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Abstract— Vegetation indexes are widely used as a proxy of 

vegetation status, they are often used to monitor and assess 

qualitatively and quantitatively the growing season. The 

Normalized Vegetation Index (NDVI) is the most widely used in 

agriculture, frequently as a proxy for different physiological and 

agronomical aspects, such as drought stress and crop yield losses 

evaluation. NDVI forecast is usually correlated to precipitation 

however, in Mediterranean and arid climates, it is not well 

correlated due to prolonged dry periods and sparse precipitation 

events. In this study, we forecast Mediterranean permanent 

grassland NDVI at 7 and 30 days ahead using machine learning 

and two soil moisture products as predictors, simulated soil 

moisture values and satellite-based Soil Water Index (SWI) 

values. Results show that both products can be used as reliable 

predictors of permanent grassland in Mediterranean areas. 

Predictions at 7 days are more accurate and better forecast the 

negative effect of drought on vegetation dynamics than 30 days. 

This study shows the potential of using a simple methodology and 

readily available data to predict the grassland growth dynamic in 

the Mediterranean area. 
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I. INTRODUCTION 

avanna-like agroforestry systems cover about 3.5 

million hectares in Mediterranean Europe and about 1 

million hectares in North Africa [1], [2]. This land use 

is composed of scattered oak trees (Quercus rotundifolia), and 

permanent grassland (unrenewed herbage layer of 5 or more 

years) for livestock grazing [2]. In Iberian peninsula, savanna-

like systems are called Dehesa in Spain and Montado in 

Portugal, these names refer to the fact that the land is divided 

into large plots bordered by stone walls, where rotational 

grazing (rangeland) is practised [2]. Grassland ecosystem 

plays an important role in sustaining the economy of marginal 

lands in the Mediterranean through livestock production and 

in preserving their endemic biodiversity and cultural heritage 

[3]–[5].  In the Mediterranean climate, grassland production is 

limited due to frequent long dry summers, which cause a 

severe crop yield drops and hence, important economic losses. 

This susceptibility of Mediterranean grassland to drought is 

increasingly exacerbated by climate change [6], [7]. 

Therefore, accurate forecasts of grassland yield, in particular 

during dry periods, are crucial for both farmers and 

policymakers to apply mitigation measures and hence, ensure 

food security [8].  

Different methods have been developed for predicting 

grassland dynamics and yield using weather forecasting. 

McDonnel et al. [9], attempted 1 and 6 days forecasts of the 

grassland dynamics, using management inputs, such as 

fertiliser application, and weather inputs, such as temperature 

and precipitation. Trnka et al.[10], developed an accurate 

grassland growth model, including as inputs, not only the 

weather and the fertiliser application, but also the soil 

moisture balance. The benefit of using soil moisture 

information is that it integrates weather, evapotranspiration, 

plant available water and hence, vegetation state information. 

Indeed, soil moisture is an essential driver of grassland 

dynamics, it can explain up to 60% of the grassland yield 

variability and when considered in productivity models greatly 

improve model performance [11]. In the literature, vegetation 

dynamics are commonly monitored by remote sensing 

techniques, and in particular by using the Normalized 

Difference Vegetation Index (NDVI).  NDVI is a simple 

indicator of the vegetation greenness and it is widely applied 

to estimate vegetation density and crop yields [12], [13]. 

Notably, in Spain NDVI is used for agricultural insurance 

purposes to quantify grassland yield losses during the growing 
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season (Oct-Jun) and compensations due to drought or 

extreme weather conditions [14]. Previous studies have shown 

that NDVI can be estimated from soil conditions, in particular, 

they show a good correlation in dry climates [15]. For 

instance,  Chen et al. [16], found a good correlation between 

soil moisture and NDVI in Australia's mainland. In climates 

characterized by prolonged dry seasons, such as South Spain, 

NDVI has shown to be better correlated to soil moisture than 

precipitation [17]. In the particular case of grassland areas, 

Wang et al. [18] found a better correlation in semi-arid than 

humid regions of the USA.  

Previous studies have shown the potential of using NDVI to 

support grazing and harvesting planning and in particular, 

NDVI predictions to anticipate water deficiencies and hence, 

yield losses [19]–[21]. One approach to predict the NDVI is 

using autoregressive models, i.e. forecast future NDVI values 

using a linear combination of past NDVI values. This 

approach has shown high reliability in forestry land 

uses mainly thanks to the plant growth seasonality [22]. 

Another approach not based on the use of past data, is the use 

of seasonal weather forecasts. Iwasaki [23] in an arid climate, 

tried to predict NDVI distribution for 1-3 months using a 

seasonal weather forecast. They showed a weak prediction 

efficiency especially and advised against the use of 

precipitation forecasts for NDVI prediction in dry regions. 

Considering the NDVI as a proxy of vegetation growth, some 

studies have also used parametric crop growth models to 

forecast NDVI values. However, parametric crop growth 

models, have shown a low NDVI prediction accuracy [24] and 

a worse performance than an increasingly popular approach, 

machine-learning based methods [25].   

With the advance of remote sensing methods and the 

informatization of the agriculture operation, machine-learning 

algorithms provide the possibility to develop forecasting or 

decision tools for land managers, farmers and other agro-

forestry stakeholders [26]–[28]. Machine-learning approaches 

provide powerful tools that are applied in different fields [29], 

[30] such as weed detection [31], soil analysis [32], 

management zone clustering [33], irrigation and yield 

prediction and stress prediction [34], [35]. However, 

predicting vegetation development remains a current challenge  

because several ecosystem processes affect vegetation 

dynamics [36], [37]. Currently, process-based models are not 

able to predict accurately the vegetation dynamic interrelating 

the multiple ecosystem processes that impact vegetation 

growth [37]. For this reason, the use of machine-learning, due 

to its high performance, and multifold applicability quickly 

increases worldwide [38]. Different approaches have been 

widely applied to predict the vegetation dynamic, such as 

artificial neural networks, support vector regression, random 

forest and regression trees [39]. These methods are 

characterized of the independence of the relationship between 

the predictors and predictive variable, particularly if compared 

to the traditional models as linear regression, which imply a 

Gaussian distribution for the input variables [40]. Roy [41] 

compared the performance of some of the most used machine 

learning algorithms to forecast large-area average of NDVI in 

Bangladesh and showed that the Random Forest algorithm had 

the best performance. 

In this study, we present an innovative NDVI forecasting 

model based on the application of the Random Forest machine 

learning algorithm and the use of past and present temperature 

and soil moisture information as predictors. Soil moisture 

information consists of two products: modelled daily soil 

moisture values and satellite-derived values of Soil Water 

Index (SWI) at a point and single-pixel scale respectively. 

Using each soil moisture product, we create two versions of 

the NDVI forecasting model that we tested and compared for 

7-day and 30-day lead times in a Mediterranean permanent 

grassland.  

 

II. MATERIAL AND METHODS 

A. Study area 

The study was carried out in Santa Clotilde commercial 

farm located in the north of Córdoba province, Southern 

Spain (38.2° N; 4. 17° W, 700 m a.m.s.l.). The main activity 

of the Santa Clotilde farm is the extensive livestock 

production in the Dehesa agroforestry system, Fig. 1; 

bovines and swine are grazing rotationally the whole year. 

Soil texture is sandy-loam (6,7% clay, 64% sand, 29,3% 

loam), due to rotational grazing, the first 30 cm of soil 

profile holds 70% of the total carbon stock [42]. According 

to the Köppen-Geiger classification, the climate is 

Mediterranean, with an average annual rainfall of 878 mm, 

cold-dry winters seasons, long summers and a mean 

temperature of 25.4 °C [43]. Since 2017 five soil moisture 

sensors (Campbell Scientific CS655) were installed in 

grassland open-field, at 3 soil depths at 5, 15, 25 cm depth) 

monitoring the grassland soil moisture dynamics. 

 
Fig. 1: Study area. Santa Clotilte Dehesa farm and sensors 

location. 
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 In this study, we used the soil moisture readings at 25 cm 

depth to have comparable results to Soil Water Index, which 

is representative of the first 20 cm of soil profile Fig.2. 

Precipitation data is obtained using the SM2RAIN-ASCAT 

satellite-based method. SM2RAIN-ASCAT is a global 

product obtained from Advanced SCATterometer (ASCAT) 

satellite through the SM2RAIN algorithm developed by 

Brocca et al. [44]. The SM2RAIN algorithm  allows 

calculating rainfall using the inverse equation of water 

balance to calculate rainfall using in situ or satellite-based 

soil moisture data [45], [46]. We also estimated the satellite-

based Soil Water Index (SWI) at the study area. SWI of 

Copernicus Global Land Service [47] is acquired from 

measurements of near-surface soil moisture supplied by 

ASCAT by means of an algorithm which summarizes and 

exponentially weights past measurements according to the 

time length T, which ranges between 001 and 100 [48]. The 

T factor indicates how many past observations of surface 

soil moisture affect the current value of SWI. Conceptually, 

higher delay and the increasing smoothing signal detected at 

the soil surface, from a higher T value, is comparable to the 

effect of the soil water infiltration. Thus SWI is a reliable 

proxy of soil moisture content at 20 cm depth [44], [49]. 

Specifically, this study has been selected with a value of the 

T-parameter equal to 20 days.   

 

 
Fig. 2: Top panel – daily soil moisture information observed 

in the study area: the blue line is the soil moisture measured 

by field sensors; the red line is the Soil Water Index (SWI). 

Bottom panel – daily precipitation obtained using the 

SM2RAIN-ASCAT method. 

 

B. Soil moisture model 

To estimate the soil moisture dynamic of the Mediterranean 

permanent grassland, we modelled soil moisture using as 

water input the daily satellite rainfall data from ASCAT data 

[46]. The soil moisture dynamic model is conceptually based 

on the BEACH model [50], which divides the soil moisture 

reservoir in two layers: the top layer, which depth is delimited 

by the root zone, water balance is determined by rainfall, 

evapotranspiration, runoff and deep percolation; and the 

passive layer where soil moisture is mainly driven by the deep 

percolation. In this study, we simplify the model to only 

represent the top layer of 25 cm depth. Irrigation input is not 

considered because it is a rainfed grassland. 

The soil moisture model (SM25) calculates the volume of 

water stored in the soil (St; in mm) considering the stored 

volume from the previous day (St-1): 

  

                          (1) 

 

where St is the daily soil moisture (mm); St-1 is the soil 

moisture of the antecedent day (mm); Rf is the net 

precipitation (mm); ETact is the actual evapotranspiration 

(mm); Dp is the deep percolation (mm). 

To compute Rf that reaches the soil surface we apply a the 

formula proposed by Morgan and Duzant [51]: 

 

               (2) 

 

Where R is the total daily precipitation (mm) and PI is the 

plant interception (mm). To calculate PI we applied the 

empirical equation proposed by Braden [52] as a function of 

the Leaf area index (LAI), the Canopy cover CC and the daily 

precipitation R (mm):  

 

           
 

  
   

    

     (3) 

 

where PI daily plant interception (mm); a is an empirical 

coefficient that ranges between 0,3 (before senescence) and 

0,6 (end of the senescence period) [53]; CC is canopy cover; 

LAI is the Leaf area index. Similar to the DREAM model [54] 

and the SWAP model [55] the actual evapotranspiration 

(ETact) is calculated as a combination of the reference 

evapotranspiration (ET0) from the vegetated fraction (CC) and 

the actual evaporation from the bare soil fraction (1–CC): 

 

                              4) 

  

where ETveg is the actual daily evapotranspiration from the 

vegetated fraction (in millimetres) and Esoil the actual daily 

evaporation of the bare soil fraction (in millimetres), shown in  

(5) and (6). Both ETveg and Esoil depend on the degree of 

water availability in the soil. The degree of water availability 

is expressed by actual soil moisture divided by field capacity 

soil moisture. This approach is based on the following 

assumptions [56] (5):  

If  St-1 >  of water stored in the soil at field capacity: 

 

                (5) 

 

              (6) 

 

therefore: 

 

                             (7) 
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If St-1 < of water stored in the soil at field capacity (Sfc) and 

higher than at the wilting point (Swp), ETact is equal to the 

potential plant evapotranspiration in mm, plus the actual soil 

daily evaporation of the bare soil fraction in mm, (8) and (9): 

 

               
        

       
     (8) 

 

          
        

       
     (9) 

 

Therefore (10): 

 

                               (10) 

 

 

Deep percolation Dp was simulated by applying the same 

BUDGET model method [57], (11): 

 

                   
         

             
   (11) 

 

Where ds is the depth of the soil A-horizon (mm); θ is the soil 

moisture expressed as millimetres of water depth per 

millimetre of soil depth;  θsat is the soil moisture at saturation; 

θfc is the soil moisture at field capacity; τ is a drainage 

parameter, given by the equation (12): 

 

                               (12) 

 

where Ksat is the saturated hydraulic conductivity (mm d
-1

). 

 

C. Soil moisture model calibration and validation  

For the soil moisture model calibration and validation, we 

used the observed daily soil moisture values, from 17/03/2017 

to 01/02/2021. From 17/03/2017 to 23/06/2019 for the model 

calibration and from 24/04/2019 to 12/02/2020 for the model 

validation. 

Model performance is evaluated using the Nash-Sutcliffe 

efficiency (NSE). NSE determines the relative magnitude of 

the residual variance compared to the observed data variance 

[58]. For the model calibration computation we used the Non-

dominated Sorting Genetic Algorithm (NSGA-II) and 

considered the following parameters: canopy cover (CC); 

saturated hydraulic conductivity in mm/day (Ksat); soil 

moisture ratio at wilting point in mm/mm (Swp); soil moisture 

ratio at field capacity in mm/mm (Sfc); soil moisture ratio at 

wilting saturation in mm/mm (theta_sat). NSGA-II was set to 

maximize NSE. 

 

D. NDVI forecasting models 

The NDVI forecast model uses available NDVI, temperature 

and soil moisture data at present to predict NDVI values. We 

developed two NDVI ahead forecasting models using the 

selected two soil moisture products:  

 

             t                    
  

                                       

where NDVIt0+x  is the forecasted NDVI at day t0+x (7 or 

30); SWI is the Soil Water index (SWI); T20 is the cumulative 

mean temperature of the previous 20 days; NDVIt0 is the 

observed NDVI value at present. They were retrieved from the 

Copernicus Sentinel-2 using the Google Earth Engine. 

Observed NDVI values are also used as a reference to 

compare forecasted results. Observed NDVI corresponds to an 

area of 21 m radius, covering a grid of approximately 3 × 3 

pixels with 10-m of spatial resolution, located in the hill-

plateau of Santa Clotilde farm, in open grassland avoiding the 

tree influence; SM_25 is the simulated soil moisture at 25 cm 

soil depth. Grassland’s NDVI was predicted by applying the 

Random Forest machine learning algorithm [59]. This 

approach is composed of accumulation of singular decision 

trees (estimators) that allow an exceptional achievement of 

prediction accuracy [60]. The training and testing of the NDVI 

forecast models were performed from 21/07/2015 to 

30/12/2021, using 50% of the data for each one. Prediction 

performance was evaluated using the NSE and the Mean Bias 

Error (MBE). MBE is used to estimate the bias between the 

predicted value and the observed [61].  In comparison with 

NSE, MBE provides a view of how close the forecasts are to 

the measurements in absolute values, displayed respectively in 

(13) and (14). 

 

      
                    
   

                
  

   
   (13) 

 

    
  

 
            
 
      (14) 

 

Moreover, we assess the grassland vegetation response to 

droughts by filtering the NDVI dataset temporally. To 

calculate the vegetation response to environmental condition 

we estimate the anomalies (Z-Score) [62] (15). Conceptually, 

these anomalies represent the intra-seasonal variations of 

NDVI in response to the fluctuation of the environmental 

condition (e.g. drought condition) [63]. 

 

        
                

        
   (15) 

 

where NDVIt is the NDVI observed at time step t; 

NDVImean,i is the monthly mean of the NDVI daily values; 

NDVIstd,i is the monthly standard deviation of NDVI daily 

values. A positive or negative value of Z-Score indicates a 

period wetter or drier than the average, respectively. This 

helps us identify exceptionally dry periods which can have an 

important impact on grass production. 

 In order to evaluate the correlation between the anomalies (Z-

Score) simulated by the NDVI models and the observed ones 

we applied Pearson's correlation (16): 

 

      
       
 
           

         
  

             
  

   

   (16) 

 

where rx,y is the correlation coefficient; n is the length of the 

time series; i study period (in year); xi and yi are the NDVI 

anomaly respectively, and x and y are the mean value of 

NDVI. If the value of rx,y is greater than zero, it is a positive 
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relationship; if rx,y is a negative value, it is a negative 

relationship; if rx,y is equal to zero there is no relationship 

between the two variables [64]. 

 

III. Results and Discussion 

 

A .Soil moisture dynamic  

The calibration and validation results of the soil moisture 

model yields NSE values of 0.71 and 0.70 respectively 

(Supplementary material). This indicates that the model is able 

to satisfactorily simulate the observed soil moisture. In Fig. 3 

we compare the results of the soil moisture dynamic modelled 

over the study period. Fig. 3a displays the difference between 

the ground observed soil moisture and the simulated. The 

results show that the model generally overestimates the 

observed values. This can be explained due to the fact that not 

all the precipitation events are reflected by sensors (e.g. see 

dotted rectangle in Fig. 3 where wet periods are not reflected 

in an increase of observed soil moisture). It must be also noted 

that we are comparing values obtained at different spatial 

scales, precipitation data and hence model results are pixel 

values while soil moisture observations are point values.  

We observe differences between the two soil moisture 

products along the study period in how quickly they respond 

to precipitation. The SM25 reaches higher values of soil 

moisture (in mm) quicker than SWI, as it is shown in Fig. 3b. 

This may be due to dissimilarity issue in spatial scales 

between point (model) and pixel values (satellite observations) 

[65]. 

 

 

 

 

Fig.3. Soil moisture dynamic. Panel a) shows the difference between the ground-assed and modelled soil moisture dynamic. 

Panel b) displays with the green line the soil moisture model simulations; in the blue line, the observed soil moisture; in the red 

line, the Soil Water Index (SWI) dynamic of the study period. Panel c) displays the precipitation events satellite-based. 

 

 

B. NDVI forecasting model 

Fig. 4 and 5 show the results of NDVI prediction respectively 

at 7 and 30 days ahead. For both versions of the NDVI 

forecast model results are satisfactory. As expected, the 7-day 

lead time forecasts (NSE over 0.9 and MBE lower than 0.02) 

are better than the 30-day lead time forecasts (NSE over 0.80 

and MBE lower than 0.01). From Fig. 4 and 5, we can break 
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down the seasonal grassland dynamics into two main stages: 

the growing season (light blue area in Fig. 4 and 5, when 

NDVI values raise and reach the highest values and the 

senescence season when NDVI decreases and reaches the 

lowest values. In the Mediterranean climate, the grassland 

growing season is characterized by a fluctuation of NDVI 

values during the productive season (harvest or grazing 

season) as a result of dry periods [66], [67], this underline the 

relationship between the phonology dynamics and  soil 

moisture dynamic [68]. The peak values of NDVI obtained 

with both forecasting models, at both 7 and 30-day lead times, 

NDVI between 0.50 and 0.80, are in the order of magnitude of 

observed values found in the literature in arid and semi-arid 

climate, which range between 0.53 and 0.78 [20], [69]. These 

results not only demonstrate the significance of soil moisture 

as a driver of grassland dynamics in Mediterranean climates 

but also show the potential use of the two proposed NDVI 

forecasting models to predict seasonal variations of NDVI. 

Regarding the intra-seasonal variations or anomalies (z-score), 

Fig. 6 and 7 show that both NDVI_SM25 and NDVI_SWI for 

7-day lead time (r = 0.92, p-value < 0,05, for both models, see 

Table 1) perform better than for 30-day lead time 

(NDVI_SWI30 r =0,54, NDVI_SM2530 r=0.60, p-value < 0,05, 

Table 1). We observe similar result comparing performances 

focusing only on the growing season. Indeed, both versions of 

the NDVI forecast models at 7-day, NDVI_SWI7 and 

NDVI_SM257, showed satisfactory performance recording a 

high correlation with the observed anomalies (r=0.93 and 

r=0.92 respectively). Instead, NDVI forecast models at 30-

day, do not perform realisable NDVI anomalies during the 

growing periods. However, the NDVI_SM2530 predicts 

slightly better NDVI anomalies than the NDVI_SWI30 

(respectively r=0.56 and r= 0.62). Taking as an example the 

growing season of 2017-2018 with 454 mm of precipitation, 

and the one from 2018-2019, with 1796 mm (Fig.6 and 7), we 

can observe how the models perform under particularly dry 

and wet weather conditions respectively. Under these two 

conditions, both 7-day forecasting models predict anomalies 

satisfactorily (r=0.93 for both models), in contrast, forecasting 

models at 30 days are weakly correlated to the observed 

anomalies (respectively r=0.59 for NDVI_SWI30  and r=0.65 

for NDVI_SM2530). This shows the limitation of using past 

and present data to forecast NDVI anomalies in a mid and 

long term. Future work should explore the use of mid and 

long-range weather forecast products to improve the 

performance of this type of NDVI forecasting models. In 

particular, NDVI_SM25 may benefit by using weather 

forecast data because to feed the soil moisture model and thus 

obtain soil moisture forecasts of one or several months. 

 

 

 
 

Fig.4.NDVI forecasts model results vs observations (NDVI_obs) for a 7-day lead time. The top panel displays the forecasts 

obtained using SWI remote sensed observation as soil moisture information (NDVI_SWI). The bottom panel displays the 

forecasts obtained using the soil water model (NDVI_SM25). The period corresponding to the growing season is shaded in light 

blue. 
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Fig.5. NDVI forecasts model results vs observations (NDVI_obs) for a 30-day lead time. The top panel displays the forecasts 

obtained using SWI remote sensed observation as soil moisture information (NDVI_SWI). The bottom panel displays the 

forecasts obtained using the soil water model (NDVI_SM25). The period corresponding to the growing season is shaded in light 

blue

 

TABLE I 

 

PEARSON CORRELATION (P-VALUE < 0,05) BETWEEN THE 

OBSERVED NDVI ANOMALIES AND THE FORECASTED AT 7 AND 

30 DAYS . THE OVERALL CORRELATION TAKES INTO 

CONSIDERATION THE ENTIRE STUDY PERIOD; THE GROWING 

SEASON (GS) CORRELATION TAKES INTO CONSIDERATION ONLY 

THE GROWING SEASON OF THE STUDY PERIOD; THE 2017-2018 

CORRELATION TAKES INTO CONSIDERATION THE DRIEST 

GROWING SEASON OF OUR STUDY PERIOD 

 

Period SWI7 SM257 SWI30 SM2530 

Overall 0.92 0.92 0.54 0.60 

GS 0.93 0.92 0.56 0.62 

GS17-18 0.93 0.93 0.59 0.65 

 

 

Prediction of NDVI anomalies gains particular importance in 

the context of agricultural insurance. In Spain, agricultural 

insurers, under the jurisdiction of the Spanish government, use 

the NDVI anomaly method to assess grassland yield loss 

caused by drought or extreme weather events, estimating 

remotely the production deficit with an NDVI-based indicator 

called Guaranteed Vegetation Index [14]. It is calculated using 

data from the last 20 years and during the guaranteed period, 

which corresponds to the growing season, as the 10-day mean 

NDVI minus 0.5-1.5 times the 10-day standard deviation 

multiplied by an economical estimator. This model is based on 

past estimations however the use of the NDVI forecasting 

models such as the ones presented in this study, can let both 

farmers and insurers to anticipate production deficits and 

hence compensations. However, it must be noted that their 

potential applicability is rather different. In the case of the 

SWI version, the use of satellite products, increases the 

potential the scalability of its use, from single pixel scales to 

larger areas comprising multiple pixels. In the case. The use of 

the soil moisture model version allows combined with 

seasonal weather forecast data can potentially increase the 

temporal scale and potentially obtain better performance for 

longer lead times than 7 days. While the results of the study 

are promising, we recognise that there were several 

limitations, such as one observation point only and the use of 

historical meteorological data. Considering the limited 

literature on the use of soil moisture products as NDVI 

predictors, we advise further investigation into other 

bioregions and at larger scale. Moreover, the use of stationary 

weather prediction can be explored to extend the forecasting 

period to predict anomalies. Field NDVI assessment can be 

carried out to fit better the models and assess discrepancies 

with satellite based NDVI observation. 
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Fig.6. Forecasting model’s anomalies of NDVI_SWI. Anomalies are calculated using the Z-score. The black line shows the 

NDVI anomalies predicted at 7 days (upper graph) and at 30 days (bottom graph). The blue shade shows the positive observed 

NDVI anomalies, the red shade shows the negative observed NDVI anomalies. The background light shade highlight the 

growing season. 

 

 
Fig.7. Forecasting model’s anomalies of NDVI_SM25. Anomalies are calculated using the Z-score. The black line shows the 

NDVI anomalies predicted at 7 days (upper graph) and at 30 days (bottom graph). The blue shade shows the positive observed 

NDVI anomalies, the red shade shows the negative observed NDVI anomalies. The background light shade highlight the 

growing season. 
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IV. CONCLUSION 

 

In this study, we present two NDVI forecasting models based 

on the use of machine learning and past and present weather 

and soil moisture data as predictors. One model, 

NDVI_SM25, uses simulated soil moisture values and the 

other, NDVI_SWI, uses satellite-based Soil Water Index 

(SWI) values. The performance of both models is evaluated in 

a Mediterranean permanent grassland in South Spain by 

comparing forecasted and observed NDVI daily values. 

Results show high reliability of models, at 7 and 30-day 

forecast lead times, in predicting seasonal NDVI dynamics 

and demonstrate the significance of soil moisture dynamics as 

a driver of grassland phenology in dry climates. In the case of 

intra-seasonal variations or anomalies, NDVI are significantly 

better predicted by both models at a 7-day lead time than at a 

30-day lead time. These results show the potential of using 

NDVI forecasting models based on the of soil moisture 

information and machine learning to help both farmers and 

insurers anticipate production deficits and apply mitigation 

measures.  
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