

1

 

Abstract—With the recent advancement of software
development methodologies and frameworks, service meshes has
been to rapidly gain the lime light. In this paper, we provide an
introduction to service meshes and discuss their key use cases in
modern cloud-native architectures. We also explore the
challenges associated with performance analysis of service
meshes and present a survey of recent research in this area. To
address these challenges, we propose the use of soft computing
techniques for performance analysis of service meshes. Our study
includes a comparative analysis of different service mesh
platforms and their performance under varying workloads.
Overall, this paper provides insights into the benefits and
limitations of service meshes and highlights the importance of
performance analysis in ensuring the reliability and scalability of
micro-services based applications.

Index Terms—Benchmark Testing, Cloud-native, Configuration
Management, Edge, Envoy, DevOps, Istio, Kubernetes, LinkerD,
Micro-Services, Network Management, Policy-Driven
Management, Performance Engineering, Reinforcement
Learning , Service Mesh , Soft Computing

I. INTRODUCTION

Service meshes is like a software defined network [1]
where the operators gets complete control over the
different set of activities that is occurring within their

application. Its a dedicated infrastructure layer that oversees
service-to-service communication. It's responsible for the
reliable delivery of requests through the complex topology of
services that comprise a modern, cloud native application [2].
In practice, the service mesh is typically implemented as an
array of lightweight network proxies that are deployed
alongside application code, without the application needing to
be aware.

Each part of an app, called a “service” relies on other
services to give users what they want. If a user of an online e-
commerce store wants to by groceries, they need to know if
the items they want, say “tomatoes” is in stock. So, the service
that communicates with the e-commerce site’s inventory
database needs to communicate with the product webpage,
which itself needs to communicate with the users’s online
shopping cart. To add business value, the owner of the site
might eventually build a new service that gives users in-app

product recommendation. Now this new service should also be
cognizant of user’s shopping cart, and must be able to
communicate with inventory database that the product page
needed—it’s a lot of reusable, moving parts.

Figure 1. Sample Architecture for Service Mesh [3]

The above definition and use case example can further be
mingled with the architecture depicted in Figure 1. In most
cases, a service mesh in general is known to have two types of
planes: Control Plane and Data Plane. Data plane is composed
of intelligent proxies that are deployed as sidecars, basically
an extra container deployed under the same Pod as the
application container. These proxies regulate the flow of
network communication between different microservices.
Non-exhaustive list of activities managed by this data plane
includes service discovery, health checking, routing, load
balancing, authentication/authorization, and observability.
While the control plane, sometimes referred to as brain of a
service mesh, manages and configure corresponding
components to enforce policies and collect telemetry.

A s u r v e y [4] o f C l o u d N a t i v e C o m p u t i n g
Foundation(CNCF) community found that 68% of the
organization are already using or planning to use service
meshes in the next 12 months. In production, use of service
meshes has been growing 40-50% annually [5]. Service
meshes are popular because they solve critical problems
related to communication between loosely coupled services
(also referred as microservices [6]), which are widely adopted

Pranav Singh Dr. Ayyasamy.S
School of Computer Science and Engineering School of Computer Science and Engineering

Vellore Institute of Technology, Tamil Nadu, India Vellore Institute of Technology, Tamil Nadu, India
pranav.singh2020@vitstudent.ac.in ayyasamy.s@gmail.com

Exploring, Analyzing and Tuning Service Mesh
Performance: A Literature Review

2

by enterprise companies due to their ease of management/
development for production workloads.

II. FUNDAMENTAL FEATURE

In general, a service mesh is designed to provide a wide set

of fundamental features, as described and elaborated in the
study of [3]. Few of the widely adopted features are:

• Service Discovery: In system of microservices, there is
always a changing number and location of services. Thus, a
tooling to discover the service and their location becomes a
critical problem to be solved for production grade
applications. Typically, service instances are discovered by
tracking a registry which keeps track of creation and
deletion of services.

• Load balancing: This feature is more inclined towards the
capability of traffic routing across network. Compared to
simple routing mechanism (eg round robin, and random
routing), areas like latency and the state (eg., health status,
and current variable load) of the backend instance are also
covered. Moreover, developers could add their own logic by
applying a set of custom filters in the network.

• Fault Tolerance/Resiliency: Seeing through the eyes of a
networking engineer, a service mesh sits at a layer of
abstraction above TCP/IP . Considering the past trends, we
can assume that this part of the network layer is too fragile
and more unreliable, so service meshes takes care of this
area as well by redirecting the consumer request to a service
instance with healthy state.

• Tr a f f i c m o n i t o r i n g : E v e r y f o r m / m e d i u m o f
communication is to be captured and reported for
encompassing volumes per target, latency metrics, success
and error rates, etc. Prometheus [7] and Grafana [8] are two
of the well know CNCF [9] projects used mainly for this
purpose and works well integrated with most popular service
meshes.

• Circuit Breaking: In case of accessing an overly loaded
service though a request with more latency than expected, a
service mesh would not only disallow that request to even
pass through the gateway and rather prevent the entire
service from going into a broker state.

• Authentication and access control: This features allows
the services to be aware of the host from from which an
incoming request originated or allows only a set of requests
to actually pass through the gateway that matches with the
policies defined in a filter applied to the network. Further
more disallowing the requests from unauthenticated
services.

III. SERVICE MESHES IN EDGE COMPUTING

The main idea behind edge computing is that, processing of

client data is performed as close to the source as possible. This
is usually preferred to be performed in a distributed fashion
and at the periphery of the network. To achieve this
methodology, some production based software are
implemented in a fashion wherein, some portions of storage
and compute resources are moved out of the central data
center and closer to the source of the data itself. Hence, the
extra overhead of transmitting the raw data is avoided. There

are several applications of this approach like the health meter
available in the modern watches does the processing of data
right onto users’ wrist, or autonomous self driving cars does
the heavy lifting of predicting traffic movements right onto the
cars system rather than transmitting the data to a remote
server, then waiting for processing the data and the response to
come back until it could decide its next set of movements on
the road which is too time consuming and dangerous.

Considering the deployments scenarios, microservice
deployment at the Edge could benefit from the variety of
environments which Kubernetes [10] supports. Kubernetes is
known go-to software and toolset for orchestration and
management at the Edge. Moreover, a wide array of service
meshes are known to be well integrated with Kubernetes, such
as Istio [11], Envoy [12], LinkerD [13], Consul [14], Traefik
Mesh [15], Cilium Mesh [16] etc.

Some of the different scenarios for considerations are:

• Pod to pod communication

• Pod to service communication

• Ingress controller to pod and vice-versa

• Load balancer to pod and vice-versa

A. Bare-metal Deployment

Various production grade systems adopts the concept of

bare-metal as service for their applications. This gives an easy
win wherein, the developers have complete control over the
hardware resources and corresponding configurations to
optimize performance of their workloads. [17] deployed
Envoy sidecar proxy on bare-metal node to analyze the
performance. Their deployment uses Docker containers [18].

In accordance to the Envoy’s documentation [19], Envoy
proxy is used as a load balancer or front proxy before allowing
the traffic to micro service replicas that use Envoy sidecar in
service-to-service proxy mode.

Envoy proxy connects to a software load generator Fortio
[20] using a 10G back-to-back connection or connection
through a top-of each switch. In accordance to Fortio’s
documentation [20], the Fortio client sends some http requests
with varying Queries per Second (QPS), connections and test
duration. The front-envoy routes all the incoming requests,
acting as a reverse proxy sitting on the edge of the envoy mesh
network. All traffic routed by the front Envoy to the service
containers is routed to the service Envoys that in turn route the
request to the Flask app, a simple app that responds with a
“hello” message.

Goals of this experiment were to:

• Analyze envoy proxy performance with increasing
number of queries per second.

• Increase the number of client connections to obtain
maximum QPS resolved successfully

• 1 & 2 tested and compared on a 48 core Xeon vs a 32 core
Xeon with no core pinning.

• Core scaling experiments done in 20 core Xeon with
increasing QPS, connections and clones.

3

Figure. 2. BareMetal deployment for server mesh and

edge computing [17]

As depicted from Figure 3 that there lies a correlation
between the QPS and number of client connections. That is,
with increasing number of client connections, increases the
QPS. The above experiment used 100 clones of Flask app
with front end proxy being configured to round-robin
balancing mode. Through put was observe to be saturating at
about 10000 input QPS at various connection rates. While
P99 tail latencies remained steady across different QPS rate.

Figure 3. Connection scaling tests on Xeon for varying
Connection Count [17]

According results captured by figure 4 OPS had
interconnection with the number of cores allocated. That is, on
a 20 core Xeon show that the QPS resolved increases with the
increase in number of cores allocated to the sidecar+flask app.
The tail latencies decrease with the the increase in number of
cores for all 1. 10, and 100 clones but increases with the

number of connections.

Figure 4. Core scaling tests with Envoy and Flask app [17]

B. Virtualized Deployment

When a microservice orchestrator (like Kubernetes) and

service mesh is deployed as a stack in VM then such
deployments is referred to as Virtualized deployment.
According to the customer satisfaction, VMs are preferred
over bare-metal due to hardware level isolation between
application which comes in-house with VMs.

The second form of experiment by [17], involved two VMs
across two nodes, with one acting as Kubernetes master while
other as worker node, as depicted in Figure 5. The purpose of
this form of their study was to determine the impact of
OpenvSwitch (OVS) and Data Plane Development Kit
(DPDK) on data plane performance between north-south
traffic across microservices. Calico [21] is used as the CNI of
choice enabling networking between Kubernetes pods using
simple network policies that enable external traffic across
Kubernetes NodePort of the worker node.

This study was more of a comparative type of approach for
analyzing performance with and without Istio. For this case, a
simple Nginx [22] web server container was used as the
application server that returns client queries generated by
HTTP load generator. Both hardware load generators, with
Ixia IxLoad, and software load generator Fortio were used to
study the max performance of the setup.

Fortio client is run as a standalone process as these two
processes:

	 1. Fortio client in Kubernetes master VM, to simulate
East-West traffic across VMs from outside the cluster.

	 2. Fortio client in Master-host (in Figure 5) to
simulate North-South traffic from outside cluster.

4

Figure 5. Virtualized deployment for server mesh and edge
computing [17]

For the VM based deployment, it was discovered that
throughput deviation of traffic between VMs of 50%-70%
when using Istio and Envoy for 64 connections. Moreover,
from the graph in figure 6 demonstrates that the performance
degradation with Istio shows up with input QPS more than
1000 and tail latencies are lower without Istio by about 50%,
indicating Istio doubles the tail latencies.

Figure 6 . Core scaling tests with Envoy and Flask app [17]

IV. SERVICE FAULT RESILIENCY WITH REINFORCEMENT
LEARNING

Development and deployment of modern web applications are
increasingly becoming distributed, thanks to the microservice
based architectures that facilitate such granular control over
apps. While this provides tremendous flexibility in overall
software development lifecycle, but it comes with its own
pitfalls when observed in high traffic-based environment. That
is, the notion of fault resiliency. The power of services meshes
can be harnessed to tackle such cases, as these provides fault
resiliency through attribute configurations that govern the
behavior of request-response services (and the interactions
among them) in presence of failures. [23], proposes a novel
model-based reinforcement learning workflow towards service
mesh fault resiliency, which they refer as SFR2L (Service
Fault Resiliency with Reinforcement Learning). Their
approach enables the prediction of most significant fault
resilience behaviors at a web application level, scratching
from single service to aggregated multi-service management
with efficient agent collaboration.

A. Experimental setup

Figure 7. Represents fault resiliency attributes

i. Data collection from an Istio application

This step involved collection of datasets covering target

parametric spaces of Istio httpbin service [24], each varying
configuration settings of traffic rules and fault injection and
load testing settings as demonstrated in Figure 7.

ii.Simulation model training and selection

This step involved multiple-layer perceptrons (MLP) to

simulate the aggregated behaviors, enabling agents to interact
with the environment and learn the best loading space given
the traffic rule attributes. Figure 8 depicts the input-output
relation for modeling application-level fault resiliency.

They selected networking communication models outlined
in [25], which were Logistic Regression, Linear Ridge
Regression, and Support Vector Regression, as baseline
simulation models to fight against 5 MLP and observed which
emulates the best application response.

They collected 5 groups of structured datasets and splitted
them into 8:2 as training and testing set, respectively. For
MLP, the input later had 9 neurons, 3 hidden layers have 512
neurons and the output layer has 2 neurons. The learning rate
varied from 1-6 to 1-5. Figure 10 demonstrates the range of
traffic rule and thread and call settings used in their
experiment.

5

Figure 8 . Simulation Model of web application-level fault
resiliency. X is a 9-dimensional vector with 7 deterministic
traffic rules and 2 loading settings to be decided by
reinforcement learning agent(s), Y is the web application
response vector with 2 features: QPS and failure rate. [23]

iii.Model-based Reinforcement learning

This step involved training the model using reinforcement

learning (RL). Here, environment was their simulation model
(well trained MLP), states corresponded to the traffic rule
settings, actions determines the loading settings (the number
of threads and loading calls). Here, agents learn from
responses of their simulation model of the Istio httpbin service
to the perform actions as shown in figure 9.

Figure 9. SFR2L Pipeline. Data collection and validation are
based on actual Istio API. RL Agent(s) fully interact with
simulation model and validate its decisions in actual Istio API.
[23]

iv. Validation on policy learning results
At last, they trained the reinforcement learning algorithms

[23] to perform policy learning and obtained optimized
loading decisions given different traffic rule and loading
setting combinations.

They focused on “worst-case” rewards (penalties) as it
provides insight into configuration settings that are critical to
use in load testing prior to application deployment. The
learning ability is characterized by how much RL algorithm
outperform baselines under the same context, whose metrics is
the maximum rolling mean ratio of cumulative reward
obtained in RL to baseline in last 25 epoch.

They implemented their simulation model to interact with
RL agent(s) and record activities at each epoch that gives

highest reward ratio. Data points from each best epoch was
used as loading and traffic parameters to trip the actual service
response and obtain the validated reward ratio. All their
experiments analyzed single agent and multiple/collaborative
agent model-based reinforcement learning using their
algorithm. And each experiment is performed for 3 times and
then mean is calculated for 3 results.

Figure 10. Ranges of Traffic Rule, Thread, and Call Settings;
Model evaluation metrics: MSE (Mean Square Error).

Figure 11. Policy Evaluations: Sim. is the maximum rolling
reward ratio in simulation, Val. is the maximum rolling reward
ratio in validation, *5 means 5 services are aggregated and
communicative

B. Results

Their model-based RL algorithm outperformed all other

baselines in most scenarios as depicted from figure 11.
Thread/call had different effects on the policy learning: thread
was more significant for S1 model and call was more
significant for S2-S5 model. Moreover, multi-agents learning
abilities were closed to single agent when either factor was
trivial to fault resiliency, such as thread in S2, S5 and call in
S1 model.

For the case of single service cases, most of multi-agents
worked better than single agent decisions, which proved that
complex parameter interdependence optimization could fulfill
the potential of policy learning. Example, Thread&Call agents
gained 27% higher rewards than Call only (3.45 to 2.71) agent
in simulation and 69% higher rewards (2.80 to 1.77) in
validation stage for S2 model.

Moreover, multi-agents usually had higher validation
accuracy than single agent. Like for the case of S1 model,
Thread only agent had 2.21 reward ratio in simulation and

6

1.63 in validation (36% higher), but Thread&Call agent had
closed 2.26 validated ratio (5% higher).

All in all, their model based reinforcement learning
algorithm could be used to predict which values of traffic rule
settings, threads and calls yield rewards with respect to fault
resiliency of the Istio httpbin service. The configuration
settings that yield the “worst-case” rewards give insight into
which combinations of configurations should be tested
rigorously during load testing to ensure robust fault recovery,
as these areas have high chances of compromising application
level fault resiliency.

V. SERVICE MESH PERFORMANCE AND MESHERY

A. Service Mesh Performance

To grease the wheels and provide a vendor neutral
comparison of all major service meshes, Service Mesh
Performance (SMP) [26], a CNCF project is widely being
used for comparison of service meshes. Its a standard for
capturing and characterizing the details of infrastructure
capacity, service mesh configuration, and workload metadata.

It facilitates:

i) The ability to reason over the efficiency by which cloud

native infrastructure is run, specifically in context of a
service mesh and its network functions,

ii)Benchmarking of service mesh performance

iii)Common vernacular and measurement for exchange of

performance information from system-to-system and
mesh-to-mesh

iv)Apples-to-apples performance comparisons of service
mesh deployments and tooling to trend workload
performance.

v)A universal performance index to gauge a service mesh’s
efficiency against deployments in other organizations’
environments.

It consistently runs performance tests on most of the service
meshes under different test environments on CNCF hosted
labs [27] and exports the results into a public facing dashboard
[28]. This helps end-users to make decision on the choice of
their service mesh. For example, Figure 12 and Figure 13
demonstrates the latest soak test results from SMP dashboard.
These test were performed on Istio service mesh and LinkerD
service mesh with Fortio as the load generator and both
system under test were in the same testing environment.

Figure 12. Istio Soak Test with Fortio load generator [29]

Figure 13. LinkerD Soak Test with Fortio load generator [30]

This project further comes with a novel implementation of
performance index, called MeshMark [31]. This measures the
value and overhead of cloud native environment. It converts
performance measurements into insights about the value of
individual, cloud native application networking functions,
MeshMark distills a variety of overhead signals and key
performance indicators into a simple index. It helps in
assessing the value of your service mesh in context of its cost.
This was announced in ServiceMeshCon EU 22 [32], and
since then it has received positive feedback from community
members and adopters, and has been actively used for
benchmarking performance tests results through Meshery.

B. Meshery

Meshery [33] is another popular Layer5 project donated to

CNCF, that is known as a cloud native manager, capable of
providing governance, policy and performance, and
configuration management of cloud native infrastructures. As
a tool, it supports wide array of deployment scenarios to fit
into almost all use cases of end-users. This further helps the
adoption of Meshery in enterprises and greases the wheels for
performance benchmarking, just one of the many capabilities
of Meshery.

As explained in [34], its a canonical implementation of SMP,
which facilitates end-users to perform load testing on their
environment, that could be testing, staging or production
based. Tooling that implements MeshMark includes Meshery,
the cloud native management plane. Users of Meshery can
configure their Kubernetes deployments, any and every
service mesh as well as onboard and off-board their workloads
onto any given mesh. Once they have done so, Meshery will
begin to calculate MeshMarks continuously.

[35] explains several use cases and key features of Meshery
and its service mesh management capabilities. Some of its key
features includes:

i) 3 load generators, that is Fortio, wk2 [36], and Nighthawk

[37], to fulfill different needs and use cases of end users.

ii)Protocols like TCP, gRPC, HTTP for load generation

iii)Performance profiling

iv)Scheduled performance management

V. COMPARISONS BETWEEN POPULAR MESHES

Some of the attractive options for service meshes are Istio,

LinkerD, Amazon App Mesh [38], and Airbnb Synapse [39].

Istio and LinkerD are one of the most trusted and used

service meshes for prod based infrastructure. This is because
they provide handful of the fundamental functionalities of a
mesh. While Istio has more active community that revolves

7

around the project and its development, LinkerD is more
stable and accredited by many adopters as productions ready.
While LinkerD is a graduated CNCF project while Istio was
just recently accepted into CNCF, and is in incubating stage.
Moreover, Istio provides a large number of flexible APIs for
developers, and comes with a visual topology offering, i.e.,
Kiali, to facilitate visual representation of the deployment
environment.

Unlike Istio and LinkerD, Airbnb Synapse does not have an
abundant feature set. Rather, it comes with the feature of
automated failover through a simplistic but efficient,
Zookeeper-based service discovery mechanism. So, Synapse
configures a local HAProxy process using the information
read from Zookeeper where states of the service are stored and
continuously updated. Though this, the local HAProxy can
take care of properly routing the request from a service
consumer. With an optimized HAProxy, Synapse can react to
the change (eg, service failure) in Zookeeper, and reconfigure
HAProxy immediately. Synapse has been proven to be with
broad applicability, however, it wasn’t designed to be used as
a mesh but more of an internal project for Airbnb to solve
internal development challenges. Because of this, there isn’t
much development around it.

As of 2018, Amazon, announced its own service mesh,
named Amazon App Mesh. Its offering are largely native to
the existing Amazon cloud ecosystem. So, if an organization is
already using Amazing cloud for its production usage then its
no brainer to use the App Mesh as it would solve many
inherent challenges but at the same time would make the
customers into vendor lock-in since its not so applicable into
hybrid cloud environment with multiple vendors like Google,
RedHat, VMware etc.

VI. FUTURE RESEARCH OPPORTUNITIES

Though adoption of service mesh seems a daunting task but

it has already been started to use in production and adopted by
wide range of companies. IT complements micro service
architectures in terms of observability, traceability, and
manageability.

One of the attractive offering of a service mesh is
dependency management, and performance tracing and
analysis for micro service applications. Some of well known
extension supports, eg Jaeger [40] and Zipkin [41] are based
on OpenTracing framework which requires instrumentation to
the applications using Open Tracing API specification.
Though this approach helps in precisely identify where
failures occurs and what causes poor performance, such
instrumentation is not always realistic, eg, when service
implementation are not exposed is not allowed to be modified
due to copyright/license issues etc

Hence, an enhancement with non-intrusive mechanism
becomes a necessity to expand the use case scenario on
performance tracking and analysis. One promising direction
would be to investigate the feasibility of integration inference-
based approaches, such as Project5 [42], WAP5 [43],
Microsofts’ Sherlock [44], and Facebook’s The Mystery
Machine [45]. In order to adapt the application context of
service mesh, we expect this may require extensive effort with
both research and engineering.

More research is needed to explore the use of soft computing
techniques such as fuzzy logic and genetic algorithms for
optimizing the performance of service meshes. There is a need

to investigate the impact of service mesh configuration
parameters on performance and to develop more efficient
algorithms for selecting optimal configurations. There is also a
need to develop better visualization techniques for monitoring
and diagnosing the performance of service meshes. There is an
opportunity to explore the use of machine learning techniques
for predicting the performance of service meshes based on
historical data. Finally, there is a need to investigate the
performance of service meshes in complex, real-world
scenarios and to develop new techniques for handling
scalability, security, and fault tolerance. Addressing these
research challenges will enable us to fully realize the potential
of service meshes for modern, cloud-native applications.

VII. CONCLUSION

In this paper, we have presented an overview of service

meshes and their use cases in modern cloud-native
applications. We have also discussed the challenges associated
with performance analysis of service meshes, including the
need to consider multiple metrics and the complexity of
workload patterns. To address these challenges, we have
presented a literature survey of different tooling available in
the market to capture and enhance the performance of service
meshes. That includes the use of soft computing techniques
and configuration management management tools like
Meshery for performance analysis of service meshes, and
presented a comparative analysis of different service mesh
platforms using these techniques.

Our study highlights the importance of performance analysis
in ensuring the reliability and scalability of microservices-
based applications. We have shown that while service meshes
offer numerous benefits such as traffic management, security,
and observability, their performance can be impacted by
factors such as the number of nodes in the cluster, the
configuration of the mesh, and the type of workload. By using
soft computing techniques or tools like Meshery, we can gain
a deeper understanding of the impact of these factors on
service mesh performance and identify ways to optimize it.

In conclusion, our study contributes to the growing body of
research on service meshes and their performance analysis. We
hope that this paper helps practitioners and researchers in
making informed decisions about the use and possible
optimization of service meshes in their applications. Future
research can explore the use of other soft computing
techniques, such as fuzzy logic and genetic algorithms, or use
inbuilt support offered by MeshMark from SMP for service
mesh performance analysis and optimization.

VIII. REFERENCES

1. W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, "A

Survey on Software-Defined Networking," in IEEE
Communications Surveys & Tutorials, vol. 17, no. 1, pp.
27-51, Firstquarter 2015, doi: 10.1109/
COMST.2014.2330903.

2. N. Kratzke and R. Peinl, "ClouNS - a Cloud-Native
Application Reference Model for Enterprise Architects," in
2016 IEEE 20th International Enterprise Distributed Object
Computing Workshop (EDOCW), Vienna, Austria, 2016 pp.
1-10.

3. W. Li, Y. Lemieux, J. Gao, Z. Zhao and Y. Han, "Service
Mesh: Challenges, State of the Art, and Future Research

8

Opportunities," 2019 IEEE International Conference on
Service-Oriented System Engineering (SOSE), 2019, pp.
122-1225, doi: 10.1109/SOSE.2019.00026.

4. CNCF survey 2020. https://www.cncf.io/ wp-content/
uploads/2020/11/CNCF_Survey_ Report_2020.pdf, 2020.

5. Benchmarking Linkerd and Istio: 2021 re-  
dux. https://linkerd.io/2021/11/29/ linkerd-vs-istio-
benchmarks-2021/, 2021.

6. Dragoni, N. et al. (2017). Microservices: Yesterday, Today,
and Tomorrow. In: Mazzara, M., Meyer, B. (eds) Present
and Ulterior Software Engineering. Springer, Cham. https://
doi.org/10.1007/978-3-319-67425-4_12

7. Prometheus, [online] Available: https://prometheus.io/.

8. Grafana, [online] Available: https://grafana.com/.

9. CNCF: Cloud Native Computing Foundation, [online]

Available: https://www.cncf.io/.

10.Kubernetes: Production-Grade Container Orchestration,

[online] Available: https://kubernetes.io/.

11.Istio: An Open Platform to Connect Manage and Secure

Microservices., [online] Available: https://github.com/istio/
istio.

12.Envoy: an open source edge and service proxy, designed
for cloud native applications,. [online] Available: https://
www.envoyproxy.io/.

13.Linkerd: Production-grade Feature-rich Service Mesh for
Any Platform., [online] Available: https://github.com/
linkerd/linkerd.

14.Traefik mesh: and open source service mesh, [online]
Available: https://traefik.io/traefik-mesh/.

15.Consul service mesh: a service mesh offering from
Hashicorp, [online] Available: https://
developer.hashicorp.com/consul/docs/connect.

16.Cilium service mesh: an eBPF-based open source service
mesh from Isovalent, [online] Available: https://cilium.io/.

17.M. Ganguli, S. Ranganath, S. Ravisundar, A. Layek, D.
Ilangovan and E. Verplanke, "Challenges and Opportunities
in Performance Benchmarking of Service Mesh for the
Edge," 2021 IEEE International Conference on Edge
Computing (EDGE), 2021, pp. 78-85, doi: 10.1109/
EDGE53862.2021.00020.

18.Docker containers, [online] Available: https://
www.docker.com/resources/what-container/.

19.Envoy documentation, [online] Available: https://
www.envoyproxy.io/docs/envoy/v1.25.5/.

20.Fortio, a load testing library, [online] Available: https://
github.com/fortio/fortio/#fortio.

21.Project Calico, an open source project for container
networking, [online] Available: https://www.tigera.io/
project-calico/.

22.Nginx, a project offering from F5, [online] Available:
https://docs.nginx.com/.

23.Meng, Fanfei, Lalita Jagadeesan, and Marina Thottan.
"Model-based Reinforcement Learning for Service Mesh
Fault Resiliency in a Web Application-level." arXiv preprint
arXiv:2110.13621 (2021).

24.Istio httpbin, a sample application provided by Istio,
[online] Available: https://github.com/istio/istio/blob/
master/samples/httpbin/httpbin.yaml.

25.R.Boutaba,M.A.Salahuddin,N.Limam,S.Ayoubi,N.Shahriar
,F.E.Solano,and O. M. C. Rendon. A comprehensive survey
on machine learning for networking: evolution, applications

and research opportunities. J. Internet Serv. Appl.,
9(1):16:1– 16:99, 2018.

26.Service mesh performance (SMP), a CNCF project,
[online] Available: https://smp-spec.io/.

27.CNCF Community Infrastructure Lab (CIL), [online]
Available: https://github.com/cncf/cluster.

28.SMP dashboard, [online] Available: https://smp-spec.io/
dashboard.

29.LinkerD soak test on SMP Dashboard, [online] Available
https://smp-spec.io/dashboard/performance/
individual#306389ec-9bc6-4b1f-92e3-fe765632c572#0.

30.Istio soak test on SMP Dashboard, [online] Available:
https://smp-spec.io/dashboard/performance/
individual#4b8f9849-cd1f-40e0-a95c-55a84b34ff31#0

31.MeshMark, a performance index for cloud native
environment, [online] Available: https://smp-spec.io/
meshmark.

32.Lee Calcote and Mrittika Ganguli, 2022 Service Mesh Con
EU 22, [online] Available: https://
events.linuxfoundation.org/servicemeshcon-europe/.

33.Meshery, a CNCF project, [online] Available: https://
meshery.io/.

34.The Enterprise Path to Service Mesh Architectures (2nd
Edition) by Lee Calcote, [online] Available: https://
layer5.io/learn/service-mesh-books/the-enterprise-path-to-
service-mesh-architectures-2nd-edition.

35.Lee Calcote, Mrittika Ganguli, Sunku Raganath, Otto Van
der Schaaf, “Analyzing Service Mesh Performance” in
IEEE Quality-of-Service Architecture for Cloud Computing
Networking Magazine, vol 117, issue 3, 2021

36.Wrk2, a HTTP based benchmarking tool, [online]
Available: https://github.com/giltene/wrk2.

37.Nighthawk, a L7 (HTTP|HTTPS|HTTP2) performance
characterization tool, [online] Available: https://github.com/
envoyproxy/nighthawk.

38.AWS App Mesh, [online] Available: https://
aws.amazon.com/app-mesh/.

39.Synapse: A Transparent Service Discovery Framework for
Connecting an SOA, [online] Available: https://github.com/
airbnb/synapse.

40.Jaeger: Open Source End-to-End Distributed Tracing,
[online] Available: http://jaegertracing.io.

41.OpenZipkin: A Distributed Tracing System, [online]
Available: https://zipkin.io.

42.M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds and
A. Muthi-tacharoen, "Performance Debugging for
Distributed Systems of Black Boxes", Proceedings of the
19th ACM Symposium on Operating Systems Principles
ser. SOSP '03, pp. 74-89, 2003.

43.P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera and
A. Vahdat, "WAP5: Black-box Performance Debugging for
Wide-area Systems", Proceedings of the 15th International
Conference on World Wide Web ser. WWW '06, pp.
347-356, 2006.

44.P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz
and M. Zhang, "Towards Highly Reliable Enterprise
Network Services via Inference of Multi-level
Dependencies" in ACM SIGCOMM Computer
Communication Review, ACM, vol. 37, no. 4, pp. 13-24,
2007.

45.M. Chow, D. Meisner, J. Flinn, D. Peek and T. F. Wenisch,
"The Mystery Machine: End-to-end Performance Analysis

9

of Large-scale Internet Service", Proceedings of the 11th
USENIX Symposium on Operating Systems Design and
Implementation ser. OSDI '14, pp. 217-231, 2014.

46.C. Ren, H. Li, Y. Li, Y. Wang, H. Xiang and X. Chen, "On
Efficient Service Function Chaining in Hybrid Software
Defined Networks," in IEEE Transactions on Network and
Service Management, vol. 19, no. 2, pp. 1614-1628, June
2022, doi: 10.1109/TNSM.2021.3123502.

Pranav Singh is a postgraduate
student, studying computer science
and engineering at Vellore Institute
of Technology, Tamil Nadu, India.
He is passionate about building
technology and making an impact
through software development.
Currently, he is exploring the
software world through open-
source contributions. His interest
lies in DevOps, micro-services,

software architecture, software defined networks, service
meshes and cloud-native technologies.

Dr. Ayyasamy.S is a senior
professor from school of computer
science and engineering at Vellore
Institute of Technology, Tamil
Nadu, India.

	I. INTRODUCTION
	II. Fundamental Feature
	III. Service Meshes in Edge computing
	A. Bare-metal Deployment
	B. Virtualized Deployment

	IV. Service Fault Resiliency with Reinforcement Learning
	V. Service Mesh Performance and Meshery
	V. Comparisons Between Popular Meshes
	VI. Future Research Opportunities
	VII. Conclusion
	VIII. References

