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Abstract— GOAL: Accounting for gait individuality is impor-
tant to positive outcomes with wearable robots, but manually
tuning multi-activity models is time-consuming and not viable
in a clinic. Generalizations can possibly be made to predict gait
individuality in unobserved conditions. METHODS: Kinematic
individuality—how one person’s joint angles differ from the
group—is quantified for every subject, joint, ambulation mode
(walking, running, stair ascent, and stair descent), and in-
tramodal task (speed, incline) in an open-access dataset with 10
able-bodied subjects. Four N-way ANOVAs test how prediction
methods affect the fit to experimental data between and within
ambulation modes. We test whether walking individuality
(measured at a single speed on level ground) carries across
modes, or whether a mode-specific prediction (based on a single
task for each mode) is significantly more effective. RESULTS:
Kinematic individualization improves fit across joint and task if
we consider each mode separately. Across all modes, tasks, and
joints, modal individualization improved the fit in 81% of trials,
improving the fit on average by 4.3° across the gait cycle. This
was statistically significant at all joints for walking and running,
and half the joints for stair ascent/descent. CONCLUSIONS:
For walking and running, kinematic individuality can be easily
generalized within mode, but the trends are mixed on stairs
depending on joint.

IMPACT STATEMENT

Isolating what makes gait unique for a person during
activities of daily living allows us to generalize movement
individuality, making assistive devices easier to implement.

I. INTRODUCTION

Have you ever been able to recognize a person in the dis-
tance just by the way they walk? That is because a person’s
gait is unique to them and persists over time [1], making
gait an excellent biometric for individual recognition [2].
Gait individuality research falls into either gait recognition
(e.g., using deep learning) or into the biomechanics realm,
where aspects of an individual’s gait are used to quantify
efficiency, symmetry, and comfort [3]–[5]. Consequently,
past research has predicted an individual’s gait kinematics
over level ground by looking at anthropometric parameters,
such as age, sex, BMI, and bone geometry [6]–[8]. As a
person walks on more varied terrain, their gait fluctuates with
respect to ground slope, load, and speed [1], [3]. While these
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factors can be modeled continuously to improve predictions
over a wide variety of tasks [9], the largest source of error
stems from fitting individual gait [10], [11].

Since gait is so distinct between individuals, it is important
to take this individuality into account when modeling gait
and designing control algorithms for assistive devices, such
as robotic exoskeletons and prosthetic legs. These control
systems often have user-specific parameters that must be
configured by clinicians [12], [13], harnessing their expe-
rience to improve gait symmetry, counteract maladaptive
compensations, and assist rehabilitation for populations with
impaired gait. As devices get more complex, the control
and tuning often requires the technical knowledge of an
engineer to translate the clinician’s prescription into control
parameters [11], [13], [14]. Researchers are working on this
problem by building tuning interfaces that allow a clinician
or user to directly tune the device without an engineer [15]–
[17]. The decision-making process of clinicians has also been
encoded into auto-tuning algorithms for robotic prosthetic leg
controllers [18], [19]. Other human-in-the-loop, auto-tuning
algorithms optimize parameters with respect to various out-
comes, such as metabolic cost or minimizing error to joint
angle trajectories [20]–[25]. While these are important steps,
these methods generally consider only one ambulation mode
(walking) at one speed and incline (together defining the
specific task within the ambulation mode).

With the capability of assistive devices expanding to
more activities, the already complex problem of tuning one
ambulation mode (e.g., walking) compounds. Tuning the
multi-modal controller of a powered knee-ankle prosthesis
for a specific user can take a team of engineers and clini-
cians as long as 5 hours [14], which falls well outside the
length of a typical clinical session. The iterative process
of individualizing all possible tasks of daily living would
be infeasible for both the prosthetist and user. Additionally,
many clinics do not have the equipment to test every task
(e.g., variable-incline ramps or stairs). We seek to minimize
this burden by making assumptions about gait individuality
to minimize the number of specific tasks a clinician must
tune. We hope to harness trends in able-bodied ambulation
to simplify the individualization process for assistive devices
that aim to restore able-bodied gait in impaired populations.
This paper investigates what assumptions can be made about
individuality across tasks and ambulation modes.

In particular, this study expands upon the assumptions
proposed in [11]: in able-bodied individuals, the kinematic
individuality seen at level-ground walking (i.e., the differ-
ence in joint angle between the individual’s kinematics and
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Fig. 1. The Individual Kinematic Contribution (IKC) represents the difference between a subject’s joint angle kinematics (dashed) and the inter-subject
mean (solid) at the same speed and incline. The IKC is calculated at a representative “baseline” task (A; shaded) and then added to other tasks (e.g.,
different inclines) to predict individuality over the task space (B).

the population average at each point in the gait cycle) is
a good estimate for the individuality across all walking
speeds and inclines. We investigate how well this assumption
holds across other ambulation modes, or whether similar
assumptions can be made about individuality within other
ambulation modes. Understanding individuality in the able-
bodied population can inform the tuning paradigms of pow-
ered prostheses and exoskeletons, which typically use able-
bodied reference data in an attempt to restore normative leg
biomechanics in populations with impaired gait [26]–[29].
Simplifying the tuning process through these assumptions
will make these devices more clinically viable by minimizing
the time, technical expertise, and testing equipment necessary
to configure them [15], [30].

Section II will discuss the multi-activity dataset used to
perform the individuality analysis, the analytical procedure,
and the statistics used to interpret the results. Section III
reports the results of our analysis. Then, in Section IV,
we discuss the specific assumptions supported by the data
and how each of the investigated sources of variance af-
fect individualization. Finally, Section V gives concluding
remarks about how these results can be incorporated into
modern tuning paradigms for wearable robots as well as
biomechanics research.

II. METHODS

A. Data Set

The data used for this study was collected for use in
assistive device design, and is accessible for download from
Figshare [31]. This dataset reports lower-limb kinematics and
kinetics of ten able-bodied participants walking at multiple
inclines (±0°, 5°, and 10°) and speeds (0.8, 1, 1.2 m/s),
running at multiple speeds (1.8, 2, 2.2, and 2.4 m/s), and stair
ascent/descent with multiple stair inclines (20°, 25°, 30°, and
35°). The experimental protocol and subject details can be
found in [32]. Though the dataset also reports transitional and
non-periodic motions, this paper investigates only steady-
state locomotion over multiple ambulation modes (i.e., walk-

ing, running, stair ascent, and stair descent) and their task
variations (i.e., speed and incline). For each subject in this
dataset, each walking and running task contains 30 seconds
of steady-state strides, and each periodic stair climbing task
contains 5 strides (collating left and right strides assuming
symmetry).

B. Quantifying Individuality

We define an individual’s kinematic contribution (IKC)
for a given joint at a given task as the difference between
the individual’s joint kinematics (d) and the leave-one-out
average (LOO; d̄) of the other nine subjects (see Fig. 1A).
In mathematical terms, the IKC is calculated by

Cφ,χ,η = dφ,χ,η − d̄φ,χ, (1)

for gait phase φ = 1, . . . , 150, task χ = 1, . . . , N , and
subject η = 1, . . . , 10, where the number of tasks N depends
on the ambulation mode. The IKC of a representative subject
across modes and tasks is shown in Fig. 2.

C. Individualization of Ambulation Modes

The objective of this study is to individualize multiple
ambulation modes using subject-specific data at a minimal
number of tasks. Therefore, we calculate individuality for a
select few tasks (i.e., baselines) and predictively individualize
non-baseline tasks by adding this IKC to the population
average (see Fig. 1B). We chose the baseline tasks of
walking and running over level ground, and stair ascent and
descent at an incline representative of a typical stairway.
Specifically, we assign the following modal baseline tasks:
the walking baseline χW is 1.0m/s over level ground, the
running baseline χR is 2.0m/s (also over level ground),
and the stair ascent and descent baselines, χA and χD, are
defined at ±30°, respectively. These tasks are in the middle
of each modal task space (i.e., not the fastest, slowest, or
most inclined task), and can be easily replicated in a clinic
(i.e., parallel bars, hallways, and staircases).



-10

0

10
IK

C
 (d

eg
)

Ankle Knee Hip
-10°
-5°
0°
5°
10°

-10

0

10

20

IK
C

 (d
eg

) 1.8m/s
2.0m/s
2.2m/s
2.4m/s

0

20

IK
C

 (d
eg

) 20°
25°
30°
35°

0 25 50 75 100
Gait Cycle (%)

-20

0

20

IK
C

 (d
eg

)

0 25 50 75 100
Gait Cycle (%)

0 25 50 75 100
Gait Cycle (%)

-20°
-25°
-30°
-35°

W
al

k
D

es
ce

nt
A

sc
en

t
R

un

-20

Fig. 2. Individual Kinematic Contributions for one subject across all tasks within each joint and ambulation mode. The columns show each of the joints,
and the rows correspond to activity (walking, running, stair ascent and descent respectively). The bolded trajectory is the representative task used as the
modal baseline. Note the similarities and differences between tasks and modes.

In this study, we predict individuality using two methods.
The first method tests and expands the assumption made
in [11]: that the walking baseline (IKC calculated at χW )
provides a good estimate of individuality across all walking
tasks; and extending this assumption to test whether it can be
used to predict individuality across other ambulation modes
as well. The second method uses modal baselines to predict
individuality (i.e., walking tasks are estimated by the IKC at
χW and stair ascent tasks by the IKC at χA).

D. Statistics

Throughout this paper, we discuss error using the root
mean squared error (RMSE). This metric calculates the
deviation of the predicted IKC Cφ,χB ,η (with respect to
baseline χB) from the subject’s observed IKC Cφ,χ,η by

RMSEχ,η =

√√√√ I∑
φ=1

(Cφ,χB ,η − Cφ,χ,η)2/I, (2)

for I = 150 points in phase. Though we explored IKC
fit at specific points along the gait cycle in [11], here we
examine the average error across the gait cycle to facilitate
comparisons between methods. It should be noted that this
single measure cannot differentiate between errors caused
by a large, brief residual (e.g., due to a phase shift in swing
knee flexion) vs. small persistent differences over the gait
cycle. The RMSE is reported in deg, and the results should
be interpreted within the context of the respective joint.

As a benchmark, we compare the RMSE from each
individualization technique to the RMSE with Cφ,χB ,η = 0

in (2), corresponding to the case of no individualization from
the population average. Because our input dataset contained a
relatively large number of representative walking and running
strides collected on a treadmill (about 30 strides over 30
seconds), these models used half of the strides to calculate
the baseline IKC and the other half for prediction validation
to prevent overfitting. The baseline stair ascent/descent tasks
did not have enough strides (5 total periodic strides per
task) to split them into separate data for IKC training and
validation, so the baseline task was used for training only
and omitted from analysis. We define an improvement as
a reduction in the individualized RMSE from the non-
individualized RMSE, which is quantified by the difference
in RMSE (positive values correspond with improvement).
We analyze the RMSE between the predicted and observed
individuality for each ambulation mode separately with an
N-way ANOVA (MATLAB 2021a, Mathworks, Natick, MA)
considering the factors of subject1, velocity2, incline3, joint4,
and individualization method5 where applicable. The in-
cluded factors for each mode are as follows: walking1,2,3,4,5,
running2,4,5, stair ascent1,3,4,5, and stair descent1,3,4,5. The
modal baseline task was removed from the stair models
to prevent the omitted task from affecting the accuracy of
the ANOVA model. Finally, we use a post-hoc multiple
comparison test (Tukey-Kramer) to investigate the effect of
individualization methods within specific variable groups.

III. RESULTS

This section discusses the results from the ANOVA models
for each ambulation mode. Specifically, we discuss the
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Fig. 3. Box plots of RMSE improvement after individualization for walking and running across all joints and subjects. The solid fill indicates walking
baseline individualization, and the striped fill represents modal individualization. The boxes show the 25-75% interquartile range, with a line at the median;
the whiskers show the non-outlier maximums. We only show RMSE for 1 m/s walking data because velocity had no significant impact on individualization.

group means calculated by the model, the effect of different
testing conditions on the resulting RMSE, and significance
indicated in post-hoc tests comparing the individualized and
non-individualized (average) trajectories to subject-specific
experimental kinematics (Table I).

TABLE I
POST-HOC SIGNIFICANCE TESTS COMPARING RMSE OF

INDIVIDUALIZED (WB AND MB) VS. EXPERIMENTAL KINEMATICS WITH

RMSE OF NON-INDIVIDUALIZED VS. EXPERIMENTAL KINEMATICS.
VALUES BELOW 0.05 (SHADED) ARE STATISTICALLY DIFFERENT, AND

VALUES BELOW 1e−4 ARE SHOWN AS ZERO.

Walk Run Ascent Descent
MB WB MB WB MB WB MB

Ankle 0.000 1.000 0.002 0.997 0.789 1.000 0.019
Knee 0.000 0.998 0.000 0.999 0.631 1.000 0.172
Hip 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A. Walk

In [11], we assumed that the magnitude of the individual
kinematic contribution (IKC) at the level ground task was
a good estimation of individuality in the dataset presented
by Embry et al. [33]. Here, we validate that estimation
on a broader, multi-activity dataset [31] to see how far
the assumption holds. This validation for walking (seen in
Fig. 3, Walk) is upheld, showing a significantly improved
RMSE at the ankle (1.07°, or a 32.7% improvement across
all tasks) and the knee (1.53° (29.5%). We see even larger
significant improvements at the hip (4.75°/63.0%). For this
ambulation mode, the walking baseline is equivalent to the
modal baseline, so only one set of RMSEs was calculated.
The results of the ANOVA suggest that subject, incline, joint,
and individualization method all significantly affected the
results (p ≪ 0.05), but velocity had no effect on the resulting
RMSE.

B. Run

For running (and the subsequent stair ambulation modes),
two types of individualization were investigated: walking
baseline and modal baseline (Fig. 3, Run). At the ankle,
modal individualization significantly improved the RMSE
by 3.75° (59.2% improvement), while using the walking
baseline had no significant effect, incidentally improving
the fit by 0.18° (2.9%). Similarly at the knee, modal in-
dividualization significantly improved the RMSE, while the
walking baseline did not; modal individualization improved
fit by 4.68° (61.4%), and walking individualization showed
a slight improvement of 0.65° (8.5%). At the hip, there
was a significant improvement upon individualization of any
kind, improving fit for the modal and walking predictions by
5.84° (73.3%) and 4.06° (50.9%), respectively. The ANOVA
showed that every factor (velocity, joint, and ambulation
mode) was significant.

C. Stair Ascent

For this analysis, we separated the data related to stair
ascent and descent because the kinematic individuality pre-
sented itself in different parts of the gait cycle. For stair
ascent, we found no significant individual kinematic trends
at the ankle or knee (Fig. 4, Ascent; Table I). Despite
this, modal individualization tended to slightly improve the
RMSE across all tasks: 0.90° (19.7%) and 1.04° (16.8%)
for the ankle and knee, respectively. Walking individual-
ization slightly worsened the RMSE, an average decrease
of 0.45° (9.8%) and 0.31° (5.0%) for the ankle and knee,
respectively. The hip had significant improvements with
both methods: walking individualization improved RMSE by
3.73° (42.9%) and modal individualization by 4.57° (52.6%).
Despite the post-hoc tests showing no specific significance
(Table I), stair inclination, individualization type, subject, and
joint significantly affected the results.
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Fig. 4. Box plots of RMSE improvement after individualization for stair ascent and descent at the ankle, knee, and hip across all subjects. The solid fill
indicates walking baseline individualization, and the striped fill represents modal individualization. The baseline task used for IKC calculation was omitted
from prediction (see Sec. II-D).

D. Stair Descent

Stair descent (Fig. 4, Descent) had no significant im-
provements using the walking baseline at the ankle or knee,
showing small reductions in RMSE of 0.19° (3.2%) and
0.10° (1.5%), respectively. Hip fit improved, similar to stair
ascent, by 3° across all subjects (or 40.7%). Interestingly,
modal individualization improved RMSE of the ankle for
stair descent more than observed with ascent, significantly
decreasing the RMSE by 1.94° (31.9%). The knee also
improved fit by 1.50° (25.4%), though not significantly.
The modal individualization significantly improved the hip
by 4.28° (58.2%). In this ambulation mode, the ANOVA
model showed subject, joint, and individualization type had
a significant effect on RMSE, but stair incline did not.

IV. DISCUSSION

In this paper, we sought to predict lower-limb kinematic
individuality for a variety of different activities with a
minimum number of observed, individualized tasks. We
compared the predictions of two individualization methods
across different modes (walking, running, stair ascent and
descent) and tasks (e.g., speed, incline). We found that walk-
ing individuality did not statistically improve fit across all
modes (despite improving 72% of trials by 2.2° on average),
but using one baseline task per mode improved kinematic
predictions for walking and running. These findings uphold
assumptions for walking made in [11]. The improvements of
stair climbing were mixed and improved the hip more than
other joints.

Overall, an individual’s gait varies consistently, and how
they differ from average holds within modes but does not
extend across them. In walking and running, inter-task vari-
ability within modes is low (Fig. 2), and therefore we see
significant decreases in RMSE after modal individualization.
Modal individualization improved the fit for 84% of walking
trials by 3.1° on average, and improved 90% of running

trials by 5.6°. Fig. 3 also demonstrates that in trials where
individualization decreased fit, the effect was small: 1.0° for
walking trials and 1.5° for running.

Though this method worked well for walking and run-
ning, it had less success with stair climbing, resulting in
statistically significant improvements in individuality primar-
ily at the hip joint. Although the modal stair individual-
ization did not statistically improve all joints, the overall
results still demonstrate improvements compared to the non-
individualized benchmark (Fig. 4). Modal individualization
improved 68% of ascent trials by 3.9° and 71% of descent
trials by 4.4°. In addition, investigation of Fig. 4 shows that
the modal baseline fit is better at higher inclines, but does
not match as well at lower inclines. This is corroborated
at the trajectory level, where some subjects show different
locomotive strategies for high and low incline stairs. Further,
these locomotive strategies can functionally alter key kine-
matic landmarks (i.e., phase shifts), which is not accounted
for by this individualization method and is heavily penalized
by the RMSE metric.

In this study, kinematic changes associated with veloc-
ity and incline, like in [6], [7], are largely accounted for
through the IKC calculations. We see that predictions near
the baseline task are often best, and the tasks further in
the task space show individuality that as well predicted.
The predicted level-ground walking IKC seems to better fit
inclined walking than declined. Running has similar trends,
with lower velocity trials being better fit than higher velocity,
especially at the ankle. Interestingly, different gait strategies
are used with different stair heights, and the walking baseline
is a comparable estimation of low incline stairs;trends in
Fig. 4, Ascent, show that walking IKC is a better prediction
of low-incline trends, while higher inclines are better fit by
modal individualization.

Across all ambulation modes, post-hoc tests indicated
that modal individualization improved the fit for 9 of the



10 subjects, while one subject only improved fit for non-
stair modes. Significance in RMSE improvement between
modes is dependent on subject, and inter-task variability is
a large factor in the success of kinematic individualization.
Subject-specific improvements were dependent on the inter-
task variance, but most showed a 1-5° decrease in error
after individualization (with some reaching as high as 15°).
Interestingly, both stair ascent and descent showed subject-
wise improvements, but the improvements were consistently
more pronounced in descent.

If we investigate variance by joint, it is clear that indi-
vidualization of the hip is important, accounting for a large
portion of gait individuality [34], and showing significant
improvements after individualization for every method and
ambulation mode. The motion of the hip is largely sinusoidal,
and individuality presents as both amplitude and linear shifts
in position. The linear shifts in hip angle can stem from
placement of the pelvic markers during motion capture,
but changes in amplitude and shifts in phase are highly
individual. In contrast, the knee showed the highest residuals
after individualization, and we believe this stems from the
larger range of motion of this joint. The ankle is interesting
because the largest areas of individuality stem from magni-
tude changes corresponding to changes in toe-off phase. We
investigated methods to isolate the effect of stance percentage
and magnitude individuality, but phase individualization did
not improve the current magnitude individualization. This is
an area for further study.

While the results are promising, there are limitations to
the study. Firstly, this study assumes that the able-bodied
subjects in the dataset have perfectly symmetric gait. This
is not always the case, leading to a poorer fit on both sides
because the IKC is an average of the two legs. Secondly,
we choose slightly different methods in our IKC calculation
depending on task because of dataset limitations. To prevent
dropping rank in the walking and running ANOVA models,
we use half of the strides for IKC calculation and the other
half for experimental validation. Because there are fewer
stairs strides, we use all available strides from the baseline
task to calculate the IKC and do not predict this task.
Additionally, this study focuses only on able-bodied, stead-
state gait, and does not touch on impaired or non-steady
motion. Lastly, we acknowledge that the hip significantly
improves the results for the generalized analyses across
joints. We have separated results whenever possible, so the
reader can draw their own conclusions.

The observations in this paper provide a framework for
individualizing across a multi-activity task space. Currently,
the paradigm for powered prostheses and exoskeletons is
individually tuning each joint, task, and ambulation mode.
The method of kinematic individualization tested in this
study provides a framework for generalizing across tasks
within some ambulation modes to minimize the time spent
tuning. Future studies will investigate whether the trends also
extend to kinetics. Individualization of devices is imperative
[13]–[15], [18], and mirroring a clinical environment (i.e.,
minimal equipment and instrumentation) can reduce manual

tuning time and increase the clinical viability. Further work
will investigate trends in non-steady behavior, and create
tuning interfaces that implement these kinematic trends.

V. CONCLUSION

This study used a comprehensive dataset to generate
hypotheses that can be translated into the clinical field to
make powered assistive devices more clinically viable. We
found that individualization based on one task per ambulation
mode is feasible for steady-state walking and running, but
statistical results for stair ascent and descent were mixed.
These observations can be integrated into tuning paradigms
to decrease the clinical dependence on engineers, and lessen
the barriers for adoption of powered assistive devices.
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