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   Abstract—Air pollution has become a significant 
health, environmental and economic problem 
worldwide. The conventional approach of 
deploying fixed high-end air quality monitoring 
stations provides accurate measurements but can 
be expensive to deploy and maintain. As a result, 
the stations are typically deployed in a few 
strategic locations with various spatial 
interpolation or prediction models to estimate the 
air quality values from unsampled points. 
Recently, drive-by air quality sensing has emerged 
as a popular approach due to its dynamic nature, high spatial coverage, and low operational costs while providing high-
resolution data. At the same time, drive-by sensing has introduced a range of novel research challenges in terms of spatial 
and temporal coverage, mobile sensor calibration, and deployment strategies. This paper provides a systematic review and 
analysis of the recent work in this area, focusing on vehicular platforms, deployment strategies, primary challenges, and 
promising research directions. 
 
Index Terms—Vehicular-based sensing, vehicular networks, Internet of Things (IoT), spatiotemporal coverage, low-cost sensor 
(LCS). 

 

 

I.  INTRODUCTION 

 IR pollution has emerged as a global concern due to the 

rapid increase in urbanization and industrialization, 

causing severe health issues such as respiratory disorders and 

cardiovascular diseases and can increase the mortality risk [1] 

[2] [3]. As air pollution sources, such as emissions from burning 

fossil fuels for transportation, power generation, and heating, 

are usually spread across extensive geographical areas, the 

conventional monitoring approach involves deploying multiple 

fixed air quality monitoring stations throughout the urban area. 

However, due to high equipment and maintenance costs, the 

monitoring stations are typically deployed in limited quantities, 

and consequently, spatial interpolation models are employed to 

approximate air quality values at unsampled locations [4] [5].  

Drive-by sensing (DS) has emerged as a popular approach 

for air quality monitoring due to its dynamic nature, extensive 

spatial coverage, and reduced operational costs while providing 

high-resolution data [6] [7]. Different vehicles equipped with 

low-cost sensors have been proposed as mobile platforms for 

air quality monitoring. Messier, et al. [8], used data from 

sensor-equipped Google Street View cars for mapping air 

quality in the Greater London area. Biondi, et al. [9], used 

sensors deployed on buses in Catalina, Italy, to acquire air 

quality data providing a high-resolution air quality map. 

Gómez-Suárez, et al. [10], mounted a low-cost device with 

optical and electrochemical sensors on bicycles to monitor air 

quality in urban environments. At the same time, vehicular-

based sensing has introduced a range of novel research 

challenges in terms of sensor deployment [11] [12], spatio-

temporal coverage [13], data collection strategies [14] [15] 

 
Hassan Zarrar is with the Institute for Research in Applicable Computing 
(IRAC), University of Bedfordshire, University Square, Luton, LU1 3JU, 
United Kingdom (e-mail: Hassan.Zarrar@study.beds.ac.uk).  

[16], calibration models [10] [17], and data analysis [18] [19]. 

For example, the predictable nature of bus routes and schedules 

presents new opportunities that could be exploited for 

optimizing spatial coverage. 

Hence, strategies have been proposed to maximize spatial 

coverage with a limited number of sensors [20]. Similarly, 

calibration models can be adapted to the mobility and specifics 

of public transport due to certain public transit types having 

predefined and overlapping routes. Despite recent advances, the 

systematic review of drive-by sensing for air pollution 

monitoring is not well documented. Ji et al [21] summarized 

recent work on DS systems discussing sensor deployment and 

assessing the sensing power of various fleets. However, the 

work focusses on optimization perspective without addressing 

the specific aspects of air pollution monitoring. In this work, we 

provide a systematic review of drive-by sensing systems 

concentrating on air quality monitoring using IoT. The survey 

starts with review of air quality standards, gas sensor 

characteristics and continues with categorization of existing 

work discussing open challenges and potential research 

directions. The survey also categorizes the recent work by 

vehicular platform, such as public transportation, taxis, 

bicycles, and UAV, discussing relevant deployment projects. 

Our methodology consisted of a systematic search and 

analysis of literature pertaining to low-cost air quality sensors, 

drive-by sensing, data management, and spatio-temporal 

coverage. The main databases used for gathering materials were 

IEEE Xplore, PubMed, Google Scholar, ScienceDirect, etc. 

Our research also included conference proceedings, technical 

reports, and relevant book chapters. We shortlisted papers 

based on their relevance to sensor technology for air quality 
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monitoring, calibration techniques, data management 

strategies, spatio-temporal coverage, and the inclusion of drive-

by sensing approaches. Each shortlisted paper was meticulously 

reviewed for its applied methodologies, applications, findings, 

and conclusions. From this, we compiled a comprehensive 

synthesis of the current advancements and trends in low-cost air 

quality sensor technology, drive-by sensing platform, data 

management, and spatio-temporal coverage. The overarching 

aim of this methodology is to provide a thorough and focused 

review of the current state-of-the-art in these areas. 

The rest of the paper is structured as follows; Section II 

presents various air pollutant types and provide their 

description in Table form. Furthermore, we describe the various 

low-cost air pollutant sensing technologies and the challenges 

facing wireless sensor accuracy and mobile sensor calibration. 

Section III discusses the benefits of employing vehicular 

platforms as sensor nodes and their implementation protocols 

in addition, we describe their limitations and review prior 

related work. We will also describe deployment strategies 

literature to overcome the challenges in Section II and Section 

III. Section IV discusses the impact of drive-by sensing on data 

spatio-temporal resolution and their trade-offs. Section V 

describes strategies to process wireless sensors data and to 

overcome various issues and remove sensor error drifts. Section 

VI discusses strategies and the challenges facing sensory 

communications and storage in a dynamic sensing 

environment. Finally, Section VII summarizes the work giving 

our final thoughts. 

II.  AIR POLLUTANTS, STANDARDS, AND SENSORS 

A.  Air Pollutants 

 Common air pollutants identified by researchers, namely 

oxides of sulphur (SOx), oxides of nitrogen (NOx), carbon 

monoxide (CO), carbon dioxide (CO2), ozone (O3), fine 

particulate matter (e.g., PM10 and PM2.5) and VOCs [22]. 

These air pollutants are emitted from various sources and cause 

health related issues (see Table 1). Artificial sources include 

emissions from transportation, industrial processes (e.g., 

factories, power generation, etc.), and land use, such as 

agriculture and urban development [23]. Transportation-related 

air pollutants include oxides of nitrogen (NOx), carbon 

monoxide (CO), hydrocarbons, and fine particulate matter, 

which are produced by combustion and incomplete combustion 

of fuel in traffic engines [24]. 

B.  Air Pollutants Concentration Standards 

Air quality indexes (AQI) is a numerical index developed as 

an indicator of current air pollution levels, specifies the impact 

on public health, and provides cautionary statements [31]. 

Governments and agencies have set limits on air pollutants to 

identify their risk factor. To illustrate these differences, we have 

provided air pollutant concentration limits for three different 

agencies (see Table 2). The air pollution data is reported as 

averaging time in terms of hourly, annual, or peak season data, 

as shown in Table 2. 

 

As each agency or institution has different AQI values and 

levels, to illustrate these differences and provide an example of 

an AQI, Department for Environment Food and Rural Affairs, 

UK and US Environmental Protection Agency have provided 

an air quality index (DAQI) which informs the public of the air 

pollution levels and advice and recommendations (see Table 3). 

Air Pollutants Sources Description 
Health Related 

Issues 

Ozone (O3) 

[27] 

Combustion, road 

traffic, bushfires, 

industries power 
generation. 

Colorless, 

highly 

reactive, and 
has odor. 

Causes cardiac 

and 

respiratory-
related issues. 

Carbon 

monoxide 

(CO) 

Product of 

incomplete 

combustion of fuel, 
cars, engines, 

heating stoves, etc. 

[28] 

Colorless, 

odorless, and 

non-irritating 
gas. [27] 

Reduces 

oxygen supply 

to different 
parts of the 

human body. 

[27] 

Volatile 

Organic 

Compounds 
(VOCs) 

Traffic roadside, 

factories, indoor 

emission sources, 
chemical 

processes, fuel 

burning, etc. [29] 

Different 

gasses 

examples 1,3-
butadiene, 

benzene, 

styrene, etc. 
[29] 

Respiratory-

related issues, 

organ damage, 
nervous-

related issues, 

cardiovascular 
disease. [30] 

Table description: The Table shows a comparison of various 

common air pollutants. 

TABLE I 
COMMON AIR POLLUTANTS 

Air Pollutants Sources Description 
Health Related 

Issues 

Particulate 
Matter (PM) 

[25] 

Chemical 
reactions, 

development sites, 

combustion of fuel, 
fires.  

PM2.5= 2.5 
micrometers 

diameter, 

PM10= 10 
micrometers 

diameter.  

Cardiovascular 
and respiratory 

diseases. 

Sulphur 

dioxide (SO2) 
[26] [27] 

Combustion of 

material or fuel 
that contain 

sulphur. 

Colorless has 

an odor 
(irritates). 

[27] 

Respiratory-

related issues. 
[27] 

Nitrogen 
dioxide 

(NO2) [26] 

[27] 

Combustion, road 
traffic and power 

generation 

Colorless, 
acidic, highly 

corrosive, and 

has an odor 

Respiratory 
infection, 

asthma, 

chronic lung 
disease 

 

TABLE II 
DIFFERENT THRESHOLDS LIMITS 

Air 

Pollutants 

Averaging 

period 

Agencies 

United States 

Environmental 

Protection 

Agency (EPA) 

[25] 

European 
Commission  

(EC)  

[32] 

World 

Health 

Organization 

(WHO) [33] 

PM2.5 
24 hours 35 μg/m3 - 15 μg/m3 

Annual 12 μg/m3  25 µg/m3 5 μg/m3 

PM10 
24 hours 150 μg/m3 50 µg/m3 45 μg/m3 

Annually - 40 µg/m3 15 μg/m3 

Carbon 

Monoxide 

(CO) 

1 hour 35ppm  - - 

8 hours 9ppm  10 mg/m3  - 

24 hours - - 4 mg/m3 

Ozone 

(O3) 

8 hours 0.070 ppm 120 µg/m3 100 μg/m3 

Peak 

Season 
- - 60 μg/m3 

Nitrogen 

dioxide 

(NO2) 

1 hour 100 ppb 200 µg/m3 - 

24 hours - - 25 μg/m3 

Annually 53 ppb 40 µg/m3 10 μg/m3 

Sulphur 

dioxide 

(SO2) 

1 hour - 350 µg/m3 - 

24 hours - 125 µg/m3 40 μg/m3 

3 months 0.15 μg/m3  - - 

Table description: Ppm unit = parts per million by volume, unit 

ppb = parts per billion by volume, and unit µg/m3 = micrograms 

per cubic meter of air. 
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Air pollutants concentration data can be used to calculate AQI 

levels using different functions. 

C.  Low-Cost Sensor Technologies 

Low-cost sensor technologies have emerged as an effective 

solution for various monitoring and detection applications, 

providing critical data for diverse fields ranging from 

environmental monitoring to healthcare. Their popularity can 

be attributed to their cost-effectiveness, the ability to be 

deployed in large numbers due to their small size, and in many 

cases, their real-time data collection capabilities. These 

characteristics make them suitable for applications where broad 

coverage or dense sampling is necessary. However, these 

sensors also present certain challenges. The trade-off for their 

low cost can often be limitations in their performance compared 

to more expensive, professional-grade equipment. Issues can 

include lower accuracy, reduced reliability, less linearity, and 

slower response times. Furthermore, they can be susceptible to 

environmental conditions and may require frequent calibration. 

As a result, while low-cost sensors offer promising possibilities 

for many applications, careful consideration must be given to 

their selection and deployment to ensure the quality and 

reliability of the data they provide. Below we provide a 

summary of key gas sensor types used for air pollution 

monitoring.  

1. Electrochemical Sensors 

Electrochemical gas sensors react with target gas producing 

a measurable potential difference between two electrodes, 

which is proportional to the gas concentration [36]. They are 

simple and easy to manufacture, have sufficient sensitivity, 

require less power, and are less affected by environmental 

factors such as temperature and pressure [37]. EC sensors have 

a short response time [37], which is defined as the time for a 

sensor to respond from the baseline signal to attain a certain 

percentage of its entire response after being exposed to the 

target gas [38]. It is usually in some literature the percentage is 

90% of its entire response, and recovery time is the time 

required, after removal of target gas, to restore to 90% of the 

original baseline signal [39]. EC sensors also has sufficient 

selectivity [37], which is referred to as the ability of the low-

cost gas sensors to discriminate between the target gas from the 

interference gas molecules [40]. Cross-sensitivity to other gases 

might occur in which electrical changes when sensing the target 

gas air pollutant can be similar to another [41]. Aging has an 

impact on electrochemical gas sensor sensitivity, causing signal 

drifts. 

2. Semiconductor or metal-oxide (MO) sensors 

Semiconductor or metal oxide gas sensors contain a surface 

layer of one or more metal oxides, a sensing chip, and a heater 

for heating the membrane; when the metal oxide reacts with the 

target gas, the conductivity increases, which is then measured 

by the sensing chip [42]. MO sensors small size and low cost 

make them very suitable for portable and remote monitoring 

applications. Advantages include long-term stability and 

lifetime, and adequate sensitivity [43]. Semiconductor gas 

sensors suffer from interference from other gases composition 

in the surrounding atmosphere, temperature fluctuation, and 

humidity change [44]. MO sensor conductivity response is non-

linear concerning the target air pollutant, which can be a 

challenge due to sensitivity towards changes in atmospheric 

temperature and humidity [45]. The selectivity problem can be 

solved using various strategies. For example, physical and 

chemical gas filters delay or prevent the interfering gas from 

reaching the sensor’s surface [46]. Baseline drift is a critical 

issue of MO sensors, which impacts its long-term stability [47]. 

Excessive heating temperatures also impact the sensors 

materials stability which can be resolved by implementing 

activation methods apart for using heating [48]. 

3. Non-dispersive infrared (NDIR) sensors 

Non-dispersive infrared (NDIR) emits IR radiation, and 

based on the absorption characteristics; the target gas can be 

identified [49]. NDIR sensor components include an IR source, 

a sample chamber or gas cell, an optical or light filter, and an 

IR detector. The advantages of NDIR sensors include 

robustness, high selectivity, and a long life span [50]. This 

makes NDIR readings more accurate. Challenges include high 

detection limits, spectral interference, and exposure to moisture 

and non-target gasses can cause interference and reduce 

sensitivity [51]. 

4. Optical particulate-matter (PM) sensors 

Optical PM sensors use the light scattering method; the laser 

light is scattered by the particles in the sampled air, which is 

collected at a certain degree by a photodetector, which allows 

measurement of the particle’s size and concentration [52]. The 

sensor also includes a set of focusing lenses, and a fan is used, 

allowing air flow with particles through the chamber [53]. 

Optical PM sensors are popular due to their low power 

consumption, low cost, and quick response [52]. However, the 

sensor’s accuracy can be affected by non-target particles 

(creating noise), interference from ambient sources, reliability 

of the parts used, and factors affecting the airflow [54]. 

Furthermore, low-cost PM sensors performance can be affected 

under conditions of high relative humidity [55]. Low-cost 

particle sensors can overestimate the particle mass 

concentrations during high RH, as the size of hygroscopic 

particles is dependent on RH [56]. We have come across 

various existing surveys/review papers on performance and 

capabilities of various low-cost sensors (listed in Table 4) and 

have presented a comparative analysis of low-cost sensors 

attributes based on these review papers (see Table 5) 

highlighting their various strengths highlighting their various 

strengths and issues of different LCS types. 

 

 

TABLE III 
AIR QUALITY INDEXES OF DEFRA AND US EPA, COMPARISON 

Air Pollution 

Banding 

(DEFRA) [35] 

Values 

Levels of 

Concentration (US 

EPA) [34] 

Values of 

Index 

Low 1-3 Good 0-50 

Moderate 4-6 Moderate 51-100 

High 7-9 
Unhealthy for 

sensitive groups 
101-150 

Very High 10 

Unhealthy 151-200 

Very Unhealthy 201-300 

Hazardous 301-higher 

Table description: Two air quality indices are compared to illustrate 

the differences in standards. Each range represents different air quality 

levels, and based on them. 
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The response time of sensors significantly impacts mobile air 

quality measurements, particularly in dynamic urban 

environments where air quality fluctuates rapidly. The response 

time of a sensor affects the temporal resolution of the 

measurements therefore providing more data points in a given 

period, allowing for a more detailed and accurate representation 

of changes over time. For example, if a sensor only updates its 

readings every few minutes, it might associate a high pollution 

level with a location the monitoring vehicle passed some time 

ago. They are also generally more sensitive and prone to noise 

and environmental interference like temperature, humidity, and 

pressure changes. These factors may lead to signal fluctuations 

and inaccurate readings. In addition, fast-response sensors often 

consume more power, a limitation for mobile applications 

where battery life is critical, more sophisticated calibration 

processes may be required and therefore entail higher costs. 

Addressing these issues requires optimizing sensor designs, 

creating efficient calibration methodologies, and developing 

advanced data analysis techniques to filter out noise and correct 

environmental influences. 

III. VEHICULAR PLATFORM 

A.  Public Transit 

Public transportation or transit is a mass transport system 

within the urban area and is used by the public, typically 

following scheduled routes and timings. Some public transport 

modes are available in a significant number covering the large 

urban area. We will describe three types of public transit modes 

city buses, taxis, and trains or trams. 

1. City Bus 

Buses have received considerable attention as mobile sensing 

platform, for their availability in significant numbers, high-

spatial coverage, and reliable operations [74]. Busses have 

predefined routes and schedules that are typically available 

publicly, which makes their trajectory predictable [75]. City 

buses repeat the same route multiple times throughout the day, 

providing high temporal resolution. As equipping an entire fleet 

of buses with sensors increases deployment and operations 

costs, significant work was dedicated to maximizing spatial or 

spatio-temporal coverage with limited number of vehicles for 

drive-by-sensing [7] [20] [76]. Ali, et al. [20], analyzed spatial 

coverage using real bus route dataset and proposed a greedy 

optimization approach for optimal route selection to increase 

sensing coverage in London, UK. Caminha et al [7] developed 

a similar optimization approach to analyze spatio-temporal 

coverage in Rio de Janeiro, Brazil. Later [77] used greedy 

heuristic to optimize sensor deployment San Francisco and 

Rome bus datasets. Paliwal et al [128] proposed to exploit 

spatial and temporal correlation of air quality data to select 

busses that sample diverse and representative set of locations, 

and evaluate the approach using Delhi, India General Transit 

Feed Specification (GTFS) data.  

Finally, [75][78], select optimal bus set numbers by 

analyzing the historical trajectories to maximize spatial-

temporal coverage. Bus routes have overlapping routes, which 

can result in redundant data collection. The overlapping nature 

of bus routes can be used for cross-checking individual bus 

readings and mutual sensor calibration [79]. However, the work 

on calibration of bus-mounted sensors is currently limited [80]. 

The interesting problems include identifying the optimal 

locations for reference stations given real bus routes and 

schedules, evaluation of the calibration performance, as well as 

trade-offs between calibration and coverage. Bus transit pre-

defined routes and schedules make their mobility less flexible 

and sensing campaigns can only be done along the fixed routes. 

In cases, where flexibility is critical, other vehicular platforms, 

such as taxis or UAVs can be used, which are discussed in the 

following sections A3, and C3.  

2. Trains and trams 

Trains and trams also have predefined routes and schedules 

with predictable trajectory and repeat their routes multiple 

times throughout the day, providing high temporal resolution. 

As trains have separate infrastructure, air pollution sensing is 

not affected by road traffic related delays and other issues.  The 

well-known OpenSense project used sensors on trams in Zurich 

and buses in Lausanne for monitoring air quality in real-time in 

Switzerland [81].  

TABLE IV 

REVIEW PAPERS 
Ref. Description 

[57] 

This work reviews and compares commercial sensors for ambient gas 

measurements, evaluating their potential for large-area coverage and 

compliance with the European air quality directive 2008/50/EC. 

[58] 

This review explores the use, development, and challenges of 

amperometric electrochemical gas sensors for urban air quality 

monitoring, as well as the roles of different stakeholders in this field. 

[59] 

This work evaluates environmental microsensors for air quality 

monitoring, emphasizing their enhanced performance through data 

modeling and machine learning, potentially aligning with European Air 

Quality Directive standards (2008/50/EC). 

[60] 
This paper examines the performance of low-cost sensors in monitoring 

outdoor air pollution and provides scientific guidance to the end-users. 

[61] 

This article reviews low-cost sensor technologies and their machine 

learning calibration for air quality monitoring, highlighting current 

research challenges and future prospects. 

[62] 
This work conducted a review of 112 studies examining the performance 

of low-cost air quality sensors. 

[63] 

This work provides a brief assessment of the reliability and affordability 

of low-cost commercial air quality sensors in comparison to reference 

measurements. 

[64] 

This paper provides a brief overview of air pollution modeling issues, 

present a new dataset of mobile air quality measurements in Zurich, and 

discuss the difficulties in interpreting these data. 

[65] 
This paper reviews low-cost air pollution sensors, their calibration, and 

challenges for accurate air quality monitoring. 

[66] 
This paper reviews low-cost sensing technologies for air quality 

monitoring. 

[67] 

A critical analysis of low-cost sensors for air quality monitoring, their 

potential errors and drift over time, with a step-by-step guide to creating a 

reliable, sustainable AQM setup with future improvement prospects. 

[68] 
An overview of VOCs detection sensors, discussing their designs, 

performance parameters, and future improvements. 

[69] 

This article highlights the progress and future demands in creating 

affordable, portable air pollutant monitors, underlining the role of crowd-

sourced monitoring and sensor technology in advancing 'smart cities'. 

[70] 
This review paper analyzes how various factors alter the sensitivity of 

conductometric semiconducting metal oxide gas sensors. 

[71] 

This guidance provides information on low-cost air quality sensor 

deployment for experts based on the AirSensEUR sensor systems 

experience . 

[72] 

This study evaluates the performance, structure, and operational principles 

of MOS sensors, frequently used in electronic noses, detailing their 

advantages, drawbacks, and implications for odor detection. 

[73] 

This study explores the use of Dynamic Neural Networks to predict air 

pollutant levels using chemical multi-sensor devices, demonstrating 

improved performance in real-world scenarios, particularly during rapid 

changes in pollutant concentration. 

[39] 
Evaluates 1-D nanostructured metal-oxide gas sensors, summarizing 

performance, mechanisms, and future research. 

[48] 

Reviews recent advances on metal oxide semiconductor gas sensors' 

stability, discussing the impact of various factors, improvement schemes, 

achievements, and future research. 

Table description: References of existing related review papers and 

there brief description. 
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Trains and trams, by following fixed routes, can introduce a 

spatial bias in air quality monitoring. This bias arises because 

their routes are limited to specific areas along their fixed routes, 

potentially overlooking air quality variations in other regions. 

This spatial bias should be considered when interpreting the 

data obtained from such transportation-based monitoring 

systems. Deploying supplementary sensors on other vehicles 

along with sensors equipped trams and trains can potentially 

solve the spatial bias issue. 

3. Taxi 

The taxi vehicles can cover large urban areas with high 

resolution given sufficient fleet size. Apart from mobility, the 

advantage of using vehicles as sensing platform is that sensors 

may have access to vehicular power system and are therefore 

less constrained in energy and physical dimensions compared 

to mobile sensors in other contexts [82]. 

The works that used taxi as mobile platform include [83] [84] 

[85] [86]. Yeom [84] deployed low-cost CO, NO2, NH3, O3, 

CH4, SO2, and PM sensors on taxi roof tops and sport utility 

vehicles (SUV) for real-time air quality sensing and 

visualization high spatial resolution in Daejeon, Korea. Wang, 

et al [83], leverage low-cost sensors and novel calibration 

algorithms, and deployed low cost CO, NO2, and O3 sensors 

on a taxi fleet in Nanjing, to examine urban air quality over a 

year to study the impact of COVID lockdowns. The authors 

used geographic information system (GIS) technology to create 

high-resolution (50 m × 50 m) spatial distribution maps of 

major pollutants (CO, NO2, and O3) to identify pollution 

sources, and analyze traffic-related emission patterns.  

Taxis create a spatial bias as they tend to concentrate around 

areas with high people activity (e.g., shopping areas, airports, 

etc.), and their behavior is partially irregular [85]. In addition, 

taxi mobility also depends on the road-traffic situations, taxi 

drivers’ routing decisions who normally opt for quicker routes, 

and the client’s routing requests making taxi trajectories 

random and unpredictable [86]. This random mobility leaves 

some parts of an urban region un-sampled or less-sampled, 

creating sparse data collection and data coverage time-variation 

problems [87].  

Taxis’ random mobility issue is a considerable challenge in 

relation to spatial and temporal coverage.  Xu et al. [87], 

designed an adaptive hybrid model-enabled sensing system 

(HMSS) to achieve optimal sensing coverage quality and fine-

grained air pollution estimation to address the challenge of 

sparse and time-varying data coverage. Around 53.5 million 

data samples were collected during a period of 14 days from 47 

sensor devices on taxis and fixed locations were used for system 

performance assessment. They were deployed in two cities to 

conduct both controlled and uncontrolled tests. An alternative 

approach to overcome the taxi’s mobility issues is to equip 

sensors onboard taxis and supplementary vehicles.  

B.  Municipal Transport 

Municipal transport is typically used for maintenance 

purposes, such as dump trucks for solid waste transportation, 

vans for deliveries, ambulance patient transport service, etc. 

Spatial coverage depends mostly on the type of public service 

vehicle; for example, police patrol vehicles provide good 

coverage, while emergency vehicles such as fire trucks and 

ambulances do not, as they are only operational in emergency 

situations. Delivery vans cover most of the commercial and 

residential areas and their routes. Public service vehicles have 

biased behavior as their routes are not predefined and depend 

on the driver’s decision. Their operations are not continuous, as 

when their services are completed, their operations are also 

suspended. Their low number provides low spatial coverage 

and leaves large gaps in sensing data.  

Qin et al [88], proposed a model for fine-grained urban air 

quality mapping from sparse NO2 measurements. The model 

was validated on data collected from low-cost sensors equipped 

on 17 postal vans in Antwerp, Belgium.  Their sampling routes 

were relatively random, and the sampling campaign is generally 

conducted from 6:00 to 23:00 on weekdays and Saturdays. 

During the daytime, the sampling intervals were 10 seconds, 

and at night-time, 10 minutes when the vans were parked. 

C.  Private Transport 

Private transportation, as opposed to public transport, refers 

to the type of transportation for personal or individual, such as 

cars, motorbikes, and bicycles.  There are several types of 

private vehicles or conveyances to choose from for air quality 

sensor placement.  

1. Dedicated Vehicles 

Dedicated private vehicles are the vehicles that are modified 

for air pollution measurements. For example, two Google Street 

View cars have been equipped with fast-response research 

grade instruments to monitor nitric oxide (NO) and black 

carbon in Oakland, California [8] [89] [90]. The system was 

also used to collect NO2, NOX, and CO2 at 1s interval in 

London, UK between Sep 2018, and Oct 2019 as part of Breathe 

London Project. Chiesa et al [91] deployed low-cost sensor an 

optical particulate matter sensor on the laboratory van through 

the cable hole on the roof of the vehicle for monitoring urban 

air pollutants. The system has been used in the experimental 

field campaign to measure air quality in Rome, Italy. Such 

vehicles may follow specially computed routes that are 

optimized for air pollution measurements.  

2. Personal Vehicles 

Personal vehicles such as cars, SUVs, bicycles etc. have 

flexible mobility offering high spatio-temporal resolution and 

relatively low deployment and operation costs. As personal 

vehicles are used and owned by private individuals, the routes 

and schedules are dependent on the owner’s behavior, which 

can create spatial bias. HazeWatch [92], one of the first projects 

using personal vehicles, used cars equipped with low-cost CO, 

NO2, and O3 gas sensors to measure air quality in Sydney. 

Wesseling et al. [93], used measurements from 500 sensors 

mounted on bicycles in Utrecht, the Netherlands to estimate 

PM2.5 levels that the cyclists are typically exposed to. Gómez-

Suárez, et al. [10], mounted low-cost NO2, O3, and particulate 

matter sensors on 8 bicycles for monitoring air quality in the 

city of Badajoz, Spain over several days.  

3. Un-manned Aerial Vehicles (UAV) 

Compared to ground vehicles, which are constrained by the 

road topology and are affected by road traffic, UAVs can travel 

to their destination directly or take any arbitrary paths required 

for data collection. UAVs can be used for measuring air 

pollution in areas which are inaccessible by ground vehicles, 

such as landfill sites [94]. UAVs can also be used for high 
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altitude air quality sensing and areas or locations that are 

hazardous or dangerous to humans.  

Measurements from sensors deployed on UAV or drone can 

be affected by the wind generated from the rotors [95]. This 

problem has been addressed in work [96], by analyzing the 

structure of a UAV. Arroyo, et al. [97], developed an electronic 

system for air quality monitoring integrated in an Unmanned 

Air Vehicle. The sampling system is designed for avoiding 

interference of motors and downwash. Field calibration was 

done by certified reference equipment, and measurements in 

both static and movement have been done. Results concluded 

that the monitoring device is not affected at any time by the 

movement of the drone, the downwash effect, or 

electromagnetic disturbances. Finally, the communication 

range of the UAV and the controller presents another challenge. 

Once out of range the controller will lose control. This can 

potentially be addressed using satellite communication links.  

IV.  SPATIO-TEMPORAL RESOLUTION 

Deploying drive-by air pollution sensing systems presents a 

trade-off between spatial and temporal resolution. While 

stationary sensors provide high temporal resolution with 

continuous, real-time pollutant measurements, their fixed 

location limits spatial resolution. Obtaining a balance between 

temporal data from stationary sensors and the need for 

comprehensive spatial coverage can be challenging in air 

quality monitoring. Spatial interpolation techniques can help 

address this issue by using mathematical models to estimate 

pollutant concentrations in areas between sensors, effectively 

increasing perceived spatial resolution. For example, Joseph, et 

al. [98], applied various simple spatial interpolation techniques 

for 8-hourly ozone using data from monitoring stations in two 

urban area. Tong et al. [99], evaluated different Kriging 

interpolation methods performances based on the air quality 

index in Wuhan. Some recent studies have adopted machine 

learning and neural networks as an effective alternative to 

traditional mathematical and statistical models. For examples, 

Wahid et al. [100], adopted the Radial Basis Function network 

metamodeling to estimate the spatial distribution of ozone 

concentrations in the Sydney basin, Australia. Pfeiffer et al. 

[101], developed a new approach utilizing diffusive sampling 

measurements and Artificial neural network (ANN) evaluation 

for evaluating the average spatial distribution of air pollutant 

levels. Environment factors also need to be considered for 

accurate measurement estimation such as Nicoletta, et al. [102], 

considered the meteorological parameters such as effect of 

wind direction and intensity. Korunoski, et al. [103], presented 

an IoT based system which also considered meteorological 

parameters in their model utilizing spatial interpolation 

technique for intelligent air pollution prediction and 

visualization. 

On the other hand, drive-by sensing systems offer high 

spatial resolution due to their mobility, enabling comprehensive 

mapping of pollutant distribution across various locations. They 

are valuable for identifying pollution hotspots and spatial 

trends. Alvear et al. [104], propose an architecture for high-

resolution air pollutant monitoring using low-cost sensors 

mounted on a bike and used it to monitor University campus. 

The authors used spatial interpolation using kriging to obtain 

more detailed distribution. Wang et al. [75], deployed low-cost 

sensors on taxis fleet providing urban air quality at high spatial 

resolution of Nanjing city. However, their mobile nature limits 

their temporal resolution, making continuous monitoring at a 

single location challenging. One way to address this challenge 

is by increasing the number of mobile sensors, which can help 

to improve temporal resolution by ensuring more frequent 

coverage of each location [93]. However, this will increase the 

cost of deployment and operations. Another way is by 

combining mobile sensor data with data from stationary sensors 

providing high temporal resolution from the stationary sensors 

(reference-grade, low-cost) and high spatial resolution from the 

mobile sensors [105].  

More recently, Wang et al [83] created high-resolution 

(50 m × 50 m) spatial distribution maps of major pollutants 

(CO, NO2, and O3), identified pollution sources, and analyzed 

traffic-related emission patterns using data collected from taxi 

fleet in Nanjing, China over a year. It finds significant 

variations in pollutant levels across different types of roads, 

with COVID lockdowns substantially impacting these levels. 

Yeom [84] used low-cost sensors on taxi roof tops and SUVs 

for real-time air quality sensing and visualization across large 

cities with high spatial resolution.  

V.  DATA PROCESSING AND CALIBRATION 

A.  Data Processing 

Processing data from a low-cost sensor network involves a 

series of steps to clean, organize, and analyze the data generated 

by the sensors. We will be focusing on the cleaning and 

organizing of raw data, which is essential for data analysis. One 

of the challenges is estimation of missing values and different 

techniques have been developed to effectively handle this 

problem of. Al-Janabi et al [106], developed a novel tool 

random forest and local least squares (DRFLLS) to estimate 

missing values of various datasets. Wardana et al [107], exploit 

both temporal and spatial data and developed an autoencoder 

model for estimating missing values in air quality data. Yen et 

al [108] presented work in which they analyzed the 

performance of existing interpolation methods, including 

conventional and deep learning models. The authors used linear 

regression, support vector regression, artificial neural networks, 

and long short-term memory to make time-series predictions for 

missing values. Interpolation techniques can be used to fill in 

missing values in air quality data set, however, this will create 

inaccurate data set impacting the quality of data [109]. 

Data from malfunctioning sensors might need to be 

discarded. Outliers, which could represent unusual 

environmental events or sensor errors, might need to be 

investigated and handled appropriately. Mendez [110] 

proposed a new hybrid algorithm for spatial outlier detection 

and removal. The model considers aspects that could be found 

in real participatory sensing (PS) systems, such as the uneven 

spatial density of the users, malicious users, and the lack of 

accuracy and malfunctioning sensors. This can also reduce 

unnecessary data and save storage space. Another challenge is 

that the sensor network may include different types of sensors 

or sensors from different manufacturers, the data may need to 

be integrated into a common format for analysis. This could 

involve adjusting for differences in measurement units, 
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resolution, or data formats which is a challenge. This problem 

can be resolved using similar sensors type and from same 

manufacturers. However, using sensor dataset from a secondary 

source may not have common format therefore will require data 

integration for analysis.  

Another issue is dealing with redundant data, which can 

include duplicate data, and data that exists in different formats. 

Redundant data consumes unnecessary storage space [111]. 

This is particularly problematic when dealing with high-

volume, high-velocity data produced by a network of air 

pollution sensors.  

B.  Calibration of Mobile Sensors 

Errors from internal sources, such as temporal drift, and 

external sources, such as changes in environmental conditions 

(e.g., temperature and humidity), present a major challenge for 

low-cost sensors [112]. Therefore, calibration is required, 

which is the process of identifying and correcting systematic 

bias in sensor readings [113]. The dynamic nature of vehicular-

based air quality sensing makes it difficult to calibrate in 

laboratories as it will suspend operations. Common practice for 

field calibration mobile sensors (MS) is single-hop calibration, 

where a mobile sensor is placed near a stationary reference 

grade sensor to compare and calibrate its sensor readings (see 

Figure 1). This proximity, called rendezvous, requires two or 

more sensors in the same spatial and temporal vicinity to 

measure the same phenomena [114]. This simple approach will 

only calibrate sensors that pass through the reference station 

location and may require a large number of reference stations 

to calibrate an entire fleet. 

Multi-hop calibration can calibrate sensors in multiple hops 

[115] as illustrated in Fig 1. This allows for calibration of an 

entire fleet using a lower number of reference stations, 

consequently reducing deployment and operational costs. 

Sensor error accumulation over multiple hops in large-scale 

mobile sensor networks is a challenge. Ensuring rendezvous 

under urban traffic situations can also be a challenging task as 

the freshly calibrated mobile sensor may not be able to reach 

the un-calibrated mobile sensor. Leaving a gap in calibrated 

mobile sensor network increases uncertainty. Ensuring 

communication between two mobile sensor nodes at 

rendezvous point requires adequate communication technology 

providing low latency data transfer. Wi-Fi communication 

protocol can be suitable however signal interference in an area 

with dense Wi-Fi networks. Alternatively, the calibration can 

be done post-facto in a centralized manner, after the data from 

all sensors has been collected.  

VI.  DATA COMMUNICATION AND STORAGE 

A.  Data Transmission 

An efficient data transmission method is essential especially 

when the application or system requires real-time monitoring. 

Several communications protocols are used for transferring air 

quality levels data for analysis or to communicate between 

sensors. Typical communication technologies include cellular 

networks services [16][116], Wi-Fi [117][118][119] and 

Bluetooth [92][120]. When selecting the appropriate 

communication technology for sensor data transfer there are a 

few aspects that need to be addressed, such as geographical 

coverage, cost, energy consumption, data transfer speed and 

latency.  

There are different types of cellular networks (2G, 3G, 4G, 

5G, LTE) in terms of the technology, speed, bandwidth, 

latency, capacity, scalability, and applications. As the 

technology enhances, their capabilities such as data 

transmission speed and capacity also improve. Modern cellular 

networks provide large geographical coverage, scalability, and 

high throughput, making it a suitable choice for drive-by 

sensing applications. 

However, cellular network services have higher operational 

costs and energy consumption compared to Wi-Fi, Bluetooth 

and LPWAN systems. Nguyen et al [16] proposes an offloading 

protocol to reduce 4G costs while maintaining data latency by 

investigating an opportunistic communication model in which 

air quality data is transferred via a 4G network or Wi-Fi to 

adjacent devices deployed along the road.  

LoRa is increasingly in demand due to its long range, low 

cost, and low power consumption which makes it suitable for 

IoT based systems and smart city applications [119]. Pal, et al. 

[117] designed an IoT based air quality monitoring system 

using UAVs and LoRa technology for sending sensory data. 

Twahirwa et al [121] also developed and deployed LoRa 

enabled IoT framework for air pollution monitoring. However, 

cross-interference by coexisting technologies (Wi-Fi, 

Bluetooth, Bluetooth Low Energy (BLE)) working in the same 

frequency band and having overlapping channels can limit its 

performance [122]. The performance of LoRa can be affected 

by the speed of the mobile platform. High-speed mobile 

platforms may cause Doppler shifts that could affect data 

transmission [123]. Finally, LoRa has a relatively low data rate 

and small packet size compared to some wireless technologies 

[124] [125]. If sensors generate large amounts of data, this 

could exceed LoRa’s capacity, affecting data quality. This 

could be solved using adaptive data rate schemes, which may 

require different computational complexities [126]. 

With dynamic trajectory of mobile platforms, the network 

topology continuously changes, causing communication links 

to disconnect [127]. Deployment of vehicle-to-vehicle (V2V), 

vehicle-to-network (V2N), and vehicle-to-infrastructure (V2I) 

architecture can improve vehicular-based sensor networks. For 

instance, several works [128] [129] [130], have developed 

approaches based on V2V and V2I communications. These 

platforms can be used as a wireless multi-hop network in which 

sensory data can be transferred from V2V to V2I or V2N (see 

Figure 2 for V2V, V2N and V2I communications). This can 

potentially reduce cost and power consumption while providing 

low data latency. Finally, advances in satellite technology have 

 
Fig.1. Illustrates the multi-hop calibration of mobile sensors (M1—n) 
and single-hop calibration by static reference grade sensors (S1) after 
rendezvous (R1—n).  
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given rise to satellite driven applications in areas such as 

broadcasting, telecommunication, internet service providers, 

etc., and could potentially be used for drive-by air quality 

sensing. In addition, satellite communication remains active 

even when land-based communications are down or 

unreachable. This could be useful, for example, when streaming 

data from a UAV. 

B.  Data Storage 

There are different strategies to save sensed data, typically, 

the wireless LCS communicates with the IoT cloud for data 

storage, processing, and visualization. For example, Kaivonen, 

et al. [131], measured real-time air pollution levels by utilizing 

IoT and deploying wireless LCS on public transport in the city 

of Uppsala. Nguyen, et al. [16] proposed real-time air quality 

data offloading scheme which leverages Q-learning, where data 

is transmitted to a cloud server. Fioccola, et al. [132], utilized a 

cloud-based platform for managing air quality data which also 

includes data storage. Using offsite servers or cloud servers 

have large spaces for big data storage, and cloud platforms also 

provide processing services.  

Storage devices also have sufficient storage spaces for 

dataset and can also have reasonably low cost, which can also 

be deployed onboard mobile platform. For example, Zhuang et 

al. [133] introduced a portable personal air quality monitoring 

device in Airsense project. The battery-powered sensor node 

includes several sensors and a GPS module, all integrated on a 

single Printed circuit board (PCB) with a micro-controller. The 

device does not use wireless communication technology; 

instead, it records the measurements on an accessible SD card 

for the user.  

Adaptive sampling, data compression and data aggregation 

can be used to assist in reducing the amount of air quality data. 

Zeng et al. [134], proposed an adaptive sampling scheme for 

urban air quality to save energy and memory space by turning 

on sampling module during sensing different events. Ghose et 

al. [135], proposed a lossless data compression algorithm to 

reduce air quality data. Khedo et al. [136], developed a novel 

data aggregation algorithm to significantly reduce the amount 

of air pollution data. The algorithm is used to merge data to 

eliminate duplicates, filter out invalid readings and summaries 

them into a simpler form. Reducing the amount of data can save 

storage space, however, this could make the data computational 

process more complex.  

Blockchain data storage can be used to deliver higher levels 

of security, reliability, durability, and transparency. In a 

blockchain network, data is replicated and distributed across 

multiple nodes in the network. In the context of air quality 

monitoring, blockchain based solutions have been proposed to 

prevent forgery and tampering of sensor data. However, using 

blockchain for sensor data requires overcoming a problem with 

overhead and data duplication that lead to storage, performance, 

and scalability problems [137]. Using blockchain and 

compression schemes, however, can increase processing 

requirements which may include higher power consumption, 

processing-time, and other costs. 

VII.  CONCLUSION AND FUTURE WORK 

Vehicular-based air pollution monitoring has gained 

significant attention over recent years. Due to mobility, a 

relatively small number of sensor devices can monitor air 

pollution over vast geographical urban areas. However, several 

challenges need to be resolved in terms of deployment 

strategies, calibration, communication, and other issues. In this 

study, we provide a systematic analysis and taxonomy of recent 

work on this topic. 14We first presented a summary of major 

air pollutants, gas sensor characteristics, and relevant important 

air pollution standards. We then analyzed the relevant work on 

mobile air pollution monitoring categorized by major urban 

transport modalities, such as buses, taxis, and utility vehicles. 

We highlighted the benefits and limitations of each transport 

mode and the challenges and lessons learned in those projects. 

This is followed by a review of relevant work on calibration and 

data communication for vehicular-based air monitoring. We 

highlight key open problems, related to calibration of mobile 

low-cost sensors, data communication, vehicle selection for 

maximizing spatio-temporal coverage, and robustness of route 

planning to traffic congestion, Figure 3.   

However, the review is not exhaustive, and such issues as 

security, privacy, datasets, and energy consumption are not 

included in this study. We hope that the review will help in 

future research toward more robust, accurate, and secure 

vehicular-based air pollution monitoring systems. 

 
Fig.2. Illustrates Vehicle-to-vehicle (V2V), vehicle-to-infrastructure 
(V2I) communication and vehicle-to-network (V2N). 

 
Fig.3. Taxonomy for challenges when deploying drive-by sensing air 
quality systems. 
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