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Abstract 

We argue that the high energy use by present-day semiconductor computing technology will 

prevent the emergence of an artificial intelligence system which could reasonably be described 

as a “superintelligence”. 

This hard limit on artificial superintelligence (ASI) emerges from the energy requirements of an 

intelligent system more intelligent, and orders of magnitude less efficient in energy use than 

human brains. Furthermore, an ASI would have to supersede not only a single human brain, but 

a large community of humans, and hence expend multiple times the energy needed to replicate 

the power of a single human brain. 

A hypothetical ASI would likely consume enormous amounts of energy, possibly orders of 

magnitude above what is available in industrialized society, making it impossible on energetic 

grounds alone. We estimate the energy use by ASI in excess of a human brain with an equation 

we term the ”Erasi equation”, for the Energy Requirement for Artificial SuperIntelligence.  

An additional challenge is the current developmental trajectory of AI research, the majority of 

which is not focused on the creation of superintelligent systems. An extremely sophisticated 

technology like the hypothesized ASI will typically not emerge by chance from scattered efforts. 

Taken together, these arguments suggest that the emergence of an ASI is highly unlikely, if not 

impossible, in the foreseeable future based on current computer architectures, primarily due to 

energy constraints. 
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Introduction 

The possible emergence of an artificial superintelligence (ASI) has been the subject of much 

academic discussion (Carlsmith, 2022) and science fiction literature (Lem, 1964). The idea of an 

entity which is significantly smarter than humans, comparable to the difference between humans 

and great apes, captures the human imagination. This paper outlines arguments that such a 

superintelligence is unlikely due to its projected energy requirements. 

An important point in this context is the definition of an ASI. It is difficult to precisely define an 

entity which doesn’t exist (yet), but its eventual architecture is neither known nor relevant for 

the present discussion, as the main argument relates to the estimated minimum energy use of 

such a system, which is independent of technical details. 

The issue of whether the hypothetical ASI is directly in control of effectors (for instance the power 

grid of countries) or acts as an “advisor” for a government or private entity is not relevant either. 

The definition used encompasses any man-made computational system significantly more 

intelligent than humans, possibly with the ability to control the human population of Earth by 

means of manipulation, superior planning and foresight. 

Results 

We will outline arguments which show that the emergence of an ASI is highly unlikely in the 

foreseeable future. The main argument rests on the fact that the energetic cost of the 

computations performed would by far surpass the energy supply available to human civilization.  

While we believe that ASI is technologically impossible to implement in present-day 

semiconductor technology and its high energy use, we do not believe that it is impossible in 

principle, as other authors do (Roli et al, 2021).  

Energy Use in Biological and Engineered Computation 

Whatever the architecture of an ASI turns out to be, it will be bound by the principles of 

thermodynamics of computation (Bennett, 1982). Reversible computation with no dissipation of 

energy has been proposed to work in principle (Frank, 2005) but is unlikely to be possible on the 

speeds necessary for conventional processors or even a superintelligent system, with great 

numbers of individual operations needing to be performed at great speeds. 

A human brain contains about 1011 neurons and consumes about 12 W. A typical laptop processor 

uses 150 W. The fastest supercomputer at the time of this writing, Frontier, uses 21 106 W to 

perform 1.685 ExaFLOPS (1.685 1018 floating point operations per second). 

Assigning a computational speed to nervous systems commensurable to the widely used unit of 

computational power for digital computers, floating point operations per second (FLOPS), is at 

least not trivial, or at worst a mismeasurement or simply not comparable.  



 

 

We hence give an order-of magnitude estimate of the computational efficiency of present-day 

semiconductor processors executing AI algorithms in comparison to biological brains. To do this 

we compare the energy use of a state-of-the-art, detailed simulation of parts of a mammalian 

brain to the energy use of an actual brain.  

Our example comes from Switzerland’s Blue Brain Project (BBP) of EPFL, which attempts to create 

a biologically realistic, data-driven reconstruction and simulation of an entire mouse brain. This 

intricate simulation includes details of molecules, cells and circuits that together participate in 

biological computation (Markram et al., 2015; Ramaswamy et al., 2018; Reimann et al., 2019; 

Zisis et al., 2021; Coggan et al., 2022). 

The BBP uses a supercomputer roughly capable of 2 103 TFLOPS, with 400 TB of memory and 200 

TB/s of memory bandwidth. The energy use for 720 processors involved in this simulation is 

around 400 kW. A simulation of 10 million neurons in a cortical circuit requires approximately 

1460 TFLOPS and 270 kW to simulate 1 second of biological time, and took more than 8 hours of 

processing time, slower than nature by a factor of 3x105. 

Hence, when extrapolating to the entire mouse brain with 108 neurons, a simulation would 

require 2.7 MW. Extrapolating again to a human brain with 103 times as many neurons as a mouse 

brain, the energy requirement would be 2.7 GW (and 1.46 ExaFLOPS). This is orders of magnitude 

above the amount of energy a human biological brain is estimated to use, at 12 W. Based on the 

detailed simulations conducted by the BBP example, we estimate that biological computing is at 

least 9x108 times more energy efficient than artificial computing architecture (Fig. 1).  

We stress that this estimate is a lower bound. Although the simulations of the BBP are already 

highly detailed and the simulation is continuously increasing its biologically realistic complexity, 

the current energy estimates for simulations are a snapshot and do not yet take into 

consideration a significant amount of the computational complexity of brains. For example, many 

information-bearing processes of single cells are yet to be incorporated, such as allosteric 

proteins, which can assume several configurations based on binding states, biomolecular 

networks and numerous neuromodulatory, synaptic plasticity and adaptation factors. For these 

reasons, the estimated 9x108 times energy efficiency differential for a large BBP mouse brain 

simulation still grossly underestimates the true value.  



 

 

 

Figure 1: Energy use by the brain of a mouse, a human, a typical laptop processor, a leading 

supercomputer (Frontier), and the scaled energy uses (with and without corrections for processing 

time) for a complete mouse brain, a complete human brain and 8 million human brains.  

Computing Time Considerations 

This estimate above is based on 1 second of simulated biological time, but considering that it 

takes 3x105 times longer for the BBP supercomputer to simulate biological time, these 

simulations cannot be considered equivalent. Performing an action thirty thousand times slower 

is necessarily less energy demanding. 

The most straightforward way to correct for this discrepancy is to multiply the relative energy 

efficiency of 9x 108, derived above, by the 3x 105, and we arrive at 2.7x 1014 as the total relative 

efficiency of the human brain versus a silicone semiconductor processors running AI algorithms. 

Simulation versus Emulation 

The above approach is relevant especially since neuromorphic computing, computing based on 

architectures inspired by brain structure and function, is increasingly seen as a preferred strategy 



 

 

for implementing efficient computations (Indiveri et al., 2011; Wang et al, 2013; Shuman et al., 

2022). 

However, an important argument is that in order to replicate the performance of a human brain, 

one does not have to reproduce the exact structure and function of its biological intricacies. We 

agree with this notion, but argue that in any case the same amount of computation has to be 

carried out. Without doubt, a single neuron is capable of complex computations, and while they 

don’t have to be simulated as electrical potentials traveling along axons and dendrites, the 

input/output relationships will have to be similarly complex. Highly simplified analog sigmoid 

transfer-function model “neurons” will certainly not suffice (Ananthanarayanan et al., 2009; 

Eliasmith & Trujillo, 2014).  

And, even an estimated improvement of energy efficiency by a factor of 103 by an emulation 

(without precise biological detail) versus a simulation will only reduce, but not solve the 

fundamental energetic problems outlined above. It seems completely improbable, on energetic 

grounds, to surpass biological brains when using silicone semiconductor processors.  

We speculate that only an approach that closely resembles biological computing strategies will 

be able to compete with biological intelligence. For example, an alternative set of large organic 

molecules, arranged in a multi-scale system, might be made to compute as efficiently as a brain. 

There is no necessity to use proteins and nucleic acids per se to build cells, but the principles of 

biology will have to be followed to be as energy efficient as biology. The pursuit of ASI might well 

benefit from biomimicry beyond today’s neuromorphic strategies.  

Human Group Intelligence 

Humans are inherently social animals, it is therefore reasonable to compare the energy use of 

the brains of large human populations with that of a proposed ASI.  

Even if we estimate that ~1% of the human population is mainly tasked with planning and 

coordination of human technological and social activities, and that they spend 10% of their 

lifetime actually engaged in these tasks (likely both under-estimates), then we have to assign the 

energy use of 8 million human brains (out of nearly 8 billion humans in 2022) to the human 

“group intelligence”. 

In reality, even the tasks performed in the construction of a footpath (involving spatial planning 

and the use of several tools to manipulate a variety of materials) require greater computational 

performance than any advanced AI system can do in 2022.  

It is already remarkable that even given the astonishing computational efficiency of brains 

compared to computers, a large part of the planetary land area has already been modified to 

feed humans, and a large part of the caloric intake of humans is metabolically used by their 

brains.  

 



 

 

Improvement in Understanding Reality 

Another important point is by how much ASI will have to outperform humans. An often cited 

analogy is that ASI will be relative to humans, as we are relative to great apes. The brain of a 

chimpanzee is about a third the size of a human brain. Expecting one-third of the computational 

power and corresponding energy use for chimps is probably a reasonable minimum assumption. 

Taken together, a hypothetical ASI will have to outcompete the collective intelligence of at least 

eight of millions of humans, each with highly energy efficient brains, and it will likely have to 

outcompete them by a margin of at least three.  

ASI Energy Demand 

To outcompete human collective intelligence within the present technological boundaries by a 

large margin, an ASI would have to consume a considerable amount of energy. The equation 

describing this energy use is: 

EASI = Ebrain  f G s 

Energy use for ASI = Energy use brain X relative computational efficiency brain/AI X human group 

intelligence group size X AI superiority 

Ebrain is in Watts, all other parameters are unit-less. We name this equation the Erasi Equation 

(Energy Requirement of Artificial SuperIntelligence). 

The best assumptions which we derive here are that the relative efficiency is 9 108 times worse 

in computer hardware (a measure derived from detailed brain simulations, see above), and that 

we need to compare the performance of an ASI to the combined intellectual output of 8 106 

humans. Additionally, the assumption is that an ASI would have to supersede human intelligence 

by a factor of 3, derived from the human-chimpanzee difference. In this case the following 

calculation represents our best guess for the cost of ASI: 

EASI = 12 W X 2.7 1014 X 8 106 X 3 = 7.78 1022 W 

An alternative, much more optimistic assumption might be that ASI would have to supersede 

only a single human brain with an emulation which is 103 times more energy efficient than a brain 

simulation. In this case the energy use would be: 

EASI = 12 W X 2.7 1011 X 1 X 3 = 1013 W 

In February 2022, the US had a power generation capacity of more than 1.2 106 MW (1.2x 1012 

W). Hence the ASI would consume power between ten and ten billion times larger than the 

power generation of the USA, an obviously unrealistically high value, and a value which precludes 

the emergence of an ASI in the absence of radical engineering advances. 



 

 

Just like in the case of the Drake equation (Wallenhorst, 1981), the Erasi equation describing the 

number of technological civilizations in the galaxy, the above equation describes the energy 

requirement for ASI given a set of assumptions. Just as in the Drake equation, the assumptions 

are up to discussion, and values for revised assumptions can be plugged-in. We argue that with 

any reasonable set of assumptions, the energy use will be orders of magnitude higher than that 

of a large, highly industrialized nation. 

Discussion 

The intellectual and political discourse of the future of AI has recently focused on the potential 

dangers of an “AI takeover” by an artificial superintelligence. Here we argue that both the basic 

thermodynamics of computation make such a takeover highly unlikely.  

AI has brought impressive results and multiple practical uses which have already change society. 

But despite these successes, our arguments demonstrate, in isolation and synergistically with 

each other, that it is highly unlikely, if not impossible, for an ASI to emerge which will turn humans 

into slaves. It is likewise premature to expect salvation from ASI-like architectures in the form of 

the hypothesized “singularity”, a time when people could upload their virtual brains into an 

eternal cyber-world, thus achieving immortality. 

While we believe that an ASI is unlikely on energetic grounds, we disagree with arguments like 

those in Roli et al. (2021) that only biological organisms can show agency and hence no non-

biological entity can achieve a high level of cognitive functioning. 

In essence, we believe that the intricate multi-level architecture of biological brains makes them 

so much more energy-efficient at computing that they can achieve computational powers far 

beyond what is possible with silicone semiconductor chips. We might only be able to build energy 

efficient AGI with organic molecules following the same rules as in biology. So basically, we will 

have to use some form of synthetic biology to emulate the energy efficiency of biology. The whole 

approach of using microchips is doomed to fail, we will need a revolutionary understanding of 

information processing and how to achieve it with organic molecules arranged in multiple levels 

in order to achieve ASI. 

Additional Science Policy Arguments 

Not only is the emergence of an ASI unlikely for energetic reasons, but it is also not the path 

which the majority of research into AI is taking presently. This is both true in for the commercial 

applications of AI as in academic research. 

The majority of research in AI appears to be concerned with classification and sorting tasks, as 

well as with autonomous spatial navigation. By any standards these efforts are very successful, 

including success in classification tasks in very high dimensional data spaces. The very successful 

approach of deep learning is a specialized engineering solution for classifying such high-

dimensional data (Sejnowski, 2018). 



 

 

AI has produced extremely impressive results in limited domains which are very dissimilar from 

what humans have evolved to do. One example is the success in chess, where the reigning world 

champion was first defeated by software in 1997. It can be argued that in chess, AI has reached 

superhuman intelligence. However, the intellectual challenges in chess, a highly formalized game 

of logic, are very different from those encountered in navigating and manipulating the real world. 

Artificial general intelligence (AGI), potentially leading to an ASI, is a niche within research in AI 

and is not receiving the attention which many other subfields of AI do. ASI will not likely emerge 

by chance, just as nuclear weapons, intercontinental ballistic missiles and particle colliders (to 

name three of many examples) did not emerge by chance from efforts in somewhat related 

disciplines, but were the results of massive, concentrated efforts of large numbers of scientists, 

engineers and support personal.  

This argument about the soft limits in achieving ASI depends very much on the politics of science, 

which can change very quickly. This argument on its own does not preclude the development of 

ASI, but in the present day it acts in synergy with the argument about the energy consumption. 

Essentially the soft limit, caused by the socio-political situation in AI research, keeps the state of 

AI from even approaching the hard limit. 
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