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Hardware Accelerated Magnetostatic Field Calculation Approach for
Circular Coils With Rectangular Cross Section

Davor Dobrota, Nikola Sočec, Lara Vrabac, and Dario Bojanjac, Member, IEEE

This paper presents a framework for calculating the magnetic vector potential, magnetic field, and magnetic field gradient in
the case of circular coils with a rectangular cross section. Surveyed approaches extensively use analytic techniques, and consider
single loops as building blocks. In contrast, emphasis is placed on developing new expressions, apt for efficient implementation
in a compiled programming language, specifically C++, while optimising for hardware capabilities, multithreading, and hardware
accelerated computation. Special functions are avoided, because of unclear performance benefits and implementation complexity.
The Gauss-Legendre quadrature is used for numerical integration and its parameters are hard coded for maximum performance.
Finally, an increment balancing algorithm is proposed to efficiently distribute increments between integration layers. The result
are precise and performant methods, capable of calculating over a million field values per second using the processor and over
100 million values using hardware acceleration on NVIDIA graphics cards. The results of precision testing and expressions for coil
interactions will be the subject of a follow-up paper. For ease of use, the C++ code is wrapped in a Python module which can also
be used from MATLAB. The code is available on GitHub (C-Coil).

Index Terms—Circular coil, CUDA, magnetic field, magnetic gradient, magnetic vector potential, multithreading, Python module.

I. INTRODUCTION

C IRCULAR coils are some of the most widely used
electromagnetic elements, from small wireless charging

coils in modern smartphones, to large superconducting mag-
nets found in MRI machines and particle accelerators. Conse-
quently, many approaches have been developed to calculate
the relevant physical quantities of circular coils, with ever
increasing efficiency and precision. Some of these quantities
include: mutual inductance, force, torque, and values asso-
ciated with magnetostatic fields - magnetic vector potential
and magnetic flux density. Interactions between two coils are
usually tackled separately from magnetostatic fields and often
focus on specific cases, such as a common axis, or two coils
with certain geometric properties.

Our principal goal is to create a coherent framework that
enables fast and precise computations of magnetostatic fields
which would in turn be used to calculate interactions between
circular coils in the form of mutual inductance, force, and
torque. It is important to note that this model is satisfactory
when the coil is made of a homogeneous material, with no
radial current, or when the field near the coil is not of great
interest, in the case of a compactly wound solenoid with a large
number of turns. The coils are geometrically characterized by
their inner radius R, thickness a, and length b. Additionally,
the number of turns N and the current I are required to
calculate field strength.
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Depending on the relationship of thickness and length, 4
types of coils are distinguished:

1) Filament (loop) - negligible length and thickness
2) Thin solenoid (thin) - negligible thickness
3) Pancake coil (flat) - negligible length
4) Circular coil with a rectangular cross section (thick)

All four types are studied, but emphasis is placed on thick
coils, as other approaches do not tackle the problem of a
large number of thick circular coils, positioned and oriented
in an arbitrary way. As will be shown, significant performance
improvements are obtained with a dedicated implementation
for multi-coil systems.

Few papers dedicated to calculating the vector potential and
magnetic field of circular coils with rectangular cross section
were found, with the latest one being [1] from 1988. The
magnetic field was calculated using elliptic integrals.

Many approaches and methods have been devised to cal-
culate mutual inductance between pairs of circular coils. A
large number of approaches, such as [2], [3], [6], [7], and
[8], focus on the common axis (coaxial) case, while some
of them tackle the parallel axis case, such as [5], [9], and
[11]. The only method that calculates mutual inductance in the
general case, with satisfactory precision (relative error smaller
than 1E-6), is the one shown in [10]. This method represents
the most important performance and precision benchmark for
our approach; computation takes several seconds to attain 8
significant digits of precision. Another, more recent approach,
presented in [12] is less relevant since the error often exceeds
0.1% and computation time is unknown.

Approaches concerning force and torque are less prevalent,
most likely because force and toque can be approximated
from mutual inductance. [4] and [7] tackle the coaxial force
case, whereas [15] presents a precise general method for
calculating force between two filaments. The general case with
3 thick coils is covered in [14] and [16], however, the claimed
precision is comparatively low and derived from one test case.
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II. PRINCIPLES

A. Computation Constraints

Unlike other surveyed approaches, our focus is, first and
foremost, on achieving maximum attainable performance.
That was primarily accomplished by using C++, a compiled
programming language, which enables the use of AVX2 in-
structions [20] and powerful compiler optimisations. AVX2
instructions are SIMD (Single Instruction Multiple Data)
instructions that can improve performance by several times
in heavy floating-point compute workloads, while also being
supported on most desktop and laptop processors.

Since most modern processors have 4 or more cores, and
8 or more hardware threads, extensive multithreading support
has also been implemented. If 6 significant digits of preci-
sion are sufficient, hardware acceleration with a dedicated
Nvidia GPU (Graphics Processing Unit) can further improve
performance over multithreading by a factor of 10 to 100,
depending on the GPU. Full precision can be obtained with
specific GPUs which have a low penalty for executing double-
precision calculations, such as the Nvidia Titan V.

The design of our approach has been constrained to simple
expressions in order to efficiently implement it in the C++
programming language and Nvidia CUDA framework [21].
Basic arithmetic operations are exceedingly fast, especially
when addition is coupled with multiplication in FMA (Fused
multiply-add) instructions [22], often used to benchmark
floating-point performance. All other mathematical functions
should be used scarcely, except for the square root, which
can be executed quickly on the processor, owing to the use
of AVX2 instructions. Performance of the square root on the
GPU is much lower than that of FMA, but better than other
elementary functions. In contrast, other approaches use a very
high level programming language, such as MATLAB (Math-
works Inc.) and Mathematica (Wolfram Research Inc.), which
have support for powerful functions (e.g. elliptic integrals), but
sacrifice performance.

Given how much hardware features influenced the ex-
pressions which will later be laid out, it is warranted to
call this approach hardware-oriented. We decided to avoid
elliptical integrals because it was determined that computing
them directly would take longer than using efficiently imple-
mented numerical integration. In this regard, our approach is
completely different from [1] and those that came before it
(as stated in [1]). Additionally, we were unable to find any
application of hardware acceleration to this kind of problem
in relevant literature.

The developed framework is called C-Coil (Circular Coil
Object-oriented Interaction Library) [27]. It consists of mul-
tiple C++ classes centered around class Coil which models
the aforementioned circular coils. Another noteworthy class is
CoilGroup used for faster calculations with multi-coil systems,
especially when using the GPU. This paper will tackle the
field calculation side of our framework. Interactions between
coils are easily computed directly from the vector potential
and magnetic field. Interaction methods are already available
for use in C-Coil, but their expressions and precision will be
explored in a follow-up paper.

When the term “method” is used, we refer to the object
oriented programming concept. The term “fields” encompasses
the magnetic vector potential A (potential), magnetic flux
density B (magnetic field), and magnetic field gradient G
(total derivative of B, gradient). The gradient has been added
due to its use in MRI imaging and particle simulations. It can
also be used to approximate the force on a coil if that coil is
sufficiently small or far away.

B. Basic expressions

Since our primary goal is to attain simple expressions, it
makes sense to begin with the Biot-Savart law for vector
potential and magnetic field [17], given by

A[r] =
µ0

4π
I

∫
C

dl

|r −R|
, (1)

B[r] =
µ0

4π
I

∫
C

(dl× (r −R))

|r −R|3
. (2)

This form is apt for expressing the fields due to single loop
of wire, but for our purposes, a more useful form is the one
with a specified current density J ,

A[r] =
µ0

4π

∫∫∫
Ω

JdV

|r −R|
, (3)

B[r] =
µ0

4π

∫∫∫
Ω

(J × (r −R))dV

|r −R|3
. (4)

The last field that we need to define is the gradient. Its
definition follows from the force a magnetic dipole moment
m experiences in a non-uniform magnetic field. The potential
energy is given by U = −m ·B. The force and torque are

F dipole[r] = ∇(m ·B[r]) = (m ·∇)B[r] = G[r]m, (5)

τ dipole[r] = m×B[r]. (6)

Expression (5) holds for static fields and a fixed moment. The
gradient G is then represented by a symmetric 3x3 matrix

G[r] =


∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂x

 (7)

Other approaches strive to reduce the number of integration
layers for the sake of reducing computation times and increas-
ing precision, but we are unable to do so to the same extent
due to the aforementioned restrictions. To compensate for this,
we chose to implement our approach using the highly accurate
Gauss-Legendre quadrature while also devising an increment
balancing algorithm to better allocate available computational
resources to different integration layers.

III. CALCULATION APPROACH

A. Coordinate Transformation

To make the calculation as simple as possible, the loop is
positioned in the xOy plane and centered at the origin. The
cylindrical coordinate system is used due to the symmetry
about the z-axis. A coordinate transformation is required to
enable arbitrary position and orientation in space. To achieve
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Fig. 1. Biot-Savart law schematic for a loop, after the transformation has
been applied, P ′ is the transformed original point P

this, two angles which rotate the normal vector of the plane in
which the loop lies are chosen, such that they mimic spherical
angles. The respective angles are given as (θ, ϑ), θ ∈ [0, π],
ϑ ∈ [0, 2π].

The basic rotation matrices which rotate the Cartesian
basis vectors about a specified axis are Rx[θ], Ry[θ], Rz[θ].
An arbitrary rotation can be achieved by multiplying certain
arrangements of those 3 matrices with 3 appropriate rotation
angles. These angles are Euler angles and there are 12 valid
arrangements, usually called conventions. The Z1Y2Z3 con-
vention is well suited to our use case because of the loop’s
symmetry around the z-axis. It was concluded that choosing
the same angle ϑ for rotations about Z1 and Z3, and angle θ
for rotation about Y2, produces the desired transformation. It
must be noted that the loop will then rotate by 2ϑ if θ = 0,
but this is not an issue due to symmetry and is corrected by
an inverse transformation. The rotation matrix is defined as

T[θ, ϑ] =

 cθc
2
ϑ − s2ϑ −cθsϑcϑ − sϑcϑ sθcϑ

cθsϑcϑ + sϑcϑ −cθs
2
ϑ + c2ϑ sθsϑ

−sθcϑ sθsϑ cθ

 ,

cθ = cos θ, sθ = sin θ, cϑ = cosϑ, sϑ = sinϑ. (8)

The coil is positioned at rc. First, the input radius vector r
is transformed to T[−θ,−ϑ](r−rc), and the field is calculated
in the transformed coordinate system. Transformation T[θ, ϑ]
is then applied to the calculated field. The entire operation, in
the case of magnetic field calculation, may be summarised as

Bp[r] = T[θ, ϑ]B[T[−θ,−ϑ](r − rc)]. (9)

B. Field Expressions

The problem is now greatly simplified and only the loop
in xOy plane needs to be considered. The setup is shown in
Figure 1. To use the Biot-Savart law given by (1) and (2), the
loop must first be written in parametric form. The position
vector is written in cylindrical coordinates (z, r, α)

R = R cos (φ+ α)i+R sin (φ+ α)j, (10)

r = r cos (α)i+ r sin (α)j + zk. (11)

dl =
dR

dφ
dφ = Rdφ(− sin(φ+ α)i+ cos(φ+ α)j), (12)

D = |r −R|2 = r2 +R2 + z2 − 2rR cosφ. (13)

Inputting these expressions, the final integrals are obtained as

A[r] =
µ0

4π
I

∫ 2π

0

dφ
R cos(φ)

D1/2
α̂, (14)

B[r] =
µ0

4π
I

∫ 2π

0

dφ
zR cos (φ) r̂ +

(
R2 − rR cos (φ)

)
ẑ

D3/2
.

(15)
Expressions are given in cylindrical unit vectors as this is the
simplest representation. Conversion to Cartesian unit vectors
can be performed after calculation. The expression for the
gradient is somewhat more complicated and it will be ex-
plicitly written only for the thick coil. While the loop is a
starting point in our derivation, the obtained integrals are not
evaluated analytically as this would produce elliptic integrals.
While there are new approaches for fast computation of elliptic
integrals [23], we concluded that they would likely be slower
and make reducing another integration layer more difficult.

Fig. 2. Biot-Savart law schematic for a thick coil, after the transformation
has been applied, P ′ is the transformed original point P

In the case of a thick coil, expanding (14) and (15) for
varying R and z is the simplest approach. R is replaced by
radius ρ of a particular loop, and h is the z-axis offset of the
loop. The general expressions are then obtained as

J =
NI

ab
, (16)

D′ = r2 + ρ2 + (z + h)
2 − 2ρr cosφ, (17)

A[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφ
ρ cosφ

D′1/2
α̂, (18)

B[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφ
Krr̂ +Kzẑ

D′3/2
, (19)

Kr = (z + h) ρ cosφ, Kz = ρ2 − ρr cosφ.
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The gradient is considered next. Starting from the definition
of the gradient matrix (7), and applying the Leibniz integral
rule as well as the multi-variable chain rule to (19) yields

G[r] =

 P2c
2
α + P1s

2
α (P2 − P1)sαcα P4cα

(P2 − P1)sαcα P2s
2
α + P1c

2
α P4sα

P4cα P4sα P3

 , (20)

cθ = cos θ, sθ = sin θ, cϑ = cosϑ, sϑ = sinϑ,

P1[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi1, (21)

Pi1 =
1

r

(z + h) ρ cosφ

D′3/2
,

P2[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi2, (22)

Pi2 =
3ρ (z + h) (ρ cosφ− r) cosφ

D′5/2

P3[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi3, (23)

Pi3 =
3ρ (z + h) (r cosφ− ρ)

D′5/2
,

P4[r] =
µ0

4π
J

∫ R+a

R

dρ

∫ b/2

−b/2

dh

∫ 2π

0

dφPi4, (24)

Pi4 =
ρ cosφ

(
2ρ2 + 2r2 − (z + h)

2 − ρr cosφ
)
− 3ρ2r

D′5/2

It is important to note that the use of cylindrical coordinates
introduces a singular case when r = 0. The matrix is then
simplified as expressions (21) and (24) become 0, while (22)

and (23) are easily integrated. The identity P3 = −2P2 is
obtained, and by using ∇ ·B = 0, the matrix simplifies to

Gz[r] =

P2 0 0
0 P2 0
0 0 P3

 . (25)

These expressions are what we will be referring to as
slow methods, because there are 3 layers of integration. It
was noticed that they can be integrated over length b and
consequently a layer of integration can be eliminated. Those
will be regarded as fast methods, and are used for field
calculations with thin and thick coils. They will only be
represented in the form of a sum in the next subsection. Further
reducing the number of integration layers introduces many
additional terms containing functions beside the square root,
lowering performance and increasing complexity.

C. Gauss-Legendre quadrature

The Gauss-Legendre quadrature [18] is a special case of
Gaussian quadrature for definite integrals. When the change
of interval is present, it is defined as∫ b

a

f [x]dx =

n∑
i

wn,i
b− a

2
f

[
b+ a

2
+

b− a

2
pn,i

]
. (26)

The quadrature of order n is defined by special weights wn,i

and positions pn,i within the standard interval of integration
[−1, 1]. Values were obtained from [19] for orders [1, 100], and
are implemented as a static matrix for maximum performance.

This particular quadrature is perfect for our use as it con-
verges quickly, offers great precision, and is numerically stable
for high orders. Additionally, when arguments are passed to
the GPU for computation, they can be stored in arrays and
filled up to a certain index. The maximum order for the

Fig. 3. Gauss-Legendre sums for slow methods. P1, P2, P3, and P4 are components of matrix (20)

Di,j,k = r2 + ρi
2 + (z + hj)

2 − 2ρir cosφk, (28)

A[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

ρi cosφk√
Di,j,k

α̂, (29)

B[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

(z + hj) ρi cosφkr̂ + (ρi
2 − ρir cosφk)ẑ

Di,j,k

√
Di,j,k

, (30)

P1[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

1

r

(z + hj) ρi cosφk

Di,j,k

√
Di,j,k

, (31)

P2[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

3ρi (z + hj) (ρi cosφk − r) cosφk

Di,j,kDi,j,k

√
Di,j,k

, (32)

P3[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

3ρi (z + hj) (r cosφk − ρi)

Di,j,kDi,j,k

√
Di,j,k

, (33)

P4[z, r] =
µ0

2
NI

na∑
i

wna,i

2

nb∑
j

wnb,j

2

nφ∑
k

wnφ,k

2

ρi cosφk

(
2ρ2i + 2r2 − (z + hj)

2 − ρir cosφk

)
− 3ρi

2r

Di,j,kDi,j,k

√
Di,j,k

. (34)
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ht = z +
b

2
, hb = z − b

2
, (35)

Dt,i,k = ht
2 + r2 + ρi

2 − 2ρir cosφk, Db,i,k = hb
2 + r2 + ρi

2 − 2ρir cosφk,

Ci,k = r2 + ρi
2 − 2ρir cosφk,

C1,i,k =
(
ρi

2 + r2
)
cosφk − 2ρir, C2,i,k = ρi

2 − rρi cosφk,

C3,i,k = 2ρi
2r2 cosφk

(
cos2 φk + 2

)
− ρir

(
3 cos2 φk + 1

) (
ρi

2 + r2
)
+ cosφk(r

4 + ρi
4),

A′[z, r] =
µ0

2

NI

b

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2
ρi cosφk

(
sinh−1 ht√

Ci,k

− sinh−1 hb√
Ci,k

)
α̂, (36)

B′[z, r] =
µ0

2

NI

b

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2

((
ρi cosφk√

Db,i,k

− ρi cosφk√
Dt,i,k

)
r̂ +

C2,i,k

C1,i,k

(
1

Dt,i,k
3/2

− 1

Db,i,k
3/2

)
ẑ

)
, (37)

P ′
1[z, r] =

µ0

2

NI

b

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2

ρi cosφk

r

(
1√
Db,i,k

− 1√
Dt,i,k

)
, (38)

P ′
2[z, r] =

µ0

2

NI

b

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2
ρi cosφkC2,i,k

(
1

Dt,i,k
3/2

− 1

Db,i,k
3/2

)
, (39)

P ′
3[z, r] =

µ0

2

NI

b

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2
ρiC2,i,k

(
1

Dt,i,k
3/2

− 1

Db,i,k
3/2

)
, (40)

P ′
4[z, r] =

µ0

2

NI

b

na∑
i

wna,i

2

nφ∑
k

wnφ,k

2

ρi
C2

i,k

(
ht

(
C1,i,kDt,i,k +

C3,i,k

D
3/2
t,i,k

)
− hb

(
C1,i,kDb,i,k +

C3,i,k

D
3/2
b,i,k

))
. (41)

Fig. 4. Gauss-Legendre sums for fast methods. P1, P2, P3, and P4 are components of matrix (20)

GPU is set to 80 because the CUDA kernel argument space
size is limited to 4096 bytes at the time of writing. This is
exceeded when using double precision with quadrature orders
over 80. These limits, while providing substantial performance
improvements, can reduce precision. The GPU limit is is not
flexible, whereas on the processor, the integration interval can
be divided into equal partitions. This allows for increased
precision, if it is required, as a shorter integration interval
means a quadrature of lower order is needed to reach the
maximum theoretical precision of 15 significant digits.

Choosing order 1 for a certain layer effectively removes it.
Slow methods are used for flat coils (2 layers) and loops (1
layer), whereas fast methods are used for thick coils (2 layers)
and thin coils (1 layer). The coil effectively becomes a series
of carefully picked points, whose coordinates are given by

ρi = R+
a

2
(1 + pna,i) , hj =

b

2
pnb,j , φk =

π

2
(1+pnφ,k),

(27)
Figure 3. shows the final expressions for slow methods, and
Figure 4. for fast methods. Slow methods are not used in their
triple sum form, as nb = 1 for filaments and flat coils.

D. Increment balancing

Increment balancing is an important feature of our approach
as it allows users to select the number of increments that is
used in computation, consequently determining execution time
and precision. We define the precision factor p ∈ [1.0, 15.0].
The base number of increments is defined for p = 1.0 and
increasing p by 1.0 doubles the number of increments.

A relevant dimension is every layer of integration that is
not negligible in calculations, or more simply ni > 1. The
number of increments per integration layer is usually specified
manually, for every coil and desired precision. Instead, the
total number of increments for k relevant dimensions, and
precision factor p, is specified as

nt =

k∏
i=1

ni ≈ mk · 2p−1. (42)

The base number of increments per integration layer is denoted
by m, and we decided to set it to 10. In the case of field
calculations, there are at most 2 relevant dimensions: angular
increments and thickness increments. The relation is then
simply

nt = nanϕ ≈ 102 · 2p−1. (43)

An additional criterion is needed to determine how in-
crements should be distributed between layers for optimal
precision

λa ≈ λb ≈ λφ (44)

λa =

√
a

na
, λb =

√
b

nb
, λφ =

√
π (R+ a)

nφ
, (45)

The step size, denoted by λ, is the effective length of the
interval of integration µ divided by the number of increments
n. Based on precision testing, which is discussed in the follow-
up paper, we concluded that step sizes are best defined as (45).
Using the square root of length of the integration interval as
effective length was found to work very well.
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The definition of step size given by (45) allows us to directly
compare the compute precision of different integration layers.
If we suppose that all step sizes are equal and take into account
that we do not integrate over the length of the primary coil,
we get the product

λ2 =

√
a
√
π (R+ a/2)

nanφ
(46)

There are only 2 relevant dimensions and the expression in
the denominator is just the total number of increments. After
taking the square root, the optimal step size is obtained and
the number of increments for each layer is easily calculated.

We can generalise our expression for k layers with a defined
function of length of each layer µ, m base increments, and
precision factor p.

nj = round

m

µj

(
2p−1

k∏
i=1

µi

)1/k
 , j ∈ [1, k]. (47)

We do not claim that this algorithm is indeed optimal, but it has
minimised the geometric mean of error for over 60 different
computations in our testing. It has also proven to be very
convenient and robust in edge cases, producing results which
are orders of magnitude more precise than our naive guesses
at the optimal number of increments.

IV. PERFORMANCE RESULTS

A. Used Computers
Multiple computer and operating system configurations are

considered. In our case, performance is measured in two
meaningful ways: real world performance, expressed in num-
ber of field computations performed every second (comps/s),
and algorithmic performance, which measures how efficiently
the algorithm has been implemented. Algorithmic efficiency
is expressed in terms of iterations (increments) per second
(Inc/s). These two metrics are linked by the precision factor
which determines the total number of increments. When
calculating with thick and flat coils, algorithms consist of two
for loops. More and more time is spent in the inner loop as
the precision factor becomes larger, increasing the efficiency of
the algorithm for higher order quadrature. Differences between
operating systems are expected due to different compilers and
thread schedulers. Five computers are used:

• Computer A: AMD Ryzen 9 5900HX 8C/16T @4.2GHz,
Nvidia RTX 3080 Laptop 16GB 115W, 32GB DDR4-
3200 RAM, Windows 10 19044 and Pop!OS 22.04

• Computer B: AMD Threadripper 1950X 16C/32T
@4.0GHz, Nvidia RTX 2080 Ti 11GB, 32GB DDR4-
3200 RAM, Windows 10 19044

• Computer C: Intel Core i7 7700HQ 4C/8T @3.4GHz,
Nvidia GTX 1050 4GB, 16GB DDR4-2400 RAM, Win-
dows 10 build 19044

• Computer D: Intel Core i7 8700K 6C/12T @4.4GHz,
Nvidia RTX 2080 Ti 11GB, 32GB DDR4-3000 RAM,
Windows 11 22000.739 and Pop!OS 22.04

• Computer E: Intel Core i7-8750H 6C/12T @3.6GHz,
Nvidia RTX 2070 Mobile 8GB, 16GB DDR4-2667 RAM,
Windows 11 22000.856 and Pop!OS 22.04

Computer A will be tested most extensively as that is
a modern laptop (from 2021) and represents performance
attainable by most contemporary systems. Computer B is an
older workstation computer with 16 processor cores and a
last generation graphics card. Computers C, D, and E all
have processors with a nearly identical architecture but with
different clock speeds and core counts. GPU performance will
only be showcased for Computer A.

B. Field performance

While our testing suggests that using a basic GPU, such as
the Nvidia GTX 1050 in Computer C, can greatly improve
performance, using double precision removes that advantage
on most systems. Hence, we decided to focus on proces-
sor performance. All showcased performance graphs can be
obtained from functions implemented in module Benchmark,
from Python or C++. Python support was implemented with
pybind11 [24] to achieve performance similar to native C++
code. The Python module can also be used from MATLAB.

The code works best on Linux with the required GCC
compiler. Windows is also well supported but the performance
of Microsoft Visual C++ (MSVC) compiler tends to be lower
overall, especially when using Python (about 3 times lower in
some instances). MacOS support is planned.

Since performance on Linux (more specifically Pop!OS)
has been much more consistent, it is used in most of the
benchmarks. The computer and operating system are always
denoted. Performance benchmarks for slow magnetic field and
slow gradient methods are omitted because they were observed
to be very similar to slow potential. Performance of different
computers and operating systems is shown for just one case
(4 threads and fast magnetic field) as the margins are similar
for all other methods. Performance depends on the number
of calculations, and 1 000 000 points are chosen for testing.
Tested coils have dimensions R = 0.1 m and a = 0.4 m.

From Figures 5-9, we observe that our approach delivers
very high performance, especially on Linux. Performance
scaling with respect to threads on Windows was unpredictable,
fluctuating by as much as 20% between consecutive runs.
Scaling on Linux is almost linear, until the number of threads
matches the number of cores. When the workload is sub-
stantial, using the number of threads equal to the number of
hardware threads was observed to yield the best performance.
Figure 10 shows that performance on older computers is also
good, especially on Linux. Precision factors between 3.0 and
5.0 offer a good balance between precision and performance.

Finally, performance scaling with respect to the number of
points is shown in Figure 11 for 1 coil, and in Figure 12 for
a large system of 100 coils. Precision factor is set to 3.0. Coil
dimensions are R = 0.1 m and a = 0.1 m.

Multithreading can significantly boost performance, roughly
by a factor equal to the number of cores. Points are dis-
tributed into similarly sized blocks, and there are as many
blocks as there are threads. Efficiency is further improved by
using the thread pool [25] approach. For multi-coil systems,
coarse-grained multithreading is employed and it significantly
increases performance if a large number of cores are utilised.
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Fig. 5. Slow potential performance (Computer A Win10)
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Fig. 6. Slow potential performance (Computer A Pop22.04)
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Fig. 7. Fast potential performance (Computer A Pop22.04)
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Fig. 8. Fast field performance (Computer A Pop22.04)
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Fig. 9. Fast gradient performance (Computer A Pop22.04)
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Fig. 10. Comparison of fast field performance (4 threads)
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Fig. 11. Performance scaling for fast field, 1 coil (Computer A Win10)
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Fig. 12. Performance scaling for fast field, 100 coils (Computer A Win10)
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GPU performance is 10 times higher than with multithread-
ing when using 1 coil, and 60 times higher when using 100
coils, exceeding half a billion computations per second. For
precision factor 1.0, performance between 1 and 2.5 billion
computations per second was observed for all methods. For
context, this is roughly on par with the performance of AVX2
square root in C++ (2 billion computations per second per
core on Computer A).

To conclude our testing, Figure 13. shows an image of the
magnetic field, generated using [26]. It was compared to an
image obtained with Simcenter MAGNET. The field outside
of the coil is exact, but artefacts, which look like a series of
deliberately arranged thin coils, are found inside.

V. DISCUSSION

As was stated in the introduction, there are few methods
dedicated to magnetic field computations for circular coils, so
no direct performance comparison could be made. In order
to properly test alternative methods which rely on elliptic
integrals, elliptic integrals of the first and second kind would
likely have to be implemented from scratch to ensure AVX2
is used properly and that they are compatible with hardware
acceleration. This will perhaps be a topic of future research.

Fig. 13. Absolute value of the magnetic field [T]. Coil specifications are:
R = 0.03, a = 0.03, b = 0.12, N = 3600, I = 10A.

We have not found other approaches that developed dedi-
cated expressions for the magnetic field gradient. They proved
to be very performant, even though they seem much more
complicated than the expression for potential. The potential is
slower than all other methods because one logarithm in the
innermost loop could not be avoided. This shows that even
elementary functions tend to be slow and should be avoided
if possible. Removing an integration layers along thickness
would improve precision, but would also introduce over 10
elementary functions which would likely reduce performance.

Coordinate system transformation is also unique, as a recent
paper [12] used Euler angles quite differently and thus ob-
tained much more complicated expressions with three degrees
of rotational freedom. The increment balancing algorithm is
another new concept we have introduced, and its full potential
will be shown in a follow up paper, with 5 integration layers.

Given the field compute performance, we can estimate how
quickly interactions can be calculated. If we were to assume
1 million potential values can be calculated every second,
and the secondary coil is represented by 1000 points, we can
expect one mutual inductance calculation every millisecond.
This actually represents the low end of attainable performance,
and is significantly faster than 8 seconds presented in [10].
Field calculations with multi-coil systems work an order of
magnitude faster because overhead associated with transferring
data and initialising computations is removed.

Comparing C++ performance to MATLAB was avoided
because for loops were found to work very poorly (20 million
iterations per second, without any computations).

VI. CONCLUSION

A performant new approach for calculating the magnetic
vector potential, magnetic flux density and magnetic gradient
was presented. In contrast to existing approaches, it is based
on expressions that are well suited for implementation in
a compiled programming language and leverage hardware
capabilities. The Gauss-Legendre quadrature was used for
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numerical integration and its parameters were precomputed
up to order 100. Support for multithreading and hardware
accelerated computation are also included and implemented
for a single coil and a system of coils. Multithreading per-
formance was extensively tested and found to be excellent,
especially on Linux. Hardware acceleration significantly in-
creases performance over multithreading, especially in multi-
coil systems. Achieved performance suggests coil interactions
are also calculated quickly, orders of magnitude faster than
other approaches. Precision and coil interactions will be eval-
uated in a follow-up paper. The framework, named C-Coil, is
implemented in C++ and CUDA, with a supported Python
module accessible from MATLAB. The hardware-oriented
calculation paradigm shown in this paper has proven perfor-
mant for circular coils and can be applied to various other
geometries and problems in magnetostatics and electrostatics.
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