Reference:
Garg, M. Mental Health Analysis in Social Media Posts: A Survey. Arch Computat Methods Eng (2023). https://doi.org/10.1007/s11831-022-09863-z
Herdiansyah, Haris, et al. ”Their post tell the truth: Detecting social media users mental health issues with sentiment analysis.” Procedia Computer Science 216 (2023): 691-697.
Benrouba, Ferdaous, and Rachid Boudour. ”Emotional sentiment analysis of social media content for mental health safety.” Social Network Analysis and Mining 13.1 (2023): 17.
Rashida, Udaipurwala, and K. Suresh Kumar. ”Social Media Mining to Detect Mental Health Disorders Using Machine Learning.” Sentiment Analysis and Deep Learning: Proceedings of ICSADL 2022. Singapore: Springer Nature Singapore, 2023. 923-930.
Jabbour, Diana, et al. ”Social media medical misinformation: impact on mental health and vaccination decision among university students.” Irish Journal of Medical Science (1971-) 192.1 (2023): 291-301.
Keles, Betul, Annmarie Grealish, and Mary Leamy. ”The beauty and the beast of social media: an interpretative phenomenological analysis of the impact of adolescents’ social media experiences on their mental health during the Covid-19 pandemic.” Current Psychology (2023): 1-17.
Lentzen, Max-Philipp, et al. ”A retrospective analysis of social media posts pertaining to COVID-19 vaccination side effects.” Vaccine 40.1 (2022): 43-51.
Yang, Kailai, Tianlin Zhang, and Sophia Ananiadou. ”A mental state Knowledge–aware and Contrastive Network for early stress and depression detection on social media.” Information Processing & Management 59.4 (2022): 102961.
Behera, Tapan; Tripathi, Kumud (2022): Root Cause Analysis Bot using Machine Learning Techniques. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.21588159.v2
Naseem, Usman, et al. ”Early identification of depression severity levels on reddit using ordinal classification.” Proceedings of the ACM Web Conference 2022. 2022.
Behera, Tapan; Panda, BS (2023): Master Data Management using Machine Learning Techniques: MDM Bot. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.21818040.v1
Britton, Úna, et al. ”Moving well‐being well: Using machine learning to explore the relationship between physical literacy and well‐being in children.” Applied Psychology: Health and Well‐Being (2023).
Vidhya, R., et al. ”A Predictive Model Emotion Recognition on Deep Learning and Shallow Learning Techniques Using EEG Signal.” Principles and Applications of Socio-Cognitive and Affective Computing. IGI Global, 2023. 43-50.
Jadala, Vijaya Chandra, et al. ”Implementation of Machine Learning Methods on Data to Analyze Emotional Health.” Computer Vision and Machine Intelligence Paradigms for SDGs: Select Proceedings of ICRTAC-CVMIP 2021. Singapore: Springer Nature Singapore, 2023. 319-327.
Vidhya, R., et al. ”A Predictive Model Emotion Recognition on Deep Learning and Shallow Learning Techniques Using EEG Signal.” Principles and Applications of Socio-Cognitive and Affective Computing. IGI Global, 2023. 43-50.
Tiffin, Paul A., and Lewis W. Paton. ”Machine learning and child and adolescent mental health services: challenges and opportunities.” Shaping the Future of Child and Adolescent Mental Health (2023): 81-108.
Zhang, Tianlin, et al. ”Natural language processing applied to mental illness detection: a narrative review.” NPJ digital medicine 5.1 (2022): 46.
Amanat, Amna, et al. ”Deep learning for depression detection from textual data.” Electronics 11.5 (2022): 676.
Amanat, A., Rizwan, M., Javed, A. R., Abdelhaq, M., Alsaqour, R., Pandya, S., & Uddin, M. (2022). Deep learning for depression detection from textual data. Electronics, 11(5), 676.
Abdullah, Khairul Hafezad, and Davi Sofyan. ”Machine Learning in Safety and Health Research: A Scientometric Analysis.” International Journal of Information Science and Management (IJISM) 21.1 (2023): 17-37.
Butkevičiūtė, Eglė, Liepa Bikulčienė, and Aušra Žvironienė. ”Physiological State Evaluation in Working Environment Using Expert System and Random Forest Machine Learning Algorithm.” Healthcare. Vol. 11. No. 2. MDPI, 2023.
Choi, Katherine Elena. ”Evaluating the Predictive Performance of Genomic Data-based Machine Learning Models for 4 Different Mental Health Disorders.” (2023).
Behera, Tapan, How Blockchain Solves the Supply Chain Problems Using RFID Techniques (November 27, 2022). Available at SSRN: https://ssrn.com/abstract=4287240
Choi, Katherine Elena. ”Evaluating the Predictive Performance of Genomic Data-based Machine Learning Models for 4 Different Mental Health Disorders.” (2023).