DEFEAT with state-
of-the-art detection-based DSSE safeguarding strategies,
and show that it achieves higher success rate and better
generalization across different attack scenarios.

II. RELATED WORK

Safeguarding DSSE can be accomplished via protection
and detection methods. The former reduces the attack surface
by securing and restricting access to sensors, communication



TABLE I: Comparative analysis of related work on safeguard-
ing DSSE using detection-based methods.

References Attack Type Access to Access to  Detection Strategy Successful
DSSE Detection Detection?
Model Model
[6], [10] FDIA . Conventional BDD No
[17] FDIA . Statistical Method (KLD)  Yes
71 Joint adversarial 0 3 Conventional BDD, MLP No
& FDIA
[20] Adversarial . ° MLP No
[16] Adversarial Conventional BDD No
Conventional BDD, Sta- No
21] Adversarial tistical Methods
Learning-based Methods Partially
Outlier Graph Yes
FDIA .
Our work Adversarial (un- DEFEAT Yes
targeted)
Adversarial .

(targeted)

channels, and storage and processing nodes. But protective
measures are not entirely foolproof so it is necessary to employ
them alongside detection methods to ensure overall system
security. Given the focus of this work, we only delve into
the literature concerning methods that have been proposed for
detecting various types of data manipulation attacks on DSSE.

Table I summarizes the related work on detecting data
manipulation attacks. Two access classes have been considered
depending on the attacker’s knowledge of the DSSE model
(aka the victim model) and the detection model (in case of
learning-based detection methods). In particular, adversarial
attacks can be categorized as either white-box or black-box
depending on the attacker’s level of access to these models.
In white-box attacks, the attacker has full access to the victim
model, including its architecture and parameters, allowing
them to create adversarial examples by using the victim model.
In black-box attacks, the attacker’s access to the victim model
is limited; it is often restricted to querying the victim model to
predict the state that corresponds to some input and using this
dataset to train a surrogate model that is used for generating
attack vectors.

The most notable white-box attacks that assume full access
to DSSE and detection models simultaneously are [7], [20].
In [7], a joint adversarial and stealthy false data injection
attack has been launched against a DC state estimation
model protected by two detection-based mechanisms, namely
a conventional BDD and a Neural Attack Detector (NAD),
which is a fully connected neural network trained to clas-
sify bad/malicious data. The authors found that both BDD
and NAD are vulnerable to a state-perturbation-based FDIA
generated under the white-box assumption. In [20], a similar
study has been conducted on a DC state estimation model
protected by a multilayer perceptron (MLP) that was trained
to distinguish bad measurement samples from good ones. It
is also found that the pretrained MLP is not effective against
adversarial attacks generated under the white-box assumption.

Turning to black-box attacks, Bhattacharjee et al. [16]
establish that conventional BDD is not successful in safe-
guarding the WLS-based AC state estimation approach against
adversarial attacks. In recent work, the vulnerabilities of
state estimation techniques to a black-box attack have been
investigated [21]. The authors introduced a stealthy black-box
attack algorithm capable of deceiving any state estimation

model. The attack vector is generated by solving a convex
optimization problem that incorporates a surrogate of the state
estimation model in its objective function. This approach has
been found successful in bypassing multiple detection-based
safeguarding strategies, including conventional, statistical, and
learning-based methods, when just a subset of measurements
are manipulated. Our literature review suggests that there is
currently no detection method that is effective against the
variety of adversarial attacks, under white-box and black-
box settings. Moreover, statistical methods that were found
successful in detecting a specific type of FDIA do not attain
a high success rate when it comes to adversarial attacks [21].

In recent years, XAl techniques that compute feature attri-
bution score and Shapley value have been adopted to detect
adversarial attacks on image classification models [19], [22].
Yet, to our knowledge, the application of a feature attribution
method to safeguard DSSE, which is a multivariate regression
task, is explored for the first time in our work.

III. BACKGROUND
A. Distribution System State Estimation (DSSE)

Definition. DSSE is the problem of determining the dis-
tribution network state, e.g. voltage magnitude and phase
angle of some nodes, from potentially noisy and incom-
plete measurements obtained from various telemetry systems,
such as Supervisory Control and Data Acquisition (SCADA),
Distribution-level Phasor Measurement Units (D-PMUs), and
Advanced Metering Infrastructure (AMI).

Casting state estimation as a WLS problem is the most
widely used approach in transmission and distribution systems.
Let us denote the vector that collects all n state variables as x
and the vector that collects m independent measurements as
z. To estimate the system state at a given time, a WLS-based
estimator minimizes the following objective function [2]:

m
min J (x) where J(x) = > (2 — hi (%)* R (1)
i=1
Here h(-) is the (non-linear) function that relates state vari-
ables, x, to the measurements, z, and R is a diagonal matrix
known as the covariance matrix of measurement errors and
is constructed as R = diag(c?,--,02,) where Ry, = o}
is the variance of the k" measurement in z. Writing (1) in
vector/matrix form gives

min [z — h(x)]" R [z — h(x)], )

where h(x) = Hx with H being the measurement matrix and
defined as the Jacobian matrix of h(-), i.e. H = dh(x)/dx.

B. Data Manipulation Attacks

We consider the following attacks in our evaluation.
Stealthy FDIA: This attack replaces the measurement vector
z by z, = z+ a, where a is the attack vector defined as [11]:

a=h(xa) — h(x) 3)

The key objective of the stealthy FDIA formulation is to
bypass the conventional BDD mechanism, which thresholds



the measurement residue to detect the presence of bad mea-
surement data. Under FDIA, the residue can be written as:

Ta =%a— h(Xa) =2+ a— h(xa)
= (z— h(x)) + a— h(xa) + h(x)

=r4+a—h(xXa) +hx)=r using Equation (3)

Here, r is the residue calculated for benign data, z. Thus, gen-
erating an attack vector using (3) which requires knowledge of
h(-), ensures that the residue under attack remains the same as
the residue of benign data, bypassing the conventional BDD.

Adversarial Attack: Two different types of adversarial at-
tacks on DSSE have been proposed in the literature, both
capable of striking a balance between effectiveness and stealth-
iness.

a) Fast Gradient Sign Method (FGSM) [23]: Three
variants of FGSM have been proposed to date: (a) the basic
FGSM attack in which the sign of the gradient of the surrogate
model’s loss with respect to the input data is used to construct
the attack vector [9]: a= — e-sign(V,[L (99(2),x)]) with
go(z) representing the surrogate model that is trained on
historical measurement data to mimic the victim DSSE model;
(b) Sneaky FGSM [9]: a variant of FGSM that selectively
adds perturbation to measurement data, thereby increasing the
chance of remaining undetected; and (c) Targeted FGSM:
a variant of FGSM that allows the attacker to control the
direction and amount of error that is being injected [24],
e.g. causing only erroneous overvoltage estimation. Unlike
FGSM and Sneaky FGSM that can work under the black-box
assumption, Targeted FGSM is successful under the white-box
assumption only due to its targeted nature [24].!

b) Deep Black Box Adversarial Attack (DeeBBAA) [21]:
This black-box attack strategy finds the attack vector that
maximizes the deviation from the true state estimation result
rather than the one that directly maximizes the loss of the
state estimation model — the objective used in FGSM and its
variants. The attack vector is generated following a two-step
process. First, similar to other black-box adversarial attacks
(i.e., FGSM and Sneaky FGSM), a surrogate model, denoted
as go(z), is trained on historical measurement data to mimic
the victim DSSE model. In the next step, a constrained opti-
mization problem is solved to find the adversarial perturbation
vector, a, that has a sufficiently small 2-norm and results in
the greatest deviation from the state estimation result using
benign data:

max [|go(z + ) — go(2)|2
s.t. llallz < e

Since the above problem is non-convex, a semi-definite pro-
gramming (SDP) relaxation is proposed in [21] by incorpo-
rating the gradient of the surrogate model’s loss function,
and solved to generate the attack vector quickly. DeeBBAA
is claimed to be successful in bypassing conventional and
statistical detection methods, such as chi-squared test, largest

IFGSM serves as the foundation of basic iterative method (BIM) and
projected gradient descent (PGD). For this reason, we consider this particular
adversarial attack in our evaluation.
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Fig. 1: Schematic overview of DEFEAT

normalized residue test, adaptive non-linear cumulative sum,
KL-divergence (KLD) based detector, as well as several
learning-based detection models that are trained on malicious
measurement data crafted by FDIA.

IV. METHODOLOGY

Figure 1 shows the architecture of DEFEAT, which is a filter
through which every measurement vector must pass before be-
ing fed to model-based or data-driven DSSE. At any time step
t, DEFEAT takes the measurement vector, z¢, and outputs the
probability that it is malicious. To do this, it uses two machine
learning models: (a) a deep neural network, denoted as fy,
estimating the state vector, x;, from the measurement vector,
z¢, so that per-feature attribution scores can be calculated (as
discussed in Section IV-B), and (b) a classifier to separate
malicious data from benign data. We note that fy could be the
model used in data-driven DSSE or a deep neural network that
is trained independently to approximate the DSSE process,
i.e., mapping the measurement vector to the DSSE result.
The latter allows us to use DEFEAT to also safeguard model-
based DSSE approaches, which use a physical model for state
estimation.

A. Machine Learning Models

We choose the Stacked ResNetD model proposed for DSSE
in [5] as fy. This model consists of three base learners, each
being a 13-layer dense ResNet model that is trained to estimate
the state given the measurement data. The output of these
base learners are combined together and fed into a multivariate
linear regression model, serving as the meta-learner. We use
historical measurement-state pairs, i.e. {(z¢, X¢)}¢, to train
the ensemble. Our choice of fy is motivated by the strong
performance of Stacked ResNetD in DSSE [5] and its better
robustness due to the use of ensemble learning [25].

2 Any neural network that has enough learning capacity to accurately predict
the system state can be used as the function approximator in DEFEAT.



We adopt a logistic regression model as our classifier. It
takes as input the feature attribution scores (calculated using
fo as discussed next) and outputs the probability that the
measurement data is malicious.

B. Perturbation-based Feature Attribution Method

Perturbation-based feature attribution methods quantify the
contribution of each feature of an input sample to the machine
learning model’s decision by perturbing the value of that
feature. A famous perturbation-based attribution method is
leave-one-out, which creates a new sample by occluding one
feature in the input sample, i.e., replacing its value by zero.
Both samples are then fed to the machine learning model and
the amount of change in the output of this model is used to
calculate the importance or score of that feature. Concretely,
when the machine learning model is a C'-class classifier that
maps an input sample z € R™ to a probability vector of size
C, Yang et al. [19] proposed calculating the score of the ¥
feature, denoted as ¢(z);, using the following equation:

d(2); = fo(z)e—fo(z © (1 —3¢))e, 4)

where ¢ = argmax;cc fo(z); with fo(.); € [0, 1] being the
jth element of the probability vector returned by the classifier
fo, s; is the one-hot encoding of the it" feature of z, and
©® 1is the element-wise product. Repeating this process for all
features yields the attribution vector ¢(z) € R™. Then, the
interquartile range (IQR) of data in ¢(z) is used to characterize
statistical dispersion of the feature attribution scores:

IQR((2)) = Q3(¢(2)) — Q1(¢(2)) )

Here 3 and @); denote the upper and lower quartile of the
data, respectively.

As shown in [19], statistical dispersion of malicious data
crafted by an adversarial attack is consistently larger than
benign data. This implies that malicious data can be detected
either by thresholding IQR(¢(z)) or by fitting a logistic
regression for the dispersion of the feature attribution scores on
a training set, which eliminates the need for setting a threshold.
We adopt this idea to detect data manipulation attacks. But,
since DSSE is a multivariate regression problem rather than a
classification problem, with fy being the Stacked ResNetD
model, we have to make fundamental modifications to the
approach described above. First, we use a feature attribution
matrix, denoted as ®(z), instead of a feature attribution vector,
because we have multiple state variables. Second, we update
Equation (4) as DSSE predicts state variables rather than as-
signing probabilities to classes. Specifically, we define the ‘"
row of the feature attribution matrix, denoted as ®(z); € R,
as the difference between the output of the DSSE model on
the true measurement data z and its output on z® (1 —s;) in
which the i feature of the measurement data is masked:

®(2); = fo(2) = fo(z O (1 —si)) (6)

It follows from this definition that any column j of this
matrix contains the attribution scores of all m features with
respect to the j** state variable (®(z)"; € R™). Notice that
analyzing the dispersion of all data in ®(z) is not meaningful

as they pertain to different state variables, so we calculate
statistical dispersion of the data in each column separately,
using Equation (5). Finally, we fit a logistic regression for
the vector of dispersion measures obtained for the n columns.
This model is used to classify data as malicious or benign.
The main steps of DEFEAT are shown in Figure 1.

Remark. Since the attack strategy would not be known
at the time of training the logistic regression classifier, it is
not realistic to train this model on malicious data generated
by the specific attack strategy that we evaluate it on. Thus,
we train the logistic regression classifier on malicious data
generated by the basic FGSM with the perturbation factor
€ = 0.1 and a convolutional neural network (CNN) used as the
surrogate model (see [9] for details). Once trained, we evaluate
its performance on various attack strategies.

V. EXPERIMENTAL SETUP
A. Baseline Detection Approaches

We briefly introduce three detection methods that have been
proposed for safeguarding DSSE, namely residual-based BDD
with hypothesis testing, Kullback—Leibler Divergence (KLD)-
based detector, and Neural Attack Detector (NAD). These
methods serve as our baseline.

Residual-based Bad Data Detection (BDD): Residual-based
BDD is a widely used strategy to identify the presence of bad
measurement data that might occur due to sensor drift and
bias, interference, and incorrect topology information [2]. This
method typically runs on top of the WLS-based state estimator
by processing the measurement residuals. Once the state is
estimated, it is utilized in the residual-based BDD mechanism
to get an estimate of the measurement vector, denoted as
z=Hx. Then, the measurement error is calculated as e=z — z.

From (1), the residual can be rewritten as:

m 6-2 m e; 2

Notice that Equation (7) is of the form y = E?Zl X2,
resembling the chi-squared distribution with d degrees of
freedom. Given the assumption m > n, at most (m —n) of the
measurement residuals will be linearly independent, resulting
in d = m—n. Thus, to detect the presence of bad measurement
data, J(x) is compared to the critical chi-square value at the
degree of freedom d, and a pre-specified level of significance
a. If J(z) < xﬁ’a, then the estimated state, X, can be trusted.
Otherwise, the measurement is assumed to contain bad data.

KL Divergence-based Detection (KLD): This effective strat-
egy to mitigate FDIA on state estimation is proposed in [17].
The basic idea is to compare the KLD between two distribu-
tions py, and q, denoted as Dk, (px||q), against a predefined
threshold, 7, at any time step k, to decide if the measurement
sample zj; contains bad data. Let g be the distribution of
average measurement variations obtained from the historical
data and pj be the distribution of measurement variations at
time step k, defined as py=2zx —2zx_1. When all measurements
are expressed in the per unit system, most of the measurement
variations, i.e., the elements of py, should be close to zero,
even though not all measurements are of the same type and




they are from sensors installed at different locations in the
network. In other words, regardless of the type of the measure-
ment, the difference between two consecutive measurements
obtained from any sensor can be treated as the realization
of one random variable. If no bad data is injected into zy,
then the distribution of measurement variation at time step
k, i.e. pr, should be similar to the distribution of average
measurement variations obtained from historical data, i.e. q.
Thus, Dk, (pr|/@) should be smaller than .

Neural Attack Detection (NAD): Malicious data can be
detected using a deep neural network trained on a mixture of
benign and malicious data. This neural network, called NAD,
was initially introduced in [7] to protect transmission system
state estimation. It has six hidden layers. ReLU is used as
the activation function of hidden layers and Softmax is the
activation function of the output layer. We train this NAD
model using adversarial data generated by the basic FGSM
attack crafted using a CNN surrogate with e=0.1, and evaluate
it using a more diverse and larger set of adversarial samples.

B. Simulation Scenario

Distribution Network: To obtain training and test datasets,
we adopt the IEEE 33-bus system presented in [26], which
was extended by using the IEEE European low voltage test
feeder® as the secondary networks. Each of the primary buses,
except the first one, is connected to a low-voltage feeder
(i.e. the secondary network), powering 55 single-phase loads.
We utilize the Multifamily Residential Electricity Dataset
(MFRED) [27] to model these loads. This dataset comprises
daily load profiles from 390 US apartments, recorded at 15-
minute intervals over a span of 12 months (from January
2019 to December 2019). The load data is segmented into
26 groups, with each group encompassing the average real
and reactive power usage of 15 apartments. We augment
the original dataset by adding Gaussian noise with standard
deviations of 1%,2%,---,10% to each of the 26 house-
hold load data to generate 286 distinct apartment load data
including the original 26 households. Then, we create 500
hypothetical buildings, each consisting of 1 to 10 apartments
chosen randomly from the 286 apartments. These hypothetical
buildings are then connected to the secondary buses, serving
as the system loads. We assume that each building is equipped
with smart meters, providing load data at 15-minute intervals.
Additionally, we assume six buses in the primary bus system
are equipped with D-PMUs providing phasor information. The
number of D-PMUs is chosen following [26] as this level of
observability led to reasonable state estimation performance.
Note that determining the optimal number of measurement
devices and their location is outside the scope of this work,
so we just tried one reasonable sensor placement strategy. We
conduct an AC power flow analysis on this network using
the Open Distribution Simulator Software (OpenDSS) [28] to
generate the training and test datasets. In the real world, the
training dataset can be constructed in a similar manner by
utilizing historical load and generation data to solve power
flow equations and determine the states.

3https://cmte.ieee.org/pes- testfeeders/resources/

State Variables: Our approach to defining measurements
and states aligns with the method outlined in [29]. Specifically,
state variables are represented by bus voltage phasors denoted
as xg=[v}, - ,vf,ei, e ,0?], with b denoting the number
of buses not equipped with D-PMUs, and vi and 0% denoting
the vectors that contain the three-phase voltage magnitudes and
phase angles of bus ¢ at time step ¢, respectively. The system
state is represented by the three phase voltage magnitudes
and phasor angles of 27 buses that are not equipped with D-
PMUs. Thus, the state vector is of size 27x3x2=162. On
the other hand, various combinations of redundant network
data, including bus voltage phasors, real and reactive power
consumption, and branch flows, can serve as measurements
for the DSSE process. We define the measurement vector as a
combination of real and reactive power consumption obtained
from the MFRED dataset (in real scenarios this data can
be obtained from smart meters connected to the household
loads) and the voltage magnitude measurements obtained from
the buses equipped with D-PMUs. Considering the first bus
as slack bus, we have three-phase real and reactive power
measurements from 32 load buses and three-phase voltage
magnitude values from the six D-PMU installed buses. Thus,
the measurement vector is of size (32 x 3 x2)+ (6 x 3) = 210.

We split the entire dataset into three portions— (a) training
data for the learning-based detection methods, i.e. DEFEAT
and NAD, (b) training data for the surrogate models used in
adversarial attack generation, and (c) test data. We utilize the
data from the first half of each month to train machine learning
models for DEFEAT and NAD. Given the dataset’s 15-minute
resolution, this results in a total of 17,280 training samples.
From the remaining days, we randomly select three to con-
struct the test dataset. This process yields 3,456 test samples,
organized into 12 groups of 288 consecutive measurements.
These groups, evenly distributed across the one-year window,
comprise data from three consecutive days per month, with 96
samples per day. The remaining samples, spanning 12 days in
the second half of each month, are reserved for training the
surrogate models during adversarial attack generation.

VI. RESULTS

To evaluate DEFEAT and baseline detection methods, we
create malicious data using the attack strategies presented
in Section III-B. Specifically, one batch of malicious data
is generated according to the FDIA strategy. For each of
the black-box, untargeted attacks, nine batches of adversarial
data are generated using three different surrogate models and
three € values for each surrogate model. The architecture of
these surrogate models is described in [9]. For the white-box,
targeted attack, the attacker does not need to train a surrogate
model as they know the architecture and parameters of the
victim DSSE model, i.e. Stacked ResNetD. Thus, we just
create three batches of adversarial data using three € values.

To evaluate each detection method, we plot the receiver op-
erating characteristic (ROC) curve by adjusting the threshold
used in each detection method to separate the two classes. The
ROC curve is the plot of the true positive rate (TPR) against
the false positive rate (FPR), with TRP being the proportion



TABLE II: Comparing performance of DEFEAT with baseline
detection methods on different data manipulation attacks.

Attack i/}]gioe%ate € AUC
BDD NAD  KLD  DEFEAT
FDIA N/A N/A 0507 0944  1.000  0.999
Stacked 005 0595 0576 0999 0999
ResNetD 0.15 0.825 0799 0999  1.000
030 0942 0882  1.000  1.000
0.05 0.680 0999 0782 0999
FGSM NN 7015 0872 1000 0855  1.000
030 0.899  1.000 0874  1.000
0.05 0653 0999  0.884  1.000
MLP 7015 0884 1000 0925  1.000
030 0943  1.000 0929  1.000
Stacked 005 0536 0526 0947 0952
ResNetD 0.15 0766 0567 0961  0.963
030 0900 0.608 0962 0970
0.05 0519 0650 0591  0.889
2&?}:} CNN 7015 0521 0618 0635 0940
030 0577 0618 0653 0946
0.05 0512 0959 0513  0.892
MLP 7015 0718 0971 0518 0944
030 0848 0977 0519 0957
Targeted A 0.05 0565 0337 0938  1.000
FGSM 0.15 0734 0760 0995  1.000
030 0923 0956 0997  1.000
Stacked 04 0612 0918 0508  0.998
ResNetD
DeeBBAA CNN 04 0535 0930 0873 0994
MLP 04 0561 0949  0.656  0.999

of adversarial measurement data that are classified correctly
and FPR being the proportion of benign measurement data
that are misclassified as malicious. We use the area under the
curve (AUC) of the ROC curve to compare different detection
methods. For each attack, the detection method that has the
highest AUC is the most successful one. Table II summarizes
the results for all 21 cases. Figure 2 also shows the ROC
curves of DEFEAT and baseline detection methods for 5 of
these cases. The plots for the remaining 16 cases are omitted
to save space.

It is evident from the table that DEFEAT outperforms the
three baseline methods in detecting various types of adversarial
attacks generated with different perturbation factors, e. While
NAD shows comparable performance in detecting some of the
attacks, its performance is not consistent across all the attacks,
especially in case of Sneaky FGSM and Targeted FGSM with
smaller e values. This variable performance can be attributed to
the fact that NAD was trained on adversarial data generated
solely by the basic FGSM attack, highlighting the inherent
limitation of neural attack detectors as they are constrained by
the data used for their training. On the other hand, the KLD-
based detection method has subpar performance, although it

is slightly better than BDD. Overall, our analysis reveals that
unlike traditional FDIA, surface-level analysis of measurement
data (e.g. applying a threshold to their residual or statistical
properties of their distribution) is not sufficient to detect
adversarial attacks. We expand on this in the next section.

VII. DISCUSSION

A. Why Does the Dispersion of Feature Attribution Scores
Reveal Malicious Data?

Adversarial data are crafted by adding small perturbations
that maximally confuse the victim model. Hence, they are
often indistinguishable from the original data in terms of
statistical properties, such as mean, variance, etc. Conventional
and statistical detection methods, such as BDD and KLD, rely
on the assumption that the injected data follows a specific
pattern, which is violated by adversarial attacks. As a result,
despite being effective in detecting FDIA, they cannot offer
a reliable approach for detecting adversarial attacks. This
is evident from Figure 3a, which shows the histogram of
KLD values for the benign and adversarial measurements,
D (penignllq) and D (padv||q), respectively. Here, g represents
the measurement variation distribution obtained from the his-
torical data. It can be readily seen that there is a significant
overlap between the two histograms, making it impossible
to find a good threshold (7) to achieve high TPR and low
FPR simultaneously. Adversarial attacks and stealthy FDIAs,
however, leave a trace on the representations used by neural
networks for classification or regression. Thus, the key to
identifying adversarial data lies in examining how the neural
network’s decision-making process is affected by these data
samples, which can be done using an attribution method.
Figure 3b compares the histogram of the probability produced
by the logistic regression classifier used in DEFEAT. Observe
that there is no overlap between the two histograms, making
it easy to classify the data.

To get a better understanding of what DEFEAT does, the
feature attribution scores of each of the 210 measurements
(rows) for each of the 162 estimated states (columns) for
a particular measurement sample z; have been presented in
Figure 4. A notable contrast emerges between the benign
and malicious versions. Inspecting the plots that pertain to
malicious data reveals that perturbations introduced by the
attacker result in the misidentification of some features that
are not actually important as highly influential. Consequently,
this leads to erroneous estimations, which explains the suscep-
tibility of the DSSE process to malicious data.

Apart from its superior performance, a major advantage of
DEFEAT is its generalizability across different victim models.
Unlike the conventional BDD that uses the states estimated
by the victim model to calculate the measurement residual,
DEFEAT uses raw sensor data, z;, collected at time step ¢
and classifies it as benign or malicious. Thus, its performance
remains consistent across different victim models.

B. Sensitivity to Measurement Noise

In the previous experiments, we considered an ideal scenario
with no measurement noise. However, electrical measurement
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Fig. 2: ROC curves of detection methods under different attacks. Note that for the black-box adversarial attacks (i.e. FGSM,
Sneaky FGSM, and DeeBBAA), a CNN consisting of 3 convolutional layers and 3 dense layers with ReLLU activation is used
as the surrogate model.
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Fig. 3: Histogram of (a) KLD and (b) output of DEFEAT
approach for the benign and adversarial samples crafted with
vanilla FGSM (e = 0.15) using the MLP surrogate. Note the
y-axis is in logarithmic scale.

DeeBBAA

devices do not measure the physical quantity with 100% accu-
racy. To understand the robustness of the proposed DEFEAT
approach in a more realistic scenario, we evaluate DEFEAT on
noisy test data samples. We generate the noisy data by adding
Gaussian white noise with standard deviation o = 0.01 to the
test dataset. The standard deviation is chosen such that the
error is in the range of +3% in the vast majority of cases.* === === =
Figure 5 compares the logistic regression output on benign T
samples, noisy samples, and samples created by Stealthy

FDIA, FGSM, and Sneaky FGSM (representing stealthy adver-
sarial attacks). It can be readily seen that measurement noise
has little impact on DEFEAT’s performance. Despite being T — — —
trained on noise-free data, DEFEAT successfully classifies  fuscrom
noisy data as benign, while still identifying malicious data | |
generated by FDIA and FGSM. This is because DEFEAT
assigns relatively higher probability scores to malicious data
than noisy data, leading to a clear separation between the two —_— —— = —— = =
classes. Even in the case of Sneaky FGSM, which is the most ' '"/7iingrrmmmmmmmm s e s e prnnng s smm—m—ms
difficult adversarial attack to detect as evident from Table II,
one can still find a threshold that results in an acceptable
trade-off between TPR and FPR. This confirms that data
manipulation attacks leave a trace on the representations used

by neural networks, and therefore, are distinguishable from the  eyaluation, we demonstrate the effectiveness of this approach
effect of measurement noise through the perturbation-based jj jdentifying FDIAs and adversarial attacks generated using

FGSM

Fig. 4: Feature attribution score of each measurement feature
for (a) voltage magnitude and (b) phase angle estimation at
different buses. The x-axis labels are bus numbers.

feature attribution method used in this work. various surrogates, even in the presence of measurement noise.
We explain why conventional and statistical detection methods
VIII. CONCLUSION often fail to detect adversarially crafted data and shed light on

We introduce DEFEAT, a robust feature attribution-based the superior performance of DEFEAT.
detection strategy aimed at safeguarding DSSE by detect-

. . . This study lays th dwork fi 1 isi -
ing the presence of malicious data. Through comprehensive 18 SUCY ays the grounawork fof scverdl promising re

search directions in the areas of data-enabled optimization

4The European standard for energy meters (EN 50470-3:2006) allows j‘md cybersecurlty in the smart grid. One intriguing dlreCt?On
measurement error of up to +2.5% [30]. involves evaluating DEFEAT under a stronger assumption
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Fig. 5: Output of the logistic regression model for benign, noisy (natural measurement noise) and malicious data generated
using (a) FDIA, (b) FGSM, and (c) Sneaky FGSM. Note the y-axis is in logarithmic scale.

where adversaries have access to the structure or inner working
of the detection method. Another direction is to evaluate its
performance under sparse attacks where the adversary can
compromise only a subset of sensors. Designing algorithms
to identify the attack point and developing data-driven DSSE
techniques that are inherently robust to malicious data are also
deferred to future work.
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