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Abstract—With the recent advancement of software 
development methodologies and frameworks, service meshes has 
been to rapidly gain the lime light. In this paper, we provide an 
introduction to service meshes and discuss their key use cases in 
modern cloud-native architectures. We also explore the 
challenges associated with performance analysis of service 
meshes and present a survey of recent research in this area. To 
address these challenges, we propose the use of soft computing 
techniques for performance analysis of service meshes. Our study 
includes a comparative analysis of different service mesh 
platforms and their performance under varying workloads. 
Overall, this paper provides insights into the benefits and 
limitations of service meshes and highlights the importance of 
performance analysis in ensuring the reliability and scalability of 
micro-services based applications.


Index Terms—Benchmark Testing, Cloud-native, Configuration 
Management, Edge, Envoy, DevOps, Istio, Kubernetes, LinkerD, 
Micro-Services, Network Management, Policy-Driven 
Management, Performance Engineering, Reinforcement 
Learning , Service Mesh , Soft Computing


I. INTRODUCTION


Service meshes is like a software defined network [1] 
where the operators gets complete control over the 
different set of activities that is occurring within their 

application. Its a dedicated infrastructure layer that oversees 
service-to-service communication. It's responsible for the 
reliable delivery of requests through the complex topology of 
services that comprise a modern, cloud native application [2]. 
In practice, the service mesh is typically implemented as an 
array of lightweight network proxies that are deployed 
alongside application code, without the application needing to 
be aware. 


Each part of an app, called a “service” relies on other 
services to give users what they want. If a user of an online e-
commerce store wants to by groceries, they need to know if 
the items they want, say “tomatoes” is in stock. So, the service 
that communicates with the e-commerce site’s inventory 
database needs to communicate with the product webpage, 
which itself needs to communicate with the users’s online 
shopping cart. To add business value, the owner of the site 
might eventually build a new service that gives users in-app 

product recommendation. Now this new service should also be 
cognizant of user’s shopping cart, and must be able to 
communicate with inventory database that the product page 
needed—it’s a lot of reusable, moving parts.


Figure 1. Sample Architecture for Service Mesh [3]


The above definition and use case example can further be 
mingled with the architecture depicted in Figure 1. In most 
cases, a service mesh in general is known to have two types of 
planes: Control Plane and Data Plane. Data plane is composed 
of intelligent proxies that are deployed as sidecars, basically 
an extra container deployed under the same Pod as the 
application container. These proxies regulate the flow of 
network communication between different microservices. 
Non-exhaustive list of activities managed by this data plane 
includes service discovery, health checking, routing, load 
balancing, authentication/authorization, and observability. 
While the control plane, sometimes referred to as brain of a 
service mesh, manages and configure corresponding 
components to enforce policies and collect telemetry.


A s u r v e y [ 4 ] o f C l o u d N a t i v e C o m p u t i n g 
Foundation(CNCF) community found that 68% of the 
organization are already using or planning to use service 
meshes in the next 12 months. In production, use of service 
meshes has been growing 40-50% annually [5]. Service 
meshes are popular because they solve critical problems 
related to communication between loosely coupled services 
(also referred as microservices [6]), which are widely adopted 
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by enterprise companies due to their ease of management/
development for production workloads.


II. FUNDAMENTAL FEATURE

In general, a service mesh is designed to provide a wide set 

of fundamental features, as described and elaborated in the 
study of  [3]. Few of the widely adopted features are: 


• Service Discovery: In system of microservices, there is 
always a changing number and location of services. Thus, a 
tooling to discover the service and their location becomes a 
critical problem to be solved for production grade 
applications. Typically, service instances are discovered by 
tracking a registry which keeps track of creation and 
deletion of services. 

• Load balancing: This feature is more inclined towards the 
capability of traffic routing across network. Compared to 
simple routing mechanism (eg round robin, and random 
routing), areas like latency and the state (eg., health status, 
and current variable load) of the backend instance are also 
covered. Moreover, developers could add their own logic by 
applying a set of custom filters in the network.

• Fault Tolerance/Resiliency: Seeing through the eyes of a 
networking engineer, a service mesh sits at a layer of 
abstraction above TCP/IP . Considering the past trends, we 
can assume that this part of the network layer is too fragile 
and more unreliable, so service meshes takes care of this 
area as well by redirecting the consumer request to a service 
instance with healthy state.

• Tr a f f i c m o n i t o r i n g : E v e r y f o r m / m e d i u m o f 
communication is to be captured and reported for 
encompassing volumes per target, latency metrics, success 
and error rates, etc. Prometheus [7] and Grafana [8] are two 
of the well know CNCF [9] projects used mainly for this 
purpose and works well integrated with most popular service 
meshes.

• Circuit Breaking: In case of accessing an overly loaded 
service though a request with more latency than expected, a 
service mesh would not only disallow that request to even 
pass through the gateway and rather prevent the entire 
service from going into a broker state.

• Authentication and access control: This features allows 
the services to be aware of the host from from which an 
incoming request originated or allows only a set of requests 
to actually pass through the gateway that matches with the 
policies defined in a filter applied to the network. Further 
more disallowing the requests from unauthenticated 
services.


III. SERVICE MESHES IN EDGE COMPUTING

The main idea behind edge computing is that, processing of 

client data is performed as close to the source as possible. This 
is usually preferred to be performed in a distributed fashion 
and at the periphery of the network. To achieve this 
methodology, some production based software are 
implemented in a fashion wherein, some portions of storage 
and compute resources are moved out of the central data 
center and closer to the source of the data itself. Hence, the 
extra overhead of transmitting the raw data is avoided. There 

are several applications of this approach like the health meter 
available in the modern watches does the processing of data 
right onto users’ wrist, or autonomous self driving cars does 
the heavy lifting of predicting traffic movements right onto the 
cars system rather than transmitting the data to a remote 
server, then waiting for processing the data and the response to 
come back until it could decide its next set of movements on 
the road which is too time consuming and dangerous.


Considering the deployments scenarios, microservice 
deployment at the Edge could benefit from the variety of 
environments which Kubernetes [10] supports. Kubernetes is 
known go-to software and toolset for orchestration and 
management at the Edge. Moreover, a wide array of service 
meshes are known to be well integrated with Kubernetes, such 
as Istio [11], Envoy [12], LinkerD [13], Consul [14], Traefik 
Mesh [15], Cilium Mesh [16] etc.


Some of the different scenarios for considerations are:

• Pod to pod communication

• Pod to service communication

• Ingress controller to pod and vice-versa

• Load balancer to pod and vice-versa


A. Bare-metal Deployment

Various production grade systems adopts the concept of 

bare-metal as service for their applications. This gives an easy 
win wherein, the developers have complete control over the 
hardware resources and corresponding configurations to 
optimize performance of their workloads. [17] deployed 
Envoy sidecar proxy on bare-metal node to analyze the 
performance. Their deployment uses Docker containers [18].


In accordance to the Envoy’s documentation [19], Envoy 
proxy is used as a load balancer or front proxy before allowing 
the traffic to micro service replicas that use Envoy sidecar in 
service-to-service proxy mode. 


Envoy proxy connects to a software load generator Fortio 
[20] using a 10G back-to-back connection or connection 
through a top-of each switch. In accordance to Fortio’s 
documentation [20], the Fortio client sends some http requests 
with varying Queries per Second (QPS), connections and test 
duration. The front-envoy routes all the incoming requests, 
acting as a reverse proxy sitting on the edge of the envoy mesh 
network. All traffic routed by the front Envoy to the service 
containers is routed to the service Envoys that in turn route the 
request to the Flask app, a simple app that responds with a 
“hello” message. 


Goals of this experiment were to:

• Analyze envoy proxy performance with increasing 
number of queries per second.

• Increase the number of client connections to obtain 
maximum QPS resolved successfully

• 1 & 2 tested and compared on a 48 core Xeon vs a 32 core 
Xeon with no core pinning.

• Core scaling experiments done in 20 core Xeon with 
increasing QPS, connections and clones.
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Figure. 2. BareMetal deployment for server mesh and 

edge computing [17]


As depicted from Figure 3 that there lies a correlation 
between the QPS and number of client connections. That is, 
with increasing number of client connections, increases the 
QPS. The above experiment used 100 clones of Flask app 
with front end proxy being configured to round-robin 
balancing mode. Through put was observe to be saturating at 
about 10000 input QPS at various connection rates. While 
P99 tail latencies remained steady across different QPS rate. 





Figure 3. Connection scaling tests on Xeon for varying 
Connection Count [17]


According results captured by figure 4 OPS had 
interconnection with the number of cores allocated. That is, on 
a 20 core Xeon show that the QPS resolved increases with the 
increase in number of cores allocated to the sidecar+flask app. 
The tail latencies decrease with the the increase in number of 
cores for all 1. 10, and 100 clones but increases with the 

number of connections.


Figure 4. Core scaling tests with Envoy and Flask app [17]


B. Virtualized Deployment

When a microservice orchestrator (like Kubernetes) and  

service mesh is deployed as a stack in VM then such 
deployments is referred to as Virtualized deployment. 
According to the customer satisfaction, VMs are preferred 
over bare-metal due to hardware level isolation between 
application which comes in-house with VMs.


The second form of experiment by [17], involved two VMs 
across two nodes, with one acting as Kubernetes master while 
other as worker node, as depicted in Figure 5. The purpose of 
this form of their study was to determine the impact of 
OpenvSwitch (OVS) and Data Plane Development Kit 
(DPDK) on data plane performance between north-south 
traffic across microservices. Calico [21] is used as the CNI of 
choice enabling networking between Kubernetes pods using 
simple network policies that enable external traffic across 
Kubernetes NodePort of the worker node.


This study was more of a comparative type of approach for 
analyzing performance with and without Istio. For this case, a 
simple Nginx [22] web server container was used as the 
application server that returns client queries generated by 
HTTP load generator. Both hardware load generators, with 
Ixia IxLoad, and software load generator Fortio were used to 
study the max performance of the setup.


Fortio client is run as a standalone process as these two 
processes:


	 1. Fortio client in Kubernetes master VM, to simulate 
East-West traffic across VMs from outside the cluster.


	 2. Fortio client in Master-host (in Figure 5) to 
simulate North-South traffic from outside cluster.
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Figure 5. Virtualized deployment for server mesh and edge 
computing [17]


For the VM based deployment, it was discovered that 
throughput deviation of traffic between VMs of 50%-70% 
when using Istio and Envoy for 64 connections. Moreover, 
from the graph in figure 6 demonstrates that the performance 
degradation with Istio shows up with input QPS more than 
1000 and tail latencies are lower without Istio by about 50%, 
indicating Istio doubles the tail latencies.


Figure 6 . Core scaling tests with Envoy and Flask app [17]


IV. SERVICE FAULT RESILIENCY WITH REINFORCEMENT 
LEARNING


Development and deployment of modern web applications are 
increasingly becoming distributed, thanks to the microservice 
based architectures that facilitate such granular control over 
apps. While this provides tremendous flexibility in overall 
software development lifecycle, but it comes with its own 
pitfalls when observed in high traffic-based environment. That 
is, the notion of fault resiliency. The power of services meshes 
can be harnessed to tackle such cases, as these provides fault 
resiliency through attribute configurations that govern the 
behavior of request-response services (and the interactions 
among them) in presence of failures. [23], proposes a novel 
model-based reinforcement learning workflow towards service 
mesh fault resiliency, which they refer as SFR2L (Service 
Fault Resiliency with Reinforcement Learning). Their 
approach enables the prediction of most significant fault 
resilience behaviors at a web application level, scratching 
from single service to aggregated multi-service management 
with efficient agent collaboration.


A. Experimental setup




Figure 7. Represents fault resiliency attributes


i. Data collection from an Istio application

This step involved collection of datasets covering target 

parametric spaces of Istio httpbin service [24], each varying 
configuration settings of traffic rules and fault injection and 
load testing settings as demonstrated in Figure 7.


ii.Simulation model training and selection

This step involved multiple-layer perceptrons (MLP) to 

simulate the aggregated behaviors, enabling agents to interact 
with the environment and learn the best loading space given 
the traffic rule attributes. Figure 8 depicts the input-output 
relation for modeling application-level fault resiliency.


They selected networking communication models outlined 
in [25], which were Logistic Regression, Linear Ridge 
Regression, and Support Vector Regression, as baseline 
simulation models to fight against 5 MLP and observed which 
emulates the best application response.


They collected 5 groups of structured datasets and splitted 
them into 8:2 as training and testing set, respectively. For 
MLP, the input later had 9 neurons, 3 hidden layers have 512 
neurons and the output layer has 2 neurons. The learning rate 
varied from 1-6 to 1-5. Figure 10 demonstrates the range of 
traffic rule and thread and call settings used in their 
experiment.
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Figure 8 . Simulation Model of web application-level fault 
resiliency. X is a 9-dimensional vector with 7 deterministic 
traffic rules and 2 loading settings to be decided by 
reinforcement learning agent(s), Y is the web application 
response vector with 2 features: QPS and failure rate. [23]


iii.Model-based Reinforcement learning

This step involved training the model using reinforcement 

learning (RL). Here, environment was their simulation model 
(well trained MLP), states corresponded to the traffic rule 
settings, actions determines the loading settings (the number 
of threads and loading calls). Here, agents learn from 
responses of their simulation model of the Istio httpbin service 
to the perform actions as shown in figure 9.


Figure 9. SFR2L Pipeline. Data collection and validation are 
based on actual Istio API. RL Agent(s) fully interact with 
simulation model and validate its decisions in actual Istio API. 
[23]


iv. Validation on policy learning results
At last, they trained the reinforcement learning algorithms 

[23] to perform policy learning and obtained optimized 
loading decisions given different traffic rule and loading 
setting combinations.


They focused on “worst-case” rewards (penalties) as it 
provides insight into configuration settings that are critical to 
use in load testing prior to application deployment. The 
learning ability is characterized by how much RL algorithm 
outperform baselines under the same context, whose metrics is 
the maximum rolling mean ratio of cumulative reward 
obtained in RL to baseline in last 25 epoch.


They implemented their simulation model to interact with 
RL agent(s) and record activities at each epoch that gives 

highest reward ratio. Data points from each best epoch was 
used as loading and traffic parameters to trip the actual service 
response and obtain the validated reward ratio. All their 
experiments analyzed single agent and multiple/collaborative 
agent model-based reinforcement learning using their 
algorithm. And each experiment is performed for 3 times and 
then mean is calculated for 3 results.


Figure 10. Ranges of Traffic Rule, Thread, and Call Settings; 
Model evaluation metrics: MSE (Mean Square Error). 


Figure 11. Policy Evaluations: Sim. is the maximum rolling 
reward ratio in simulation, Val. is the maximum rolling reward 
ratio in validation, *5 means 5 services are aggregated and 
communicative 


B. Results

Their model-based RL algorithm outperformed all other 

baselines in most scenarios as depicted from figure 11. 
Thread/call had different effects on the policy learning: thread 
was more significant for S1 model and call was more 
significant for S2-S5 model. Moreover, multi-agents learning 
abilities were closed to single agent when either factor was 
trivial to fault resiliency, such as thread in S2, S5 and call in 
S1 model. 


For the case of single service cases, most of multi-agents 
worked better than single agent decisions, which proved that 
complex parameter interdependence optimization could fulfill 
the potential of policy learning. Example, Thread&Call agents 
gained 27% higher rewards than Call only (3.45 to 2.71) agent 
in simulation and 69% higher rewards (2.80 to 1.77) in 
validation stage for S2 model.


Moreover, multi-agents usually had higher validation 
accuracy than single agent. Like for the case of S1 model, 
Thread only agent had 2.21 reward ratio in simulation and 
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1.63 in validation (36% higher), but Thread&Call agent had 
closed 2.26 validated ratio (5% higher).


All in all, their model based reinforcement learning 
algorithm could be used to predict which values of traffic rule 
settings, threads and calls yield rewards with respect to fault 
resiliency of the Istio httpbin service. The configuration 
settings that yield the “worst-case” rewards give insight into 
which combinations of configurations should be tested 
rigorously during load testing to ensure robust fault recovery, 
as these areas have high chances of compromising application 
level fault resiliency. 


V. SERVICE MESH PERFORMANCE AND MESHERY

A. Service Mesh Performance


To grease the wheels and provide a vendor neutral 
comparison of all major service meshes, Service Mesh 
Performance (SMP) [26], a CNCF project is widely being 
used for comparison of service meshes. Its a standard for 
capturing and characterizing the details of infrastructure 
capacity, service mesh configuration, and workload metadata.


It facilitates:

i) The ability to reason over the efficiency by which cloud 

native infrastructure is run, specifically in context of a 
service mesh and its network functions,


ii)Benchmarking of service mesh performance

iii)Common vernacular and measurement for exchange of 

performance information from system-to-system and 
mesh-to-mesh


iv)Apples-to-apples performance comparisons of service 
mesh deployments and tooling to trend workload 
performance.


v)A universal performance index to gauge a service mesh’s 
efficiency against deployments in other organizations’ 
environments.


It consistently runs performance tests on most of the service 
meshes under different test environments on CNCF hosted 
labs [27] and exports the results into a public facing dashboard 
[28]. This helps end-users to make decision on the choice of 
their service mesh. For example, Figure 12 and Figure 13 
demonstrates the latest soak test results from SMP dashboard. 
These test were performed on Istio service mesh and LinkerD 
service mesh with Fortio as the load generator and both 
system under test were in the same testing environment.


Figure 12. Istio Soak Test with Fortio load generator [29] 


Figure 13. LinkerD Soak Test with Fortio load generator [30]


This project further comes with a novel implementation of 
performance index, called MeshMark [31]. This measures the 
value and overhead of cloud native environment. It converts 
performance measurements into insights about the value of 
individual, cloud native application networking functions, 
MeshMark distills a variety of overhead signals and key 
performance indicators into a simple index. It helps in 
assessing the value of your service mesh in context of its cost. 
This was announced in ServiceMeshCon EU 22 [32], and 
since then  it has received positive feedback from community 
members and adopters, and has been actively used for 
benchmarking performance tests results through Meshery.


B. Meshery

Meshery [33] is another popular Layer5 project donated to 

CNCF, that is known as a cloud native manager, capable of 
providing governance, policy and performance, and 
configuration management of cloud native infrastructures. As 
a tool, it supports wide array of deployment scenarios to fit 
into almost all use cases of end-users. This further helps the 
adoption of Meshery in enterprises and greases the wheels for 
performance benchmarking, just one of the many capabilities 
of Meshery.


As explained in [34], its a canonical implementation of SMP, 
which facilitates end-users to perform load testing on their 
environment, that could be testing, staging or production 
based. Tooling that implements MeshMark includes Meshery, 
the cloud native management plane. Users of Meshery can 
configure their Kubernetes deployments, any and every 
service mesh as well as onboard and off-board their workloads 
onto any given mesh. Once they have done so, Meshery will 
begin to calculate MeshMarks continuously.


[35] explains several use cases and key features of Meshery 
and its service mesh management capabilities. Some of its key 
features includes:

i) 3 load generators, that is Fortio, wk2 [36], and Nighthawk 

[37], to fulfill different needs and use cases of end users.

ii)Protocols like TCP, gRPC, HTTP for load generation

iii)Performance profiling 

iv)Scheduled performance management


V. COMPARISONS BETWEEN POPULAR MESHES

Some of the attractive options for service meshes are Istio, 

LinkerD, Amazon App Mesh [38], and Airbnb Synapse [39].

Istio and LinkerD are one of the most trusted and used 

service meshes for prod based infrastructure. This is because 
they provide handful of the fundamental functionalities of a 
mesh. While Istio has more active community that revolves 
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around the project and its development, LinkerD is more 
stable and accredited by many adopters as productions ready. 
While LinkerD is a graduated CNCF project while Istio was 
just recently accepted into CNCF, and is in incubating stage. 
Moreover, Istio provides a large number of flexible APIs for 
developers, and comes with a visual topology offering, i.e., 
Kiali, to facilitate visual representation of the deployment 
environment.


Unlike Istio and LinkerD, Airbnb Synapse does not have an 
abundant feature set. Rather, it comes with the feature of 
automated failover through a simplistic but efficient, 
Zookeeper-based service discovery mechanism. So, Synapse 
configures a local HAProxy process using the information 
read from Zookeeper where states of the service are stored and 
continuously updated. Though this, the local HAProxy can 
take care of properly routing the request from a service 
consumer. With an optimized HAProxy, Synapse can react to 
the change (eg, service failure) in Zookeeper, and reconfigure 
HAProxy immediately. Synapse has been proven to be with 
broad applicability, however, it wasn’t designed to be used as 
a mesh but more of an internal project for Airbnb to solve 
internal development challenges. Because of this, there isn’t 
much development around it.


As of 2018, Amazon, announced its own service mesh, 
named Amazon App Mesh. Its offering are largely native to 
the existing Amazon cloud ecosystem. So, if an organization is 
already using Amazing cloud for its production usage then its 
no brainer to use the App Mesh as it would solve many 
inherent challenges but at the same time would make the 
customers into vendor lock-in since its not so applicable into 
hybrid cloud environment with multiple vendors like Google, 
RedHat, VMware etc.


VI. FUTURE RESEARCH OPPORTUNITIES

Though adoption of service mesh seems a daunting task but 

it has already been started to use in production and adopted by 
wide range of companies. IT complements micro service 
architectures in terms of observability, traceability, and 
manageability.


One of the attractive offering of a service mesh is 
dependency management, and performance tracing and 
analysis for micro service applications. Some of well known 
extension supports, eg Jaeger [40] and Zipkin [41] are based 
on OpenTracing framework which requires instrumentation to 
the applications using Open Tracing API specification. 
Though this approach helps in precisely identify where 
failures occurs and what causes poor performance, such 
instrumentation is not always realistic, eg, when service 
implementation are not exposed is not allowed to be modified 
due to copyright/license issues etc

Hence, an enhancement with non-intrusive mechanism 
becomes a necessity to expand the use case scenario on 
performance tracking and analysis. One promising direction 
would be to investigate the feasibility of integration inference-
based approaches, such as Project5 [42], WAP5 [43], 
Microsofts’ Sherlock [44], and Facebook’s The Mystery 
Machine [45]. In order to adapt the application context of 
service mesh, we expect this may require extensive effort with 
both research and engineering.


More research is needed to explore the use of soft computing 
techniques such as fuzzy logic and genetic algorithms for 
optimizing the performance of service meshes. There is a need 

to investigate the impact of service mesh configuration 
parameters on performance and to develop more efficient 
algorithms for selecting optimal configurations. There is also a 
need to develop better visualization techniques for monitoring 
and diagnosing the performance of service meshes. There is an 
opportunity to explore the use of machine learning techniques 
for predicting the performance of service meshes based on 
historical data. Finally, there is a need to investigate the 
performance of service meshes in complex, real-world 
scenarios and to develop new techniques for handling 
scalability, security, and fault tolerance. Addressing these 
research challenges will enable us to fully realize the potential 
of service meshes for modern, cloud-native applications.


VII. CONCLUSION

In this paper, we have presented an overview of service 

meshes and their use cases in modern cloud-native 
applications. We have also discussed the challenges associated 
with performance analysis of service meshes, including the 
need to consider multiple metrics and the complexity of 
workload patterns. To address these challenges, we have 
presented a literature survey of different tooling available in 
the market to capture and enhance the performance of service 
meshes. That includes the use of soft computing techniques 
and configuration management management tools like 
Meshery for performance analysis of service meshes, and 
presented a comparative analysis of different service mesh 
platforms using these techniques.


Our study highlights the importance of performance analysis 
in ensuring the reliability and scalability of microservices-
based applications. We have shown that while service meshes 
offer numerous benefits such as traffic management, security, 
and observability, their performance can be impacted by 
factors such as the number of nodes in the cluster, the 
configuration of the mesh, and the type of workload. By using 
soft computing techniques or tools like Meshery, we can gain 
a deeper understanding of the impact of these factors on 
service mesh performance and identify ways to optimize it.


In conclusion, our study contributes to the growing body of 
research on service meshes and their performance analysis. We 
hope that this paper helps practitioners and researchers in 
making informed decisions about the use and possible 
optimization of service meshes in their applications. Future 
research can explore the use of other soft computing 
techniques, such as fuzzy logic and genetic algorithms, or use 
inbuilt support offered by MeshMark from SMP for service 
mesh performance analysis and optimization.
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