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Abstract— We investigate the impact of segmentation on
medical image registration. We propose a novel approach
called the “Weakly Supervised Semantic Attentive Med-
ical Image Registration Network” (WSSAMNet++), which
employs segmentation to guide the registration process.
Specifically, our network utilizes the segmentation of the
regions of interest to direct the attention of the registration
network to anatomically-relevant features, enabling it to
focus more effectively on the relevant parts of the images.
We demonstrate the effectiveness of using segmentation
and WSSAMNet++ through extensive experiments on var-
ious registration tasks, including single and multi-modal
registration problems, on multiple datasets. Our approach
does not require any input from the radiologist at test time
and it improves the performance of the registration network
in all the cases tested. In conclusion, our study highlights
the importance of leveraging semantic information to aid
the registration process and shows the effectiveness of the
proposed method in achieving this goal.

Index Terms— Attention, CT, Image-guided Surgery, MRI,
Registration, Segmentation, Weakly Supervised

I. INTRODUCTION

MEDICAL image registration refers to computing a
displacement field to warp a so-called moving image

so that its visual and anatomical features spatially align with
the corresponding ones in a so-called fixed image. Accurate
registration can enable monitoring of disease progression
using longitudinally separated images, fusion of information
for image-guided surgery (IGS) using images from multiple
modalities, and measurement of deviation from an average
anatomy using images from multiple patients [1]. Paradoxi-
cally, while the advantage of registering pairs of images sepa-
rated in time, modality, or patient is more useful, it is also more
challenging to find corresponding anatomical features and
landmarks across disparate images. This is because images can
differ in various characteristics, such as orientation, anatomical
dimensions, imaging modalities, stages of treatment or disease,
and spatial resolution.

Registration techniques currently used in commercial med-
ical imaging systems require time-consuming and error-prone
manual annotation of corresponding anatomical features in
fixed and moving images irrespective of whether they represent
the same or different modalities. These annotations can take
the form of masks indicating regions of interest or landmarks
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representing anatomically significant keypoints. Improvements
in registration accuracy (especially, across disparate images),
level of automation, and computational efficiency are still
needed for image registration methods to unlock more appli-
cations in diagnosis and IGS for improved patient outcomes.

We propose automating image registration and improving
its accuracy by utilizing image segmentation to guide the
registration process. That is, we propose not requiring the user
to mark any keypoints; instead pre-trained neural networks will
segment anatomical parts of the two images, while we will
train another neural network to utilize the segmentation result
for improving the quality of the registration. The registration
network, once trained, will also not require any input from the
user. Use of segmentation to improve registration is our novel
idea.

To test this proposal, we devised and tested a deep neural
network called weakly supervised semantic attentive medical
image registration network (WSSAMNet) [2]. In this work,
we further develop this idea, improve the network archi-
tecture and its training method, and rigorously assess the
performance of our approach in multiple scenarios. These
scenarios included inter-subject (single modality, MRI to MRI)
registration, multiple modality (CT to MRI) registration, and
temporal registration of images taken before and after surgery.
Furthermore, we also tested our method on multiple organs
and base neural network architectures. Our proposed approach
showed improvement in registration accuracy for all the sce-
narios tested.

In the rest of the paper, we begin by discussing related work,
where we provide a detailed overview of different categories
of medical image registration. Following that, we delve into
the specifics of our proposed method. Subsequently, we de-
scribe the experimental setup and present our results. In the
conclusion, we discuss our findings, address the limitations of
our method, and outline potential avenues for future research.

II. RELATED WORK

The field of medical image registration has undergone sig-
nificant advancements in recent years, with traditional methods
giving way to those that utilize deep learning. Here we
summarize this evolution. First, we provide a comprehensive
review of traditional image registration methods, highlighting
their limitations and the need for utilizing deep learning-based
techniques for improved outcomes. Then, we categorize deep
learning techniques into supervised, self-supervised, weakly
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supervised and unsupervised methods, and discuss their re-
spective benefits and drawbacks, as well as the appropriate
scenarios for their application. Finally, we examine the unique
challenges associated with single modality and multi-modal
image registration techniques.

Traditional techniques depend on pixel intensities, image
features, interest points, or their combinations. For instance,
notable techniques include Elastic [3], ANTs [4], NIFTYReg
[5], and SIFT algorithm that is scale-invariant and can handle
various types of distortions such as rotation, affine deforma-
tion, occlusion, clutter, and noise [6]. However, these tech-
niques have serious limitations, such as failing in the pres-
ence of significant and nonrigid deformations, local minima
problems, sensitivity to noise, the need for external data or
assumptions, and time consumption.

To address the aforementioned limitations of traditional
methods, deep learning-based methods were developed be-
cause they can learn complex nonlinear mappings from image
data without explicit feature extraction or manual parameter
tuning. These methods can handle nonrigid and large defor-
mations as well as variations in scale, rotation, and viewpoint.
Furthermore, these methods can be trained end-to-end for
improved accuracy and efficiency. Deep learning-based image
registration techniques can be mainly categorized based on
the extent of supervision or the number of modalities used as
described below.

1) Supervised: These methods train neural networks to
reduce the error between an estimated deformation field output
by them and a known deformation field (or a subset or
parameters thereof). An example of the error to be reduced is
the pixel-wise mean-square error between the two deformation
vector fields (DVFs). For instance, in [7], a convolutional
neural network (CNN) outputs a deformation field between
different phases of patients’ 4D-CT or 4D-cone beam CT
scans. A rapid registration method was also introduced that
relies on patch-wise prediction of the initial momentum pa-
rameterization in the large deformation diffeomorphic metric
mapping (LDDMM) shooting formulation [8]. The obvious
limitation of supervised methods is the requirement of ground
truth deformation fields between the two images, which is time
consuming and error-prone, for training and testing.

2) Self-supervised: When the deformation field is not avail-
able for supervised training, a single (fixed) image can be
synthetically warped to produce a moving image, thus produc-
ing a known deformation field using self-supervised methods.
For instance, three different categories of artificial DVFs
were generated in [9] to represent the range of displace-
ments that can be seen in real images.Another method called
SAME breaks down the image registration process into three
steps: affine transformation, coarse deformation, and deep
deformable registration [10].In another method, to overcome
the task of manually identifying transformation parameters
for each image pair, a substantial amount of unlabelled data
was utilized to create a synthetic dataset using affine trans-
formations, enabling efficient training of the proposed model
for 3D medical registration [11]. Self-supervised methods are
limited by the range of simulated deformation fields and the
similarity of characteristics between the original fixed and the

synthetically generated moving images.
3) Unsupervised: In the absence of any known ground

truth correspondence between the two images, alternative
loss functions such as mean square error are employed in
single-modality registration, while normalized cross correla-
tion [12] or mutual information [13] are used in multi-modal
registration. These losses are low when the pattern of pixel
intensity and its spatial variation in a neighborhood of a
point in one image can be predicted based on the same for
the corresponding point in the other image. Unsupervised
image registration methods include those mentioned by [14],
who introduced a cGAN for retinal fundus and fluorescein
angiography image registration, Guo et al. [15], who proposed
an unsupervised method for multi-modal image registration
using a mutual-information-based loss function, and Chen et
al. [16], who introduced an unsupervised vision transformer
(ViT) that uses patch-based processing for medical image
registration. The ViT-V-Net combines ViT and ConvNet to
facilitate volumetric medical image registration. The authors
used it for unsupervised registration of T1 brain MRI scans.

A major limitation of unsupervised methods is the inability
to objectively assess how good the final registration actually
is.

4) Weakly supervised: Spatially sparse annotations, such as
landmarks or keypoints, can be used for weak supervision to
reduce the dependence on full supervision – the latter requires
knowing the dense deformation field. These annotations are
then used to measure the error between the registered image
and the ground truth image. Additional supervision can come
from the local alignment of visual features determined using
image processing techniques across the two images. For in-
stance, Hu et al. [17] presented a weakly supervised CNN
for multimodal image registration. Their strategy is versatile
in terms of training as it can use a variety of anatomical
labels without requiring them to be identifiable in all training
image pairs. In their study, two metrics were reported. The first
one is the target registration error (TRE), which is calculated
by taking the root-mean-square of the distances between the
centers of mass of each pair of fixed and warped labels over all
landmark pairs for each patient [18]. The second metric is the
Dice similarity coefficient (DSC), which measures the overlap
between the binary warped and fixed labels that represent
the prostate glands [19]. [20] introduced ISTNs, which use a
blend of image and spatial transformer networks for structure-
guided registration. The proposed method employs a two-stage
approach where first, an image transformer network is used to
extract feature maps from the input images, and then a spatial
transformer network is employed to register the images based
on the extracted features. The authors introduce a new loss
function that takes into account both the intensity-based simi-
larity and structural similarity between the images. Gunnarsson
et al. [21] presented an algorithm that uses a Laplacian pyra-
mid for medical image registration which involves reducing the
resolution of both the static and moving images at different
feature map levels. At each level, a displacement field is cal-
culated and then progressively improved within the network.
The authors of [22] introduced a contrast-agnostic network
based on GANs that is invariant to different types of contrasts
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in medical images. Training the model on randomly generated
shapes from noise distributions, eliminating the reliance on
any type of collected data. Moreover, they demonstrated that
using anatomical label maps, which are frequently accessible
for the relevant anatomy, significantly enhances performance
when generating images, while still avoiding the requirement
for actual intensity images.

Although weakly supervised methods produce more accu-
rate results compared to unsupervised methods, their feasibility
is limited due to the requirement for annotations of regions of
interest. The annotation process is often expensive and requires
expert knowledge, resulting in limited and potentially noisy
annotations. Therefore, in situations where such annotations
are not available or not reliable, unsupervised training becomes
the only feasible option, which is discussed next.

5) Single-modality and multi-modal image registration meth-
ods: Image registration techniques can be also classified based
on the type of images being registered. If both images are from
the same modality, it is called single-modality registration
[14], whereas if they are from different modalities, it is called
multi-modal registration [17]. While uni-modal registration
has been extensively studied, multi-modal registration is more
challenging due to the differences in image intensity, noise
levels, and spatial resolutions. However, the practical utility of
multi-modal registration makes it a worthwhile pursuit as it can
provide complementary information from different modalities
to improve diagnosis and treatment planning. Several studies
have shown that multi-modal registration compared to uni-
modal registration is more computationally expensive and
requires more sophisticated algorithms [23].

This review of the existing method suggests that an accurate
and flexible method that can work with single or multiple
modalities and one that is automated such that does not require
physicians to spend their valuable time annotating images at
the time of diagnosis or surgery is still needed.

III. PROPOSED METHOD

Our key idea is to utilize the advances in automated seg-
mentation of anatomical units using deep neural networks for
weak supervision to train registration neural networks. Doing
so requires no additional annotation from radiologists at the
time of either training or testing the registration network, if
a segmentation neural network is anyway available. Towards
this end, we extend our preliminary work called “Weakly
Supervised Semantic Attentive Medical Image Registration
Network” (WSSAMNet) [2] with improved backbone architec-
tures for segmentation and registration. We dub the improved
method WSSAMNet++. We describe various components of
the proposed method below.

A. WSSAMNet++
Previously, our team developed WSSAMNet [2], which is a

network designed specifically for medical image registration.
The network comprises two main components – a segmenta-
tion module and a registration module with an attention block
in between. The segmentation module is composed of either
one segmentation network for single-modal registration, or two

parallel segmentation networks for multi-modal registration.
The attention block is responsible for selectively enhancing
the moving and fixed images by assigning different levels
of attention to the segmented regions, depending on the
requirements of the task at hand. See Fig. 1 for more details
of the WSSAMNet architecture.

The revised version of WSSAMNet, referred to as WSSAM-
Net++, is presented in this paper. To enhance its segmentation
capabilities, we substituted the original UNets [24] with more
potent segmentation networks, such as Swin UNETR [25]
and Multi-UNets [26]. Additionally, we tailored the attention
blocks to the specific datasets we were analyzing and more
rigorously tested this network.

For the experiments of inter-subject and intra-subject reg-
istration, we designed the attention block in the following
manner. Initially, we utilized a Laplacian kernel to transform
the predicted mask regions into contours, after which we
calculated the resulting image according to the following
equation 1

O = L×M + I, (1)

where I, L, M, and O are the input image, the Laplacian
magnitude of the predicted mask, the predicted mask, and the
output attention-driven (directed) image respectively.

In contrast to inter-subject or intra-subject registration prob-
lems, postoperative to preoperative registration presents a
unique challenge. In this case, the objective is not to prioritize
the segmented regions, specifically the tumor regions, as these
regions are not common to both the moving and fixed volumes.
To address this, a distinct attention mechanism was designed
to redirect the focus of the registration network towards the
shared regions. This attention mechanism differs from the
one employed in inter-subject and intra-subject registration
tasks. Thus for postoperative to preoperative registration, we
calculated the resulting image according to 2

O = M × I, (2)

where I, M, and O are the input image, the binary predicted
mask (tumor area has label 0 and rest of the brain has label
1), and the output (directed) image, respectively.

The registration module takes in a concatenation of the
directed fixed and moving images, and uses it to predict the
deformation field. This deformation field is then utilized to
deform either the moving image, the corresponding mask, or
both, so that they match the fixed image and its corresponding
mask. Further details on the functionality of each component
will be elaborated upon in the upcoming sections.

B. Segmentation
We conducted experiments with two distinct segmentation

architectures. We now provide a detailed account of each
network along with its number of parameters.

1) Swin UNETR: The segmentation model Swin UNETR
[25], takes inspiration from the successful vision transformers
and their variations. It aims to tackle the 3D brain tumor
semantic segmentation task by converting it into a sequence.
Swin UNETR employs a U-shaped network composed of a
Swin Transformer as the encoder and a CNN-based decoder
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Fig. 1. Architecture of WSSAMNet comprises three parts: a segmentation network, an attention block, and a registration network.

connected at various resolutions through skip connections.
In this method, the multi-modal input data is transformed
into a 1D sequence of embedding, which serves as input to
a hierarchical Swin Transformer acting as the encoder. The
Swin Transformer encoder extracts features at five different
resolutions by employing shifted windows to compute self-
attention. These features are then connected to an FCNN-
based decoder at each resolution through skip connections.
The efficacy of Swin UNETR for multi-modal 3D brain
tumor segmentation in the 2021 Multi-modal Brain Tumor
Segmentation Challenge (BraTS) has also been demonstrated
[27]. The overall model has 2.2 million parameters.

2) Multi-UNets: We utilized several 3D Convolutional Neu-
ral Networks, distributed independently in space, to segment
the entire brain volume. Each volume has a resolution of
(224× 160× 192), which we divided into eight smaller non-
overlapping volumes of size (112×80×96). We trained a 3D
UNet model [24] for each of the eight volumes to learn contex-
tual information at a fixed spatial location. During inference,
we combined the outputs of all eight models. The network
was trained using pixel-wise cross entropy loss, and a single
3D UNet model contained 19.9 million trainable parameters.
With eight such networks, the overall model has 159 million
trainable parameters. The rationale for employing two distinct
segmentation networks – Swin UNETR and Multi-UNets –
for segmentation is that the Swin UNETR, being a complex
architecture, requires a GPU with a large memory, particularly
when employed for 35-label segmentation. To overcome this
limitation, we introduce Multi-UNets as a viable alternative,
which is better suited for GPUs with limited memory.

C. Registration

We experimented with two state-of-the-art registration net-
works – RegUNet [28] and TransMorph [29].

1) RegUNet: For RegUNet we used the deep learning
toolkit for medical image registration (DeepReg) [28] in most
of our experiments. The DeepReg toolkit consists of several
modules that can be used to perform image registration tasks,
including a deep neural network architecture, various loss
functions, and optimization algorithms. The authors show
that their approach outperforms state-of-the-art registration
methods on several benchmark datasets and demonstrate the
toolkit’s versatility by applying it to a variety of medical imag-
ing modalities, including MRI, CT, and ultrasound. They also
provide open-source code for the DeepReg toolkit, making it
widely accessible to the research community.

Our registration network follows a straightforward 3D
UNet-like architecture, with the concatenated attentive source
and target images serving as the input and the output being
the deformation field. The network comprises three levels and
does not include any skip connections. For additional details
on the network’s architecture, please refer to [28]. The total
number of parameters is 0.37 million.

2) TransMorph: We also applied our technique to Trans-
Morph [29], which is a state-of-the-art registration network
based on its superior performance on a variety of registration
problems and datasets, to demonstrate that our proposed
method improves registration results regardless of the specific
underlying registration network, even if it is already perform-
ing well. Unlike convolutional networks, vision transformers
can account for long-range spatial relationships within an
image. In recent years, vision transformers have demonstrated
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state-of-the-art performance in various medical imaging tasks.
Due to their substantially larger receptive field, transformers
are a promising option for image registration as they can
provide a more accurate understanding of the spatial corre-
spondence between a moving and fixed image. As a hybrid
Transformer-ConvNet model, TransMorph [29] utilizes these
advantages to achieve volumetric medical image registration.

The initial step of the network’s encoder is to divide the
input volumes of the fixed and moving images into 3D patches
with no overlap. Each of these patches is then flattened and
treated as a token, which is projected to a feature representa-
tion by a linear projection layer. In this process, positional
embedding is not used. Subsequently, patch merging and
Swin Transformer blocks are applied in several consecutive
stages. The decoder component is comprised of a series of
upsampling and convolutional layers with a 3 × 3 kernel
size. To incorporate skip connections, the decoder is also
connected to the corresponding stages in the encoder. Finally,
the network’s output is the deformation field. The total number
of parameters of this network is 107 million.

IV. EXPERIMENTS AND RESULTS

This research investigates the benefits of directing the
registration network’s attention to regions of interest to im-
prove registration accuracy. The study includes experiments
on inter-subject, intra-subject, and postoperative to preoper-
ative registration problems using single-modality and multi-
modal datasets. By conducting extensive experiments with
diverse datasets and registration tasks, this study highlights
the significance of incorporating semantic information to en-
hance the registration process in medical image analysis. The
proposed method effectively utilizes segmentation to guide
and improve registration performance for both single-modality
and multi-modal registration methods, outperforming existing
approaches.

A. Datasets
Our experiments were conducted using three different

datasets. The easiest challenge was posed by the OASIS
dataset [30] to register healthy brains of various subjects.
The challenge increased in the second unpaired dataset called
Learn2Reg [31], which required multi-modal registration in-
volving CT scans of abdominal organs and their correspond-
ing MRI scans. Lastly, we used another challenging dataset
from BraTS-Reg challenge [18] for the purpose of registering
postoperative scans to pre-operative scans of patients who
underwent treatment for glioma. More details about each of
the datasets can be found below.

1) OASIS dataset: The OASIS dataset [30], which is used
for inter-subject registration, comprises MRI data from 414
subjects. We partitioned this data into three sets: training,
validation, and testing. These sets were divided in a ratio of
314:50:50, respectively. Each subject’s data included original
and normalized T1-weighted scans, as well as segmentation
masks for different brain areas. The dataset contains three
distinct types of brain segmentation: a four-label mask, a
thirty-five label mask, and a twenty-four-label mask, which

Brain Image GT (5 Label) Swin-UNETR GT (36 Label) Multi-UNET

Brain Image GT (5 Label) Swin-UNETR GT (36 Label) Multi-UNET 

Fig. 2. OASIS dataset sample [30]: rows represent two different brain
slices obtained from a subject illustrating the precision of the predicted
masks compared to the ground truth (GT) masks. The Swin UNETR [25]
and Multi-UNets [24] models were used for the 5-label and 36-label
predictions, respectively.

cover the major anatomical regions of the brain. Both the 3D
T1-weighted scans and their corresponding masks have the
following size: (160, 192, 224).

Figure 2 shows two brain slices from a subject in the
OASIS dataset, showcasing the accuracy of predicted masks in
comparison to the ground truth masks. The Swin UNETR [25]
and Multi-UNets [24] models were utilized for 4-label and 35-
label predictions, respectively, revealing the quality of their
performance.

2) Learn2Reg dataset: We utilized the unpaired CT-MR
thorax-abdomen dataset from the Learn2reg collection [31] for
intra-patient registration. Our objective was to demonstrate that
segmentation aids in multi-modal registration also, where the
source and target data domains differ significantly in resolution
as well as visual patterns associated with each anatomical
region, and the annotations are usually limited and noisy.

This dataset includes MRI and CT scans for each patient,
and the goal is to align the CT scan to the MRI scan for
the same patient or different patients. The dataset comprises
122 CT and a same number of MR scans. Only 16 of the CT
and MR scans are paired, while 94 of each are unpaired. The
unpaired data is divided into training, validation, and testing
sets in a ratio of 66:20:8.

Fig. 3 contains two rows pertaining to two distinct cases,
with each row comprising the CT scan, its corresponding seg-
mentation, the MRI scan, and its corresponding segmentation.
Please note that the CT and the MRI slice in each row are
corresponding slices from paired CT and MRI scans.

3) BraTS-Reg and BraTS datasets: The objective proposed
with the release of the BraTSReg 2022 dataset is to register
follow-up MRI scans to their paired pre-operative baseline
scans for 140 subjects who have undergone treatment for
glioma [18]. The dataset is divided into training, valida-
tion, and testing sets in a ratio of 104:29:7. For each pa-
tient, the dataset provides pairs of pre-operative baseline and
follow-up MRI brain scans along with landmarks. The multi-
parametric MRI sequences at each time-point include native
(T1), contrast-enhanced T1-weighted (T1-CE), T2-weighted,
and T2 Fluid Attenuated Inversion Recovery (FLAIR). We
only utilized the T1-CE scans in our experiments. The number
of landmarks provided varies from 6 to 50 per scan, and we
used them for evaluation purposes only.

It should be noted that the BraTSReg dataset does not
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CT Image CT Mask MR Image MR Mask

CT Image CT Mask MR Image MR Mask

Fig. 3. Learn2Reg dataset sample [31]: Different cases (rows) from
the Learn2Reg dataset are shown with their CT scan (first column),
its segmentation (second column), the corresponding MRI scan (third
column), and its segmentation (last column).

include segmentation masks. Therefore, we trained a segmen-
tation network on the BraTS 2021 dataset [32], which contains
MRI scans and corresponding tumor masks for 1251 sub-
jects. Annotations for the GD-enhancing tumor, peritumoral
edematous/invaded tissue, and necrotic tumor core for this
dataset have been previously described [33] . The shape of
the MRI scan and its mask in the BraTS2021 dataset is (155,
240, 240). Within our registration network, we employed pre-
operative and follow-up MRI scans as inputs. To concentrate
our registration efforts on aligning the shared regions present
in both images, we applied a masking technique to isolate the
tumor regions from each scan.

Figure 4 illustrates the input slice, the predicted mask, and
the masked image in three successive columns for two slices
(rows). The slice in the top row is taken from a preoperative
scan, while the one in the bottom row is taken from a
postoperative scan. The masks were predicted using Swin
UNETR trained on BraTS data and used in testing mode for
the BraTSReg dataset.

B. Data preprocessing and experiments setup

For all the experiments, we used different techniques for
normalizing the MRI and CT images. To normalize the MRI
images, we used the min-max normalization method. On the
other hand, for CT scans, we adopted a different normalization
approach. First, we divided each pixel value in the CT scans
by the maximum value that a pixel can take, which is usually
4095 for a 12-bit image. Then, we performed zero-centering
to prevent gradient saturation, where we subtracted each pixel
value from the average value of the pixels’ subsample. Finally,
we applied standardization to the CT scans to achieve a sample
distribution with a mean of zero and a standard deviation of
one.

The experimental setup for this study involves four different
neural network models, namely Swin UNETR, Multi-UNets,
TransMorph, and RegUNet. The optimizer used for all four
models is Adam, with a learning rate of 10−4. The batch sizes
for the four models differ, with Swin UNETR having a batch
size of 2, Multi-UNet having a batch size of 1, TransMorph

T1(CE) Predicted Mask Masked T1(CE)

T1(CE) Predicted Mask Masked T1(CE)

Fig. 4. BraTSReg dataset sample [18]: preoperative (top row) and
postoperative (bottom row) slices of a single patient from the BraTSReg
dataset are shown, and the columns represent the input slice, the
predicted mask, and the masked image, respectively from left to right.

having a batch size of 3, and RegUNet having a batch size of
4.

Additionally, the experiments were run on one Nvidia A100
GPU with 8 workers to ensure efficient processing of the large
datasets involved. It is worth mentioning that the Multi-UNets
were trained specifically on an NVIDIA GeForce RTX 2080
Ti 11 GB. These experimental parameters were chosen to
strike a balance between computational efficiency and model
performance, allowing for meaningful and accurate results.

C. Loss functions and evaluation metrics
For most of our experiments, we employed the Dice

loss [19] as a training metric for our network. Figure 1 illus-
trates the different types of Dice loss we utilized. Specifically,
loss1 represents the segmentation loss calculated by comparing
the predicted and ground truth moving masks, loss2 is the Dice
loss between the predicted and ground truth fixed masks, and
loss3 represents the registration loss obtained by calculating
the Dice loss between the deformed moving mask and the
ground truth fixed mask. Additionally, we used a combination
of normalized cross-correlation loss [12], mutual information
loss [13] and bending energy loss [34] as the registration loss
for the preoperative to postoperative registration network, as
it was trained in an unsupervised manner.

The Dice score between the predicted mask p and the
ground truth mask g is given by 3

Dice Score =
2
∑n

i=1 pigi∑n
i=1 pi +

∑n
i=1 gi

(3)

where n is the total number of labels. And Dice Loss = 1 −
Dice Score.

The local cross correlation between the fixed volume f and
the moving volume m after deforming it by the deformation
field Φ is given by 4 :

cc(f,m◦Φ) =
∑

p∈Ω

(
∑

pi
(f(p)i−f̂(p))([m◦Φ](pi)−[m̂◦Φ](p)))2

(
∑

pi
(f(pi)−f̂(p))2)(

∑
pi

([m◦Φ](pi)−[m̂◦Φ](p))2)
(4)
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where f̂(p) and [m̂◦Φ](p) denote local mean intensity images.
The mutual information between f and (m ◦Φ) is given by

5:

I(f,m ◦ Φ) =
∑

a∈f,b∈m◦Φ

p(a, b)log

(
p(a, b)

p(a)p(b)

)
(5)

According to [35] the displacement field is smooth if it
does not have severe hops. That is, it is smooth when there
is a gradual change in the direction and the magnitude in
a neighborhood. To ensure this, we use the L2 norm of
the Laplacian of the deformation field as a loss as given in
equation 6.

Lsmooth(Φ) =
∑
p∈Ω

||▽u(p)||, (6)

where ▽u(p) = (∂u(p)
∂x , ∂u(p)

∂y , ∂u(p)
∂z ), and ∂u(p)

∂x ≈ u(px +
1, py, pz)− u(px, py, pz).

For the inter- and intra-subject registration tasks, we utilized
the Dice score as in 3 as the evaluation metric, whereas for the
postoperative to preoperative registration task, we employed
the median absolute error (MAE) as the evaluation metric.

The MAE measures the registration error between the
follow-up scan (F) and the preoperative scan (B) for a pair
of scans (p) using the median absolute error of the land-
marks [18], which is given by:

MAE = Medianl∈L(|xB
l − x̂l

B |) (7)

where xB
l , x

F
l are the coordinates of corresponding landmarks

of l ∈ L the set of landmarks identified in both B and F.

D. Inter-subject registration
Inter-subject registration is a crucial technique in medical

imaging that involves aligning two or more images of different
subjects. It is an important step in many clinical applications
such as treatment planning, image-guided therapy, and disease
diagnosis. The process involves finding a transformation that
aligns the anatomical structures of interest in one image to
those in another image, while accounting for differences in
anatomy, position, and orientation. Inter-patient registration is
challenging due to the wide variability in anatomical structures
among different patients, making it difficult to find a universal
solution.

The OASIS dataset was utilized in our experiments, wherein
we conducted three separate tests to demonstrate the signif-
icance of utilizing segmentation in a conscious manner. Our
first step was to select two subjects at random and utilizing
their moving and fixed T1CE (T1 contrast enhanced) scans
as inputs. Secondly, we used WSSAMNet++ to segment the
masks of the moving and fixed images, and then proceeded to
use these masks in three different ways: directly as input to
RegUNet to predict the deformation field, concatenating the
masks with the images and then presenting them as input to
RegUNet, and using the predicted masks to direct the attention
of the registration network towards specific areas of interest.

Our results demonstrate that solely using the masks or
concatenating them with the images resulted in a deterioration
of performance compared to the performance of deep learning

TABLE I
RESULTS OF INTER-SUBJECT REGISTRATION

Segmentation
Network

Registration
Network

Registration Input Dice
Score

None RegUNet Original Images 0.736±0.018
Swin UNETR RegUNet Predicted Masks 0.724±0.021
Swin UNETR RegUNet CAT(Images, Masks) 0.731±0.016
Swin UNETR RegUNet Images with Attention 0.750±0.013
CAT() stands for concatenation of moving and fixed images and their
corresponding masks. In all of these experiments we used four-label masks.
Each four-label mask in OASIS data contains the following regions: the
cortex, the subcortical gray matter, the white matter, and the CSF.

Fig. 5. RegUNet (top row) compared to WSSAMNet++ (bottom row)
on OASIS dataset using a four-label mask: Asterisks indicate fixed and
moving image with the Laplacian magnitude of the segmentation mask
overlaid, and the red grid lines are overlaid to aid visual comparison
along with color-matched arrows to highlight corresponding visual fea-
tures.

methods that utilized the images as inputs. However, directing
the attention of the registration network towards specific
regions of interest enhanced the performance of the registration
network. Check Table I.

Fig. 5 shows the results of RegUNet in the first row against
the results of WSSAMNet++ in the second row when using
four-label masks. Similarly, Fig. 6 shows the results of Trans-
Morph against WSSAMNet using four-label masks. While Fig.
7 shows the results of TransMorph against WSSAMNet++
when using thirty five-label masks. WSSAMNet++ outper-
forms RegUNet and TransMorph in deforming the moving
regions to achieve a higher level of semantic similarity with
the corresponding regions in the fixed image, as evident in all
the indicated areas across the figures.

Table II presents a comparison between WSSAMNet++
and TransMorph, indicating that WSSAMNet++ outperforms
TransMorph in all experiments when utilizing both four-
label (five-label if background is counted) and thirty-five-label
(thirty-six-label if background is counted) predicted masks
to generate Laplacian images for the registration network of
WSSAMNet++. Furthermore, the table highlights that lower
label counts result in better registration outcomes.

E. Intra-subject registration
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Fig. 6. TransMorph (top row) compared to WSSAMNet++ (bottom row)
on OASIS dataset using a four-label mask: Asterisks indicate fixed and
moving image with the Laplacian magnitude of the segmentation mask
overlaid, and the red grid lines are overlaid to aid visual comparison
along with color-matched arrows to highlight corresponding visual fea-
tures.

TABLE II
COMPARISON BETWEEN WSSAMNET++ AND TRANSMORPH

Network Number of Labels Registration’s Inputs Dice
Score

TransMorph 4-label Mask Original Images 0.899±0.006
WSSAMNet++ 4-label Mask Laplacian Images 0.901±0.004
TransMorph 35-label Mask Original Images 0.849±0.012
WSSAMNet++ 35-label Mask Laplacian Images 0.852±0.011
A comparison between the performance of WSSAMNet++ and TransMorph
when using predicted masks of both four labels and thirty-five labels of OASIS
Data.

Fig. 7. TransMorph (top row) compared to WSSAMNet++ (bottom row)
on OASIS dataset using a 35-label mask: Asterisks indicate fixed and
moving image with the Laplacian magnitude of the segmentation mask
overlaid, and the red grid lines are overlaid to aid visual comparison
along with color-matched arrows to highlight corresponding visual fea-
tures.

Intra-subject registration of CT to MRI of abdominal organs
is a crucial technique in medical imaging that enables the
integration of information from both modalities. This integra-
tion can provide valuable insights into the underlying anatomy
and pathology of the abdominal organs. The process involves
registering a CT image of the abdomen to an MRI image of the
same patient, allowing for the accurate alignment of anatom-
ical structures between the two modalities. This technique
is particularly useful in cases where CT and MRI scans are

TABLE III
RESULTS OF INTRA-SUBJECT REGISTRATION

Network Registration’s Inputs Dice Score
RegUNet Images 0.167±0.098
WSSAMNet++ Images with Attention 0.241±0.074
Dice score was computed between the four-label deformed moving mask and
fixed mask of unpaired scans. Each mask of Learn2Reg data contains the
following regions: the liver, the spleen, the left kidney, and the right kidney.

Fig. 8. RegUNet (top row) compared to WSSAMNet++ (bottom row)
on Learn2Reg multi-modal dataset: Asterisks indicate fixed and moving
image with the Laplacian magnitude of the segmentation mask overlaid,
and the red grid lines are overlaid to aid visual comparison along with
color-matched arrows to highlight corresponding visual features.

acquired for the same patient at different times or for different
clinical purposes. Intra-subject registration is a challenging
task due to the differences in image acquisition parameters
and contrast mechanisms between the two modalities.

The Learn2Reg dataset was used in our experiments,
wherein we employed WSSAMNet++ to identify the regions
of interest in both MRI and CT scans, and subsequently
directed the attention of RegUNet towards these regions. Our
findings demonstrate a marked improvement in the perfor-
mance of RegUNet compared to its performance when the
original images were used without attention. See Table III

Fig. 8 shows the results of RegUNet in the first row against
the results of WSSAMNet++ in the second row. WSSAM-
Net++ deforms the moving image effectively, even for large
deformations, as evident from the deformation field. On the
other hand, the deformation field of RegUNet exhibits high
magnitude in the background, where no deformations should
occur. Arrows highlight the disparities between the moving
image and the output of WSSAMNet, whereas the moving
image and output of RegUNet appear identical.

F. Postoperative to preoperative registration
Postoperative to preoperative registration of MRI scans in

patients treated for glioma is a critical aspect of clinical care.
Gliomas are malignant brain tumors that can be challenging
to remove completely without causing damage to surrounding
healthy tissues. Hence, postoperative MRI scans are crucial
for evaluating the extent of tumor resection and assessing the
need for further treatment. However, to accurately compare
the postoperative images with the preoperative images and to
determine the extent of resection, registration of these images
is necessary.
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TABLE IV
RESULTS OF POSTOPERATIVE TO PREOPERATIVE REGISTRATION

Evaluation Metric Images as Input Images with Attention
as Input

Mean of Mean AE 1.587 1.581
Mean of Median AE 1.307 1.293
Median of Median AE 1.494 1.494
Mean of Median AE 1.698 1.616
AE stands for the absolute error between the registered landmarks and the
ground truth landmarks.

The postoperative to preoperative registration enables the
integration of information from both scans, providing a more
comprehensive view of the tumor and surrounding tissues.
Accurate registration can help clinicians in determining the
efficacy of the surgical procedure, planning further treatments,
and assessing patient prognosis. Therefore, postoperative to
preoperative registration of MRI scans in patients treated
for glioma is crucial for improving patient outcomes and
optimizing treatment strategies.

Our experiments were conducted using the BraTSReg
dataset. However, as this dataset did not contain any masks, we
trained WSSAMNet++’s segmentation network on the BraTS
dataset to segment the tumor from the preoperative images.
Once we obtained the tumor masks from the preoperative and
postoperative images, we masked the corresponding areas in
both of the MRI scans. This was done to address the challenge
of RegUNet learning the deformation field, as the existence
of the tumor in the preoperative scan and the cavity and/or
tumor recurrence in the postoperative scan did not correspond
to each other, which could potentially hinder the learning
process. Therefore, we believed that masking these regions
from the preoperative and postoperative scans would improve
the accuracy of RegUNet’s deformation field prediction.

The outcomes of our study demonstrate a noticeable en-
hancement in RegUNet’s performance when utilizing the seg-
mentation information and directing the network’s attention
towards the shared regions between the two scans,see Table
IV.

Fig. 9 shows the results of RegUNet in the first row against
the results of WSSAMNet++ in the second row. It is worth
noting that the deformation field observed in RegUNet’s output
appears to have high magnitude in the background where the
deformation should be zero, in contrast to the deformation
field of WSSAMNet++

V. CONCLUSION

We proposed the use of segmentation in improving the
medical image registration process. Through the introduc-
tion of the Semantic Attentive Medical Image Registration
Network (WSSAMNet++), we have demonstrated the effi-
cacy of using segmentation to guide the registration process,
resulting in improved performance across various registra-
tion tasks and datasets. Additionally, the study demonstrates
that our method consistently improves registration results
across different backbones. Our study highlights the significant
improvements achieved by our proposed method in multi-
modal registration, while also demonstrating that an increased

Fig. 9. RegUNet (top row) compared to WSSAMNet++ (bottom row)
on BraTSReg dataset: Asterisks indicate fixed and moving image with
the Laplacian magnitude of the segmentation mask overlaid, and the
red grid lines are overlaid to aid visual comparison along with color-
matched boxes to highlight corresponding visual features where the
missing tissue is better shrunk by WSSAMNET++.

number of segmented regions does not necessarily lead to
better registration performance. Overall, our work contributes
to the development of more accurate and efficient medical
image registration techniques, with the potential to benefit
clinical practice and patient outcomes. The study’s findings can
potentially contribute to the development of new approaches
for medical image analysis, resulting in improved accuracy for
medical diagnosis and treatment.
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