Reference:
Garg, M. Mental Health Analysis in Social Media Posts: A Survey. Arch
Computat Methods Eng (2023).
https://doi.org/10.1007/s11831-022-09863-z
Herdiansyah, Haris, et al. ”Their post tell the truth: Detecting social
media users mental health issues with sentiment analysis.” Procedia
Computer Science 216 (2023): 691-697.
Benrouba, Ferdaous, and Rachid Boudour. ”Emotional sentiment analysis of
social media content for mental health safety.” Social Network Analysis
and Mining 13.1 (2023): 17.
Rashida, Udaipurwala, and K. Suresh Kumar. ”Social Media Mining to
Detect Mental Health Disorders Using Machine Learning.” Sentiment
Analysis and Deep Learning: Proceedings of ICSADL 2022. Singapore:
Springer Nature Singapore, 2023. 923-930.
Jabbour, Diana, et al. ”Social media medical misinformation: impact on
mental health and vaccination decision among university students.” Irish
Journal of Medical Science (1971-) 192.1 (2023): 291-301.
Keles, Betul, Annmarie Grealish, and Mary Leamy. ”The beauty and the
beast of social media: an interpretative phenomenological analysis of
the impact of adolescents’ social media experiences on their mental
health during the Covid-19 pandemic.” Current Psychology (2023): 1-17.
Lentzen, Max-Philipp, et al. ”A retrospective analysis of social media
posts pertaining to COVID-19 vaccination side effects.” Vaccine 40.1
(2022): 43-51.
Yang, Kailai, Tianlin Zhang, and Sophia Ananiadou. ”A mental state
Knowledge–aware and Contrastive Network for early stress and depression
detection on social media.” Information Processing & Management 59.4
(2022): 102961.
Behera, Tapan; Tripathi, Kumud (2022): Root Cause Analysis Bot using
Machine Learning Techniques. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.21588159.v2
Naseem, Usman, et al. ”Early identification of depression severity
levels on reddit using ordinal classification.” Proceedings of the ACM
Web Conference 2022. 2022.
Behera, Tapan; Panda, BS (2023): Master Data Management using Machine
Learning Techniques: MDM Bot. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.21818040.v1
Britton, Úna, et al. ”Moving well‐being well: Using machine learning to
explore the relationship between physical literacy and well‐being in
children.” Applied Psychology: Health and Well‐Being (2023).
Vidhya, R., et al. ”A Predictive Model Emotion Recognition on Deep
Learning and Shallow Learning Techniques Using EEG Signal.” Principles
and Applications of Socio-Cognitive and Affective Computing. IGI Global,
2023. 43-50.
Jadala, Vijaya Chandra, et al. ”Implementation of Machine Learning
Methods on Data to Analyze Emotional Health.” Computer Vision and
Machine Intelligence Paradigms for SDGs: Select Proceedings of
ICRTAC-CVMIP 2021. Singapore: Springer Nature Singapore, 2023. 319-327.
Vidhya, R., et al. ”A Predictive Model Emotion Recognition on Deep
Learning and Shallow Learning Techniques Using EEG Signal.” Principles
and Applications of Socio-Cognitive and Affective Computing. IGI Global,
2023. 43-50.
Tiffin, Paul A., and Lewis W. Paton. ”Machine learning and child and
adolescent mental health services: challenges and
opportunities.” Shaping the Future of Child and Adolescent Mental
Health (2023): 81-108.
Zhang, Tianlin, et al. ”Natural language processing applied to mental
illness detection: a narrative review.” NPJ digital medicine 5.1 (2022):
46.
Amanat, Amna, et al. ”Deep learning for depression detection from
textual data.” Electronics 11.5 (2022): 676.
Amanat, A., Rizwan, M., Javed, A. R., Abdelhaq, M., Alsaqour, R.,
Pandya, S., & Uddin, M. (2022). Deep learning for depression detection
from textual data. Electronics, 11(5), 676.
Abdullah, Khairul Hafezad, and Davi Sofyan. ”Machine Learning in Safety
and Health Research: A Scientometric Analysis.” International Journal of
Information Science and Management (IJISM) 21.1 (2023): 17-37.
Butkevičiūtė, Eglė, Liepa Bikulčienė, and Aušra Žvironienė.
”Physiological State Evaluation in Working Environment Using Expert
System and Random Forest Machine Learning Algorithm.” Healthcare. Vol.
11. No. 2. MDPI, 2023.
Choi, Katherine Elena. ”Evaluating the Predictive Performance of Genomic
Data-based Machine Learning Models for 4 Different Mental Health
Disorders.” (2023).
Behera, Tapan, How Blockchain Solves the Supply Chain Problems Using
RFID Techniques (November 27, 2022). Available at
SSRN: https://ssrn.com/abstract=4287240
Choi, Katherine Elena. ”Evaluating the Predictive Performance of Genomic
Data-based Machine Learning Models for 4 Different Mental Health
Disorders.” (2023).