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Abstract—Traffic signal control plans significantly impact
transportation system efficiency by regulating traffic conditions at
intersections. Adaptive traffic plans that can adjust to real-time
road conditions are more effective as a result. Reinforcement
learning succeeds at adapting strategies based on feedback
derived from the environment, and is thus proficient in dealing
with complex traffic scenarios that change dynamically. However,
current RL methods rely on significant computational periods
to obtain precise functioning mechanisms within the scenarios,
posing barriers to their adoption for new scenarios. In addition
to directly optimizing the RL model itself to enable fast learning
from scratch, another idea is to make the model transferable
or reusable with the learned experience. Given the diversity
of migration scenarios, the underlying control algorithm should
guarantee convergence and endeavor to be parameter-insensitive.
From the above concern, we proposed MetaSignal, an efficient
meta-reinforcement learning method for traffic signal control.
Specifically, our approach utilizes the Fourier basis as the value
function approximation in reinforcement learning, distinguishing
it from methods like neural network approximation. This linear
approximation offers advantages such as convergence facilitation,
error bound achievement, and reduced parameter dependence.
The meta-learning framework adopts a model-agnostic approach,
enabling effective adaptation of the base model to the target
scenario with limited training cost. Empirically, the proposed
method shows promising and stable performance for traffic signal
control through comprehensive comparison experiments in both
synthetic and real-world traffic networks.

Index Terms—Meta-reinforcement learning, traffic signal con-
trol, function approximation.

I. INTRODUCTION

Traffic signal control plans act as intersection controllers,
indicating whether the movement is passable at the time
through signals, and thereby influencing the efficiency of the
traffic system. The dominant approach in current practice is
to construct control plans based on historical observations of
pavement conditions. Such plans have fixed patterns but have
no flexibility to adjust to real-time conditions at intersections.
Since the transportation environment features high dynamics,
the ideal control methods are expected to be robust and adapt-
able, capable of tailoring the signals by actively interacting
with the real-time environment [1]. Adaptive traffic signal
control (ATSC) responds on demand, enhancing the system’s
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throughput, and providing an optimized driving experience for
vehicles on the transportation network by reducing average
waiting times. Among the various approaches for its imple-
mentation, reinforcement learning (RL) proves to be more
reliable [2].

RL-based ATSC methods learn the customized control pol-
icy suitable for road networks collaboratively by the multi-
agents, with each intersection controlled by an autonomous
agent. Notably, these methods do not provide agents with the
mechanism underlying the system operation or the policies’
role in influencing the system’s states. Instead, agents are
required to learn from the valid samples collected to acquire
such knowledge. The process raises two concerns: First, there
is a need for sufficient datasets for complex traffic conditions,
as the number of training sets increase, the dimension of
the state space grows exponentially. Second, owing to the
trial-and-error nature of the training mechanism, a substan-
tial amount of exploration time is indispensable to ensure
the model’s comprehensive training [3]. Nevertheless, these
methods do not provide a universal structure design that can
be adapted to all different road networks. When learning a new
scenario, retraining the corresponding models from scratch is
often necessary, the training cost is considerable.

To enhance the generalization of RL-based methods and
improve efficiency, a helpful approach is to utilize the acquired
knowledge to facilitate learning in target scenarios. This is
where meta-learning emerges as a valuable strategy, aiming
to get a well-generalized meta-learner capable of quickly
adapting the specific base learner to the new scenarios [4].
Through meta-reinforcement learning, ATSC methods extract
shared knowledge from a limited range of training scenarios
and utilize this knowledge to initialize new learning tasks.
Consequently, the exploration duration of the optimal solution
space is significantly reduced, leading to quicker convergence
to the optimum solution within fewer trials. Several studies
have validated the feasibility of this scheme, but all of them
are based on neural networks value function approximation
[S1H7].

To derive common knowledge applicable to diverse traffic
environments, the underlying ATSC algorithm employed re-
quires convergence guaranteed and parameter insensitivity, en-
suring acceptable performance across encountered scenarios.
Theoretical analysis [8] indicates that RL via linear function
approximations exhibits manageable error bounds and stable
convergence, whereas nonlinear cases may suffer from diver-



gence in various situations. Moreover, linear learning methods
require fewer parameters, resulting in higher generalizability
across different tasks. Additionally, linear function approx-
imation demonstrates high efficiency in terms of training
data utilization and computational properties. However, it is
essential that the value function to be linearly approximated
must have guaranteed sufficient precision. Among various
basis functions, the Fourier basis linear function approximation
[9] stands out as it does not require transition samples,
and the set of basis functions is constructed at a low cost.
Furthermore, its structure incorporates prior knowledge about
variable interactions, thus facilitating the induction of the value
function’s structure.

In this paper, we propose MetaSignal, a novel meta-
reinforcement learning model for traffic signal control. To the
best of the authors’ knowledge, this is the first work that
addresses meta-reinforcement ATSC learning via Fourier basis
linear function approximation. MetaSignal follows MAML [4],
[10], enables tailoring to new traffic scenarios by efficiently
adapting the generic initialization model with restricted learn-
ing resources. As the acquired base model requires further
adaptation to diverse transportation scenarios, Fourier basis
function is employed to linearly approximate the RL value
function, as it provides convergence guarantees with verifiable
error bounds, in contrast to other non-linear methods [9], [11].
Besides, considering the classical Max Pressure control [12]
has proved its sophistication in the RL domain [13], [14],
we employ its variant traffic intensity for evaluating the state
and reward of the RL agent [15]. Empirically, the diverse ex-
periments demonstrate that the proposed method outperforms
the representative baselines, while its base algorithm shows
efficient performance. The technical contributions of this work
are listed as follows:

o For the general information extracted needs to fit diverse
transportation environments, we are the first solve the
value function via Fourier basis function approximation
for meta-reinforcement ATSC learning.

o The proposed base linear function approximation ATSC
model shows the advantages of stable performance and
rapid convergence over other methods.

o The conducted comparison experiments on synthetic and
real-world traffic datasets validate the proposed control
method’s strong learning performance with sustained high
efficiency.

The rest of this paper is arranged as follows. Section II
introduces the recent development of the relevant technolo-
gies. The specification of the task environment and detailed
definitions for RL is then given in Section III. Section IV
presents the framework of MetaSignal, followed by Section
V, which demonstrates its performance through comparative
experiments on synthetic and real datasets. Lastly, Section VI
offers concluding remarks.

II. RELATED WORK

Most traditional traffic signal control methods are estab-
lished control schemes based on human priori, are still widely
used for traffic signal management in the current real world.

These methods rely heavily on expert knowledge, unable to
sense and react to real-time traffic situations, and typically
perform unsatisfactorily in the face of complicated real-world
scenarios. Subsequent conventional improvements have set it
up as the optimization problem in certain traffic environments.
For instance, [16] proposed their traffic signal control method
based on stochastic predictive control, that incorporates uncer-
tainty in exogenous traffic flow and downstream traffic flow
turn rates in the modeling. [17] specifically considers the traffic
demand for lane changing, incorporating additional features of
lanes configuration beyond the typical traffic phase and vehicle
trajectories, bringing it constructive to autonomous driving
environments as well. Max Pressure (MP) [12] proposes a
constructive traffic indicator named pressure, defined as the
difference between the number of vehicles entering and exit-
ing intersections, the value of which is positively correlated
with intersection congestion, and the idea of which is still
practically instructive. However, the strict assumptions and
simplified dealing with traffic conditions these methods rely
on pose obstacles to their real-world application.

In contrast, RL-based algorithms derive experiences directly
from interactions with the environment instead of manually
settings, and thus have higher potential. PressLight [13] im-
plemented MP control [12] through reinforcement learning,
followed MPLight [14] makes fine-tuned adjustments to the
model’s structure, enabling its application on a broader scope
of traffic environments. Furthermore, IPDALight [15] incor-
porates the vehicle speed, position, and interaction between
traffic intersections into the modeling based on Presslight,
upgrades the concept of pressure to intensity, and distinguishes
it from the conventional RL class of TSC algorithms by
making the phase duration flexible.

Besides, plenty more studies present their ATSC logic from
flavorful perspectives. FPAR [18] gives an expanded form
of phase definition and assigns signals to different intersec-
tions by quantifying the prioritized demand between possible
phases. [19] dynamic concurrence of computational resources
by asynchronous advantage actor-critic learning, results in
optimized control performance. Instead, [20] analyzes the
priority of traffic flows through the main usage of directed
acyclic graphs. In addition to optimizing the commute duration
experience of vehicles on the road network, some research
has focused on the wider needs of vehicles. PrivacySignal
[21] considers the need for commuters to have their privacy
adequately protected, adding secure interactive protocols along
with the control method. SafelLight [22] designed its traffic
signal control plans intending to ensure zero crashes at inter-
sections by making road safety standards mandatory.

Since RL-based algorithms are trained based on data col-
lected from the environment, they tend to be applicable only on
particular scenarios. To extend the transferability of such algo-
rithms, some attention has been paid to meta-learning, which
transfers the knowledge gained from similar tasks to help the
learning of a new task, bringing improvements in both learn-
ing efficiency and effectiveness. Model-agnostic meta-learning
(MAML) [4] learns a set of optimized parameters with good
representation and applies them to initialize the subsequent
tasks, so that the tasks can be applied at a trivial learning



cost. It remain stands for the representative meta-learning
algorithm. In practice, scholars have found that the idea of
MAML is too idealized, just one set of global parameters is
not enough to cope with complex and diverse environments:
MUMOMAML [10] suggests learning the global initiation pa-
rameters for distinct environments separately. HSML [23] en-
visions summarizing different environments into finite groups
by Cluster algorithms, and finds the corresponding global
parameters for each cluster of tasks. Borrowing the above
sophistication ideas, some works achieve meta-reinforcement
learning of ATSC. MetaLight [5] adopts FRAP [18] as the base
learner and follows the MAML framework [4] to implement
meta-learning. Its undeniable drawback is that the method
merely enables parameter mapping at only single intersections.
Instead, GeneraLight [6] actualizes meta-learning as guided by
HSML [23]. Accordingly, it adjusts its base learner centered
on the clustering algorithm [24], and confirms the performance
on the generative dataset where cluster categories can be
clearly discerned. [7] employs the attention mechanism to
aggregate the compelling features, proposing its DQN-based
meta-learning approach.

The linear approximation of the RL value function has
been researched through iterative. [9] shows the feasibility
of using the Fourier basis as the linear continuous function
approximation. TD(\) [25] adapts the approximation to the
need for true online time-difference (TD) learning to be
updated at every step, instead of the traditional TD which
only updated at the end of each episode, and proposes a
new form of eligibility trace. [26] supports [25] with more
insightful and substantial theoretical argumentation. TOS(\)-
FB [11] applies the Fourier basis as basis approximation
functions to ATSC, and verifies the method’s control effects
on a real dataset in Cottbus, Germany based on the MATSim
simulator. CycleRL [27] instead uses the Kalman filter as the
linear approximation function, but can not control complicated
traffic systems such as with unmodeled traffic features, thus
only the single intersection dataset was taken as the target for
the simulation.

III. MODEL PRELIMINARIES

This section begins with introducing several fundamental
concepts within the traffic environment, where traffic signal
control is situated. Subsequently, we establish a standardized
definition of the problem within the framework of meta-
reinforcement learning.

A. Traffic Environment Definitions

This subsection describes the core transportation environ-
ment elements, where intensity is defined according to [15],
and gives Fig. 1 to show the specific concepts visually.

- Traffic movement: A traffic movement involves the pas-
sage of vehicles from an entering lane to an exiting lane across
an intersection. In a standard four-way entering configuration,
as depicted in Fig. 1(a), there are 12 distinct traffic movements.
Among these, traffic signals regulate all movements except
right turns, as right-turning vehicles usually have the freedom
to proceed without signal control, yet they must yield at a red

light. It is pertinent to mention that in real-world intersections,
a single traffic movement may encompass multiple lanes.
However, our model simplifies this complexity by focusing
on traffic signals controlling movements rather than specific
lanes.

- Signal Phase: Uncoordinated traffic movement combi-
nations, such as "east to west" and "south to north," can
create chaotic road conditions at intersections, leading to
reduced traffic efficiency and an increased likelihood of traffic
accidents. A phase serves as a timing unit for the controller,
defining a specific set of permissible pairs of traffic movements
that represent various combinations of allowed traffic flows.
Fig. 1(b) enumerates four detailed phase settings, which are
commonly used in realistic traffic intersection scenarios. As
an example, in Fig. 1(a), all three intersections activate phase
#2, allowing vehicles in the straight east-west lanes to pass.
Additionally, specific intersections adjust their phase settings
based on their unique traffic intersection topologies (e.g., 3-
way, 5-way intersections).

- Intensity of vehicles: Traffic intensity similar to pressure,
also indicates the ability of a vehicle to indicate its contribution
to the congestion level of the traffic flow, while capturing more
dynamics than pressure. Vehicles closer to the intersection will
bring more intensity to the intersection. Besides, their speed
through the intersection negatively correlates with the intensity
they bring. Thus, the intensity of a vehicle v is determined by
the distance from its current location to the target intersection
l,, the current speed s,, the length of the lane L in which it
is located and the maximum speed limit Sy,x:

L_l'u Smax — Sw
. 1
L x Sy +1 ) M

Tuzln<1+

Given the variability and quantity of the above parameters,
we directly label each vehicle in the Fig. 1(a) with its current
exemplary intensity value.

- Intensity of intersections: The intensity 777, of a given
intersection I; reflects the intensity between vehicles entering
and leaving the road network. It exhibits a negative correlation
with the balance of vehicle distribution density at the inter-
section, with higher values indicating a greater imbalance in
vehicle distribution. Take the situation shown in Fig. 1(a) as an
example, the intensity values at each of the three intersections
are Ty, = 3.6 =(08+13+13+1.6+08—-12-1.0),
T, =35=(12+10+17+08+1.2—1.6—0.8), and
T, =34=(19+12+15-1.2).

- Impacts of Neighboring Intersections: Regard the inter-
sections directly adjacent to the intersection in the correspond-
ing four cardinal directions as their immediate neighbors. The
impacts for neighboring intersection I; to target intersection
I; are calculated as below, Notable, if there are no immediate
neighbors in the intersection’s given direction, its correspond-

ing pressure is marked as O:
n Xt
1)). @2
Nlanei’ >) ( )

Z <Tlane,y X min (

lane; €lane;y,
where w,n are constant scalar, { marks the remaining time
of the current phase. lane;, indicates all lanes in the neigh-
boring intersection I; that can enter the target intersection

P, =w
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Fig. 1: Tllustration of traffic environment definitions. (a) presents a schematic illustration of a 1x3 road network, where inter-
section I is a standard intersection with 4-way entering approaches, each of which has three types of lanes (right/through/left).
Some moving vehicles are symbolized with the current intensity, where all the dotted vehicles are located in the right-turn
lanes, and their travel status are not controlled by signals. (b) enumerates four typical signal phases.

I;, Njane; denotes the vehicles number on the incoming
lane lane;. For the example in Fig. 1(a), take w = 0.5,
n = 2, t = 1 (unit: second), the blue and green boxes
accordingly highlight vehicles entering I from I; and I,
while the yellow box marks vehicles entering I; from Is.
thus Pp,p, ~ 1.13 = 0.5 x (3.4 x min(232,1)), P, =
1.55 = 0.5 x (3.1 x min(%,l)), and Pr, 1, = 145 =
0.5 x (1.7 x min(2%,1) 4+ 1.2 x min(2%1, 1)). Since there is
no vehicle trying to enter I3 from I , then Pr,. , = 0.

B. Reinforcement Learning Environment

Suppose there are a total set of intersections, each of them is
controlled by an RL agent. At time step ¢, based on the certain
traffic situation, agents observe part of the environment from
the finite state set S, then chooses the optimal actions from
the actions set A according to the policy 7(A* = a|S? = s).
The reward function R is accordingly specialized as R (s, a) =
E[R|S! = s, A® = a] in step t. Import the discounted factor 7,
this control problem can be represented as a Markov Decision
Process (S, A, 7, R,~). One way to acquire the policy 7 can
by estimate the optimal action-value function Q*(s',a') =
max, Q (s, m(s")), where V(s',a’) € S x A. The concrete
state design, action design, and reward design under current
multi-agent learning are clarified below.

- Observation: The precise assessment of congestion levels
in the approaching lanes holds paramount significance in
making informed decisions about selecting the subsequent
active signal phase in traffic signal control. Thus, each agent
constitutes the observation state sz, with the following com-
ponents: (1) The current signal phase, available directly from
the simulator. (2) The intensity of each phase and the traffic
pressure from their immediate neighbors, are evaluated by
the real-time state values obtained from the environment. The
complete system state is formed by the collective observations
of all agents.

- Action: At each timestep ¢, each agent executes a phase as
its action a;, which stands for the traffic signal setting should

be used in period ¢ 4 1 for intersection Z;. Especially for this
work, the entire phase set has four candidates, as indicated in
Fig. 1(b). Notably, the phase selection is not guided by the
cyclic or even-time principle, but the RL method chooses the
best phase to set.

- Reward: Our method takes the intensity of intersection
T7, as the reward of the according agent, which quantifies the
degree of uneven vehicle distribution at the intersection based
on the intensity difference between incoming and outgoing
vehicles. For agent 7, its reward rz, is given by rz, = —T7,.
Therefore, the rewards for the three intersections in Fig. 1(a)
are rz, = —3.6, rz, = —3.5 and rz, = —3.4. Minimizing
the reward leads to more efficient utilization of green lights,
ultimately enhancing the vehicle’s travel experiences.

IV. METHODOLOGY

In general, MetaSignal learns a well-generalized meta-
learner that enable speedy adaptation of the specific base
learner to the target scenarios, thus enhancing the learning
efficiency of approaching traffic signal control tasks. Next,
we present in turn the base model, which explicitly imple-
ments the learning of traffic signal control by linear function
approximation, and the meta-learner, which facilitates the
knowledge gained by the extended MAML paradigm to the
target intersections.

A. Base Linear Function Approximation Q-learning Model

To control the traffic signal, the base control method f(0)
receives state as input, predicts the Q-value for each ac-
tion, optimizing policy by minimize the reward. Since the
knowledge learned needs to be further transferred to other
scenarios as communal knowledge, the underlying base ATSC
algorithm employed requires convergence guaranteed and is
non-parameter sensitive. In this paper, we use linear function
to estimate the Q-value. Among the many basis functions, we
adopt Fourier series for its predominance [9], [11].



Algorithm 1 Model-agnostic Meta-learning via Fourier Basis

Input: Set of source road networks Vs; target road network
Yy stepsizes «, (; meta-parameter updating frequency
coefficient £

Output: Optimized parameters 6, corresponding to ),

* Meta-Training ;

1: Randomly initialize parameters 6g;
2: for training round=1,2,--- do
3 for =1, t+1, 2t+1, ---,T do
4 for t'=1, ---, min(t+t, T) do
5: for each YV; € Vs do
6 0; < 0y;
7 Compute coefficient vectors c;;
8 Generate transitions into D from Vi
9: Sample a transitions set from D as Dy,;
10: Compute features ¢y, (s, a);
11: Update 0y, < 0y, —aVeLp, (fo);
12: end for
13: end for
14: Sample a new set of transitions from D as D/yi;
15: Compute features ¢, (s, a);
16: Update 8y by 0y <+ 0y — 3 Zyl_ Vgﬁpfyi (fo)s
17: end for
18: end for
* Meta-Testing ;
19: for ), do

20: 0y, < bo;
21: for =1, 2, ---,T do

22: Compute coefficient vectors cg;

23: Generate and sample transitions as Dy from Vg;
24: Compute features ¢y, (s,a) ;

25: Update Gyg by 03;9 — Gyg — OLVgﬁpyg (fg);

26: end for

27: end for

In the Fourier basis linear function approximation case, the
action-value function )(s,a) is approximated as a learned
weights parameter vector @ € R™ and a weighted sum of a

set of m basis functions {¢;(s,a)}]":

Qg(&a) ~0- ¢(S, a)- 3)

d(s,a) = >i", @i(s,a) stands for the vector containing
all m features for the state-action pair (s,a). The elements
in ¢y,(s,a) that correspond to the current action at take
on the values of the Fourier basis, besides, the elements
corresponding to other actions are all defined to be valued
in zero:

cos(mej-s) ifa=a'

. = ; 4
¢v.(s,a) { 0 otherwise ’ “)
where ¢; = [c1,- -+, c|5] denotes the coefficient vectors, each
coefficient ¢; € {0,---,n}, 1 < j < m, 1 < k < |s]

determines the j-th basis function’s frequency along the k-th
state dimension. Practically, m is determined by how closely
the method captures the interactions between the different state
features. Here, we consider the interaction between at most
two features. The order n of Fourier approximation stands

for how large the frequency coefficients are basis functions
considered, this work defines it as the dimension of state
features.

Following the linear function approximation update rule, the
weights 6 undergo updates via stochastic gradient descent. Ac-
cordingly, over the sampled transitions set Dy, , the efficiency
of base learner function fy is measured by the following loss
function:

L(fe; Dy,) =

E’Dyi (T+7;pé1ﬁ@(s’,a’|féyi)—Q(s,a|fgyi))¢yi(s,a) )
&)

where é‘y marks the parameters of target base learner that are
fixed for every ¢ iterations.

Note that we did not follow the strict multivariate Fourier
Series [9], but made adjustments to adapt it to the RL setting.
First, sin terms of the Fourier series are dropped since the
Fourier basis function are guaranteed to be even, throwing
away the sin term by symmetric operations not only avoids
influence the calculations, but also reduces the complexity of
the evaluation [9]. Second, to address the credit assignment
problem, the method imposes temporal-difference errors and
an eligibility traces vector. The addition of these two items
allows the statuses visited to be recorded in a discounted
cumulative manner during the weight update process. Also,
the method follows the experience replay scheme to main-
tain a experience memory, save the experience as transition
d! = (st,al,rt, s"1). The replay maintains a constant size, as
training progresses, new transitions top off the old ones, agents
sample mini-batches from memory in random to upgrade the
policy. Finally, same in other works, the e-greedy exploration
strategy is adopted to address the exploration-exploitation
dilemma: In addition to the typical selection of actions based
on the highest Q-value guidance, the method retains a ¢
probability of choosing actions at random.

B. Model-agnostic Meta-Learner Framework

Our study aligns with the principles of the gradient-
based model-agnostic meta-reinforcement learning framework
MAML [4], [10], to find a well-generalized global initial-
ization 6y of base learner f that can adapt to all traffic
environments. Its pseudo code is given in Alg. 1.

Meta-Training: In the model’s training phase, the model
parameters’ optimization is performed by gradient descent
between the base learners and meta-learner alternately. Each
gradient step requires a newly sampled transitions batch D
with the current policy fg.

First, the method iteratively updates the parameters of the
basic learner fo,, , 0y, € {0y,, - ,0y,} with the transitions
batch Dy, sampled from }; correspondingly, where update at
each gradient step takes form as: Oy, < 0y, —aVeLp, (fe),
« are step size scalars, the loss function £ using Eqn. 5 as
previously defined.

Afterwards, after the adaptation of each basic learner )
is aggregated, meta-learner is learned by updating 6, using a



newly sampled transitions D’: 6y < 69— Zy VQ;CDS)i (fo),
where [ are step size hyperparameters. ’

When the training is over, there are a set well-generalized
parameters @, of f with universal adaptation. The loss function
of the meta-training process takes the form as

L(fo,: Dy,) = Epy, f907&V9£(f9;Dy1)j| : (6)

Meta-Testing: To get the particular model f to the new
traffic environment );, we put the above trained agents 6y as
initialization to process update Oy, :

6y, < 0y, —aVeLlp, (fo). @)

Then within a finite gradient steps, we can obtain a set of
finally gained optimal 6y, .

V. EXPERIMENTS

In this section, we validate the effectiveness and efficiency
of our proposed MetaSignal by conducting series of compar-
ative experiments on both synthetic and real-world datasets.
First, the experimental setup and datasets are described.
Subsequently, we give detailed experimental results and the
corresponding analysis.

A. Environment Platform

We run experiments on CityFlow [28], an advanced sim-
ulation platform that offers the simulation environments for
traffic signal control tasks. Based on the traffic flow dataset,
the simulator pushes vehicles into the road network at their
respective departure times, and simulates their travelling along
predefined routes. By observing the traffic situation and im-
plementing signal actions determined by the control method,
Cityflow allows for the simulation of signal control for traffic
environment.

B. Evaluation Criteria

We utilize the following two representative measures as
evaluation criteria to digitally assess the performance of the
different methods.

- Average Travel time measured in seconds, represents the
duration a vehicle takes to cross the intersection, i.e., the time
difference between entering and exiting. The smaller the value,
the better the vehicle driving experience, thus reflecting better
algorithm performance. This metric is extensively utilized in
the literature.

- Speed Score indicates the ratio of vehicle speed through
the intersection to the current maximum speed limit at the
intersection. The index reflects the intensity at the intersection
since slower speeds contribute to increased intensity. Larger
index values signify reduced intensity at the intersection.

C. Comparison Methods

We use the following representative methods for comparison
to assess the validity of the proposed method.

- DQN [2]: provides a form of the most basic RL control
algorithm, observing vehicle positions in the road network as
states and taking the waiting queue length as the reward.

TABLE I: Settings of real-world and synthetic roadnets.

Type Dataset # Intersection  Road segments (m)
Synthetic Syn_3 x 3 9=3x3 300 x 300
y Syndx4 16=4x4 300 x 300
Real-world Jinan 12=3 x4 800 x 400
Hangzhou 16 =4x4 800 x 600

- TOSFB [11]: utilizes a true online SARSA()) algorithm
with Fourier basis functions (TOS(MA)-FB) to facilitate the
traffic signal agents’ operations. Here it shares the same RL
environment with DQN.

- MetaLight [5]: builds on FRAP [18] as the base learner
and implements meta-learning in the MAML framework. It
can and only can transferring knowledge between different
intersections.

- GeneraLight [6]: actualizes meta-learning as guided by
HSML [23], which assumes that different environments can
be grouped into finite clusters. It has proven performance
on generated datasets with distinct cluster divisions. For all
the following experiments, we search for the optimal results
corresponding to all scenarios for which the clusters are
numbered from 1 to 7.

- PressLight [13]: adheres to the classical theory of Max
Pressure, with the road pressure serving as the central element
of the RL agent. It optimizes the policy by leveraging the
pressure of intersections.

- IPDALight [15]: proposes a new concept Intensity, which
optimizes the definition of pressure to capture more of the
traffic dynamics. In addition, it differs from other algorithms
in that the phase duration is adjustable, but this means that it
accordingly increases a lot of interaction requirements for the
agent and the environment.

In all scenarios, the episode length is fixed at 3600 seconds,
while the interaction interval between the simulator and RL
agent for all methods is set to 10 seconds. Given that the non-
meta-learning TSC approaches are not specifically tailored for
training and testing in various traffic environments, to be fair,
we used the MAML combined version of these methods, and
add a shared replay memory for each method of the different
environments. For all algorithms, the meta-learner obtains a
relatively stable algorithm structure after the base learner has
learned 200 episodes. For all experiments, we report the mean
of their three randomized trials.

D. Datasets

We conducted experiments on two synthetic setting,
Syn_3 x 3 , Syn_4 x 4, and two real-world city settings,
Jinan and Hangzhou !. Each traffic dataset comprises two
components: (1) the traffic network dataset and (2) the traffic
flow dataset. The former provides information about the traffic
network, including signal phases, parameters of lanes and
intersections. The information of the four used traffic network
datasets is summarized in Table I. The latter encompasses
vehicles’ travel details, consisting of the entry time of each

Uhttps://traffic-signal-control.github.io/



TABLE II: Overall performance comparison on the set of Syn_3x3 datasets, where Travel, Speed are the shorted version for

Average travel time and Speed score. The optimal and suboptimal values in each column are highlighted in bold.

Model

Ds3x3 300_0.3

Ds3x3.300_0.6

Ds3x3 500.0.3

Ds3x3 500_0.6

Ds3x3 700_0.3

Ds3x3_700_0.6

Travel  Speed | Travel Speed | Travel  Speed | Travel  Speed Travel Speed Travel Speed
DQN 159.35 0.66 154.72 0.67 229.68 0.47 319.25 0.36 698.15 0.19 686.61 0.21
TOSFB 235.53 0.44 277.18 0.38 416.19 0.27 526.81 0.26 670.40 0.21 697.57 0.22
MetaLight 691.05 0.16 708.78 0.16 893.38 0.13 942.78 0.13 1104.30 0.11 1061.55 0.12
GeneralLight  653.38 0.17 667.91 0.18 794.29 0.15 859.68 0.15 1011.91 0.12 966.03 0.14
PressLight 147.70 0.70 151.45 0.68 172.27 0.61 243.70 0.48 506.76 0.26 540.95 0.29
IPDALight  278.94 0.43 316.39 0.41 264.88 0.44 296.37 0.42 293.26 0.41 319.56 0.38
MetaSignal 143.01 0.72 145.34 0.71 141.62 0.73 142.15 0.73 144.75 0.72 144.64 0.72

TABLE III: Overall performance comparison on the set of Jinan and Hangzhou datasets, where Travel, Speed are the shorted

version for Average travel time and Speed score. The optimal

and suboptimal values in each column are highlighted in bold.

Model Djn Djnaong Dijnysng Dp Dizgray Dhzssyg
Travel Speed Travel Speed Travel Speed Travel Speed Travel Speed | Travel  Speed
DQN 955.67 0.23 974.88 0.23 899.76 0.24 1167.57 0.21 1343.56 0.17 835.87 0.25
TOSFB 544.07 0.43 455.43 0.52 487.98 0.48 541.98 0.54 799.21 0.43 543.22 0.56
MetaLight 1304.05 0.14 1374.48 0.14 1270.03 0.15 1275.70 0.19 1414.36 0.15 897.61 0.21
GeneraLight  1189.69 0.17 1265.19 0.17 1168.57 0.17 1157.73 0.24 1313.88 0.20 847.00 0.27
PressLight 280.45 0.81 284.89 0.81 273.96 0.81 318.88 0.89 669.99 0.47 422.12 0.72
IPDALight 351.42 0.65 366.68 0.63 352.18 0.65 343.08 0.84 399.23 0.74 364.03 0.80
MetaSignal 289.31 0.78 287.93 0.79 290.19 0.78 317.14 0.90 318.40 0.90 319.79 0.89

TABLE IV: Transfer performance comparison on the set of Syn_4x4 datasets, where the base model is obtained by training
on the Dy, dataset. Travel, Speed, Waiting are the shorted version for Average travel time, Speed score and Max waiting time.
The optimal and suboptimal values in each column are highlighted in bold.

Dsax4 700_0.3 Dsax4 700_0.6

Dsax4 750_0.3 Dsax4 750_0.6

Model

Travel Speed ~ Waiting Travel Speed ~ Waiting Travel Speed ~ Waiting Travel Speed ~ Waiting

DQN 1348.02 0.09 3175.20 | 1378.15 0.09 3559.37 | 1376.99 0.08 3414.27 | 1393.90 0.08 3413.27

TOSFB 804.22 0.20 1331.93 868.17 0.20 1813.53 865.80 0.19 924.13 890.75 0.20 1291.20
MetaLight 1447.76 0.07 3403.47 | 1436.99 0.08 3520.00 | 1469.99 0.07 3490.03 | 1464.31 0.07 3491.93
GeneraLight  1389.70 0.08 3488.70 | 1379.29 0.09 3554.10 | 1401.55 0.08 3402.73 | 1422.34 0.08 3540.47
PressLight 1100.97 0.14 3042.47 | 1040.62 0.16 2988.27 | 1091.29 0.14 3029.17 | 1069.65 0.16 2719.93
IPDALight 343.95 0.84 537.40 345.17 0.84 451.83 359.08 0.80 799.73 343.62 0.84 568.47
MetaSignal 319.41 0.89 27717 317.08 0.90 221.37 319.16 0.89 264.27 318.79 0.90 236.30

vehicle into the traffic network and their pre-planned routes Dy, Dhyprays Dhzgsys accordingly.

from the origin to the destination. The following are the details
of the traffic flow datasets under varying road network settings:

- Synthetic data: Differentiated traffic configurations are
generated to simulate diverse traffic demands based on the
combination of various average vehicle arrival rates and dis-
tinct traffic distribution templates. With the Flat and Peak
templates represented by variances of 0.3 and 0.6, respectively,
the simulated traffic flows for both the Syn_3x 3 and Syn_4 x4
road networks are generated, applying arrival rates of 300,
500, and 700 (vehicles/h/lane) for the former and 700 and
750 (vehicles/h/lane) for the latter. As a result, there are 10
different sets of synthetic traffic flow datasets, and all vehicles
access and exit the network through the rim edges.

- Real-world data: Each city has three different real traffic
flow datasets. The following works label the different traffic

flows in Jinan and Hangzhou with Dy, Djn,0005 Dinose, and

E. Overall Performance

To test the meta-learning ability on synthetic datasets,
we first conducted experiments on the series of datasets
of the Syn_3x3 road network setting. All algorithms were
trained based on the Syn_3x3_500_0.3 dataset separately,
and the trained parameters were used as initial parameters
for subsequent tasks for one round of meta-training, all the
detailed performance test values are given in Table II. From
the results, it is clear that indicator Average travel time and
Speed score have synchronization. For simple scenarios such
as Dgsx3 300 0.3, baselines DQN, TOSFB, PressLight and
IPDALight all reflect relatively excellent control performance.
Besides, as shown by the results of baselines, along with the
increase in transportation pressure represented by the dataset,
the challenge accepted by the ATSC methods gets harder, and



its results are unavoidably decreasing. Instead, our proposed
MetaSignal ignores the traffic pressure demands embodied in
the traffic flow datasets themselves, and is able to provide
the best traffic experience in all scenarios through rational
scheduling. Also, it is worth mentioning that for GeneraLight,
its best results for the three datasets with variance of 0.3 are
5,6,6, while its best results for the three datasets with variance
of 0.3 are all as 1, this is consistent with the logic of the
algorithm.

Then, we further tested the meta-learning ability of all the
algorithms on the two sets of real datasets by using Dj,
and Dy, as the source training datasets, respectively, all the
detailed performance test values are given in Table III. First,
unfortunately, we can see that the performance of DQN as
the representative of the base algorithm falls dramatically
in the face of complex realistic scenarios. Meanwhile, the
other base algorithm TOSFB uses linear approximation, which
employs the same RL environment setting, performs nearly
double better than DQN due to the nature of its error bounds.
It is necessary to note that PressLight works best on the
three datasets of the Jinan road network, meanwhile, our
proposed MetaSignal exhibits the same good performance by
a small gap. Besides, PressLight demonstrates poor control
performance in dealing with the traffic flow data Dj;,,, which
causes difficulties for all the baselines. The proposed method
maintains the optimal performance on all the datasets config-
ured in Hangzhou settings, demonstrating a stable and robust
processing capability for different scenarios. As a reference,
GeneralLight assumes that the corresponding clusters for the
traffic flows corresponding to the Jinan and Hangzhou road
networks are 2 and 3, respectively.

FE. Transfer Learning Testing

In this subsection, we test the transfer ability of various
methods by using the meta-learners obtained by the corre-
sponding method trained on the Dy, real dataset as the initial
models corresponding to four different configurations of traffic
flow models on the Syn_4x4 road network. All the detailed
performance test values are given in Table IV. It can be seen
that all baselines, except TOSFB and IPDALight, have poor
transfer learning capacity, where the performance of TOSFB
is guaranteed by the error bound property of the linear approx-
imation it employs. The performance of IPDALight in general
maintains the control level corresponding to the real Hangzhou
datasets, which reflects that considering more of the moving
dynamic properties in RL modeling endows the algorithm with
the robustness to face the transfer tasks. This fact is also
reflected in the performance of the proposed MetaSignal for
this task. As a reference, GeneralLight considers that these
traffic flows correspond to clusters 3 or 4.

An additional indicator statistic, maximum waiting time, is
also given in Table IV. It serves as a marker of how long a
vehicle waits for a single red light to pass on the intersection
in the current simulation process, again is a feedback of the
vehicle’s driving experience, the larger its value, the worse
the experience. As can be seen from IPDALight’s tests on
Dgyx4 700 0.3, this metric does not strictly correlate with
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Fig. 2: Average travel time along episodes for

(a)Syn_3x3_500_0.3, (b)D;y, (c)Dy,, datasets.

the other two indicators. Although the driving experience
provided by IPDALight does not differ much from the optimal
performance represented by our algorithm in terms of average
traveling time, the maximum waiting time for vehicles on its
road network is approximately three times longer than the
corresponding value of our proposed MetaSignal, signifying
a compromise in the vehicle experience. Conversely, the
proposed method considers all aspects in a more balanced
manner, providing a fairer control logic.



G. Analysis of Training Curves

In this subsection, we give the training curves of all the
algorithms on the three datasets Dg3x3_500_0.3» Djn, Dh, in
turn in Fig. 2 to provide a reference on the learning ability
of the base learners of all the methods. Most obviously,
GeneralLight performs fluctuating and difficult to converge on
all tasks due to its requirement to find the target cluster value
among the circled number of clusters. Besides, although the
DQN showed good convergence on the first task, it quickly
fell into the quagmire of exploding training metrics on the
subsequent tasks, which is consistent with the test results in
the above mentioned scenarios. It is also worth mentioning
that although MetaLight demonstrated instability during the
training of the first task, it showed favorable adaptation in the
two subsequent tasks, which unfortunately was not matched
in the test results. Furthermore, although most algorithms
eventually converge to nearly identical optimal solutions, all
neural network-based implementations need to undergo a
period of dramatic fluctuations in which the worst values are
unacceptable. Meanwhile, the algorithms TOSFB, our method
implemented based on linear approximation both start with
reasonable values and converge quickly to the optimal values,
maintain their stability throughout the subsequent training
process.

VI. CONCLUSION

Reinforcement-based learning has demonstrated significant
benefits for traffic signal control, owing to its ability to receive
feedback from environmental interactions. However, due to
the need for these interactions, applying the RL algorithm
to completely new scenarios necessitates a lengthy training
period. In this paper, we introduce MetaSignal, a novel traffic
signal control framework that utilizes meta-learning to fa-
cilitate knowledge transfer, enhancing the learning efficiency
of reinforcement learning in new scenarios. Specifically, we
employ the Fourier basis function for linearly approximating
the value function. The selected linear approximation guaran-
tees convergence and provides verifiable error bounds, distin-
guishing it from other methods such as neural networks. This
property enhances the robustness of the learned knowledge,
facilitating its applicability across diverse traffic scenarios.
The conducted experiments demonstrate the capability of our
model to handle diverse traffic scenarios, achieving superior
performance and high efficiency.

For future work, we want to validate the method’s per-
formance in a wider range of traffic environments, including
irregular road networks or larger environments with multiple
intersections. Additionally, the current traffic conditions on the
network are simplified, disregarding factors such as the waiting
period represented by the yellow light or the needs of non-
motorized vehicles and pedestrians, which are also areas of
concern. Furthermore, the linear approximation function used
in the model comprises fewer parameters, offering a viable ap-
proach to demystifying the black-box nature of reinforcement
learning and providing a rational explanation for the model’s
behavior.
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