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Efficient Distributional Reinforcement Learning
with Kullback-Leibler Divergence Regularization

Renxing Li, Zhiwei Shang, Chunhua Zheng, Huiyun Li, Qing Liang, Yunduan Cui

Abstract—In this article, we address the issues of stability and
data-efficiency in reinforcement learning (RL). A novel RL ap-
proach, Kullback-Leibler divergence-regularized distributional
RL (KLC51) is proposed to integrate the advantages of both
stability in the distributional RL and data-efficiency in the
Kullback-Leibler (KL) divergence-regularized RL in one frame-
work. KLC51 derived the Bellman equation and the TD errors
regularized by KL divergence in a distributional perspective
and explored the approximated strategies of properly mapping
the corresponding Boltzmann softmax term into distributions.
Evaluated by several benchmark tasks with different complexity,
the proposed method clearly illustrates the positive effect of the
KL divergence regularization to the distributional RL includ-
ing exclusive exploration behaviors and smooth value function
update, and successfully demonstrates its significant superiority
in both learning stability and data-efficiency compared with the
related baseline approaches.

I. INTRODUCTION

EINFORCEMENT Learning (RL) [1] is one of the most

exciting fields of Machine Learning. Driving agents to
learn optimal or suboptimal control policies from unknown en-
vironments through a trail-and-error mechanism, it provides an
appealing prospect of learning task without human knowledge
and produces many interesting applications over the years,
particularly in robot and autonomous control problems [2]-[4].
Supported by the great nonlinear approximation capability of
deep neural networks, deep reinforcement learning (DRL) [5]
has surpassed human in a wide range of challenging games
designed by code or human-made rule [6], [7] once the agents
were sufficiently trained to extract the informative features
from the complicated state-action space. These results clearly
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Fig. 1. Principle of the proposed approach in this paper.

demonstrated its potential as an emerging direction of artificial
intelligence. On the other hand, the practical DRL in the real-
world control problems still remains limited due to not only
the noisy environment but also its data-driven nature. The
conventional RL approach models the external environments
without intrinsic stochasticity while the noise and disturbance
in the real-world scenario could easily result in an unstable
and deteriorated learning procedure with overestimation of
the value function [8]. Further more, DRL approach usually
requires exploring a huge number of samples to sufficiently
train its networks over the high-dimensional state-action space
which is extremely expensive in the real-world hardwares like
robots [9], [10].

To tackle the issue of the unstable learning caused by the
intrinsic stochasticity in environments, the distributional RL
(C51) [11] was proposed to describe the cumulative reward
in value function as a distribution rather than the expected
value in the conventional methods. With the superiority of
gaining more informative knowledge about the stochastic
environment and learning better representations to avoid state
aliasing, the distributional RL successfully learned a set of
auxiliary tasks tightly coupled to the reward as more robust
learning targets [12]. It not only outperformed the conven-
tional approaches in various Atari simulation tasks with less
prediction variance [11], but also demonstrated good poetntal
in various engineering scenarios including power system [13]
and autonomous driving [14]. According to the theoretic study
in [15], [16], the distributional RL also improves the learning
quality of its deep neural networks structure, especially under
noisy environments. As one solution to the data-efficiency
of RL, the dynamic policy programming (DPP) [17] was
proposed by introducing Kullback-Leibler (KL) divergence
between current and new policies as a penalty term in its
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TABLE I
COMPARISON OF KLC51 AND THE RELATED APPROACHES

Approach Distributional | KL regularized
DQN [6] X X
C51 [11] O X
DPP [17] X O
KLC51 (ours) O O

value function to avoid the over-large policy update. Such an
RL framework regularized by KL divergence is theoretically
proved to have the state-of-the-art error dependency as it
implicitly averages over all previous action value functions
and hence also averages errors according to [18], [19]. This
characteristic contributed to the great data-efficiency in various
challenging engineering applications from robot manipula-
tion [20], [21] to chemical plant control [22], [23] where
the agents quickly explored the task within limited number
of interactions through smoothly updated policies.

This paper aims to address both the stability and the data-
efficiency issues in RL. Following the principle described
in Fig. 1, the traditional distributional RL [11] stablizes
the learning procedure by modeling the intrinsic stochas-
ticity of environments without tackling the issue of data-
efficiency. Its policy may be capriciously updated without
constraint and turns to an insufficient exploration over high-
dimensional state-action space. We proposed a novel approach,
KL divergence-regularized distributional RL (KLC51) as an
extension of distributional RL [11] to the RL regularized by
KL divergence [17], [19]. With a smooth update between the
current and previous policies, it efficiently explored the state-
action space in a distributional perspective. According to the
relationship between the proposed method and other related
works concluded in Table I, KLC51 integrates the advantages
of C51 [11] and DPP [17], [19] in one framework. It extended
the distributional forms of C51 towards the KL divergence-
regularized Bellman equation and the temporal difference (TD)
error and novelly derived an approximated update strategy
to properly map the Boltzmann softmax operator of DPP
into distributions. Evaluated by several benchmark control
tasks, the proposed KLCS51 naturally integrated the stability
of C51 and the data-efficiency of DPP in one algorithm and
successfully demonstrated a superior learning performance
compared with other baseline approaches. The contributions
of this paper are summarized as:

1) For the theoretic study, this work novelly derived the
Bellman equation and TD errors of the KL divergence-
regularized RL in a distributional perspective.

2) For the algorithm development, the proposed KLC51
successfully integrated both the stability of C51 against
noisy environments and the data-efficiency of DPP in
engineering applications within one algorithm.

3) For the experimental validations, the proposed algorithm
was evaluated in various control problems to study its
learning capability and data-efficiency compared with
the related baseline approaches. The positive effects of

distributional value function and the KL divergence were
further demonstrated via data visualization.

The remainder of this paper is organized as follows. The
preliminaries of RL was in Section II. Section III detailed the
proposed KLC51. The experimental results were demonstrated
in Section IV. Section V presented the conclusion.

II. PRELIMINARIES
A. Expected Reinforcement Learning

The conventional RL models the environments as a Markov
decision process (MDP) with a 5-tuple (S, .A,P,R,~). For
a data set with n samples, S = {si,82,...,8,} and A =
{ai1,as,...,a,} are the finite sets of state and action. PZ,, =
p(s’|s,a) represents the transition probability of switching
from state s to s’ under action a. R is the reward func-
tion, R, represents the immediate reward obtained by the
transition above. The discount factor v € [0, 1] exponentially
discounts the future rewards. A policy control 7(a|s) maps
the state s to a probability distribution over the action a.

The value function in the expected RL is defined as the
expectation of long-term return from initial state sy, under

the policy 7:

Vi(s) = Ex lz V'rs, |80 = 31 : (1

t=0

a
where 15, = > acA_ m(al|s))Ps,s,,, Re,s,,, 18 the expected

St41€ .
reward from state sy over the action set .A. The optimal value

funtion that maximizes the expected discounted total reward
from any initial state follows a Bellman equation:

max Z ss/ Rss’ +7V*( )) (2)

aGA
s'es

where the optimal policy 7* follows:

T —argmaxz 8)Pgs/(Res +7V*(s).  (3)

aeA
s'es

It is also convenient to describe the expectation of long-term
return of each state-action pair under the policy 7 by the Q

function:
Z P gs’ + 7 Z

Qx(s,a) =
s’'eS a’cA

a'ls")Qx (s, a’)),

“4)

The expected RL like DQN [6] aims to approximate the
Q function by deep neural networks. Define the network
parameters in iteration ¢ as 68;,the approximated Q function
follows:

Q(S7 a, 07) =

The parameters are updated by minimizing the mean squared
TD error via gradient based optimization approaches with
learning rate a:

L(6;) =

E[R$y +ymaxQ(s.a’,0i1)].  (5)

Q(Sa a, 01)]2
(6)

[Rss’ + ’ym@x@(s’, a’la Oi—l) -
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Fig. 2. Probabilities of the misaligned atoms in Z’ are splited into the closest
pre-aligned atoms of z; based on the weight of their distances.

In practice, two networks are built in DQN to stablize the
training: the main network Q(s,a,@) predicts Q(s, a,0;),
and a target network Q(s,a,@’) with frozen parameters
to estimate Q(s’ ,a',0;_1). The target network copies the
parameters from the main network 8~ = 0 every C step.

B. Distributional Reinforcement Learning

The distributional RL [11] is proposed to address the
intrinsic randomness in the long-term return by modeling the
full distribution of the total future rewards, instead of its
expectation. A distributional Bellman equation of a random
return Z whose expectation is () is defined as:

Ze(s,a)2 a’), (7

where U 2 V' denotes that the random variable U has the
same distribution of V. Similar to the ) function, Z function
can be updated based on the TD errors. Calculate the target
value distribution Z! (s, a) as:

R(szs’ + ’YZ‘H'(S/a

Z;T(s,a)gRgs, +7Z:(s',a"), (8)

a* = argmaxE [Z(s',a’)] = argmaxQ(s’,a’).  (9)

The TD error is defined as the distance between Z(s,a) and
Z'(s, a). The corresponding optiml policy of Z(s, a) follows:

T = arg;nax Z m(als)E[Z(s,a)].

acA

(10)

As the most well known distributional RL approach in
practice, C51 [11] employs a discrete distribution parametrized
by N € N and Vyrrn, Viyax € R to model Z,(s,a) as a set
of atoms:

zi=Van +iAz, 0<i< N (11D

where the interval Az = W Set N = 51, these
atoms represents the canonical returns of the distribution
Zr (s, a) with the corresponding probabilities p(s, z;, a). Such
a discrete distribution has proved to be highly expressive
and computationally friendly to describe arbitrary distribu-
tions [24]. After processing the misalignment between target
distribution Z’ and the pre-aligned atoms z; follwoing Fig. 2,

KL divergence is utilized to quantify the TD error between the
current and target distributions which is reduced via gradient
based optimization approaches on neural networks following
other DRL methods [6]. The resulted () fucntion can be
recovered following:

N-1
Q(s,a) =E = p(s,za)zm. (1)
=0

III. APPROACH

A. Distributional Bellman Equation with Kullback-Leibler Di-
vergence

In this subsection, we derived the KL divergence-regularized
RL in a distributional perspective. The proposed method,
KLCS51 took inspiration from DPP [17] which improves data-
efficiency by considering the KL divergence between current
and new policies as a regularization term while inheriting the
distributional features from C51 [11].

DPP introduces the KL divergence between the current
policy m(als) and a baseline policy 7(als) to its value
function as a regularization term:

lZv ( DKL(so) ISOS], (13)

DKL(S) =

Z 7(als) log (7‘(’(0,8)) (14)
acA F(a‘s)

where ) € (0,1] controls the effect of the Kullback-Leibler

divergence term. Introduce Eq. (13) into Eq. (2), the cor-

responding optimal value function also satisfies a Bellman

equation:

= max E Pes

aE.A
s’'es

1
Res 7V (s") — D).

5)

Following [17], [25], the optimal value function and policy
can be calculated in the following loop at the ¢-th iteration:

T t+1 **1ng71'f a’| §)exXp nzpss ss’+7 ( /)))7
acA s'eS
(16)
_ _ Tu(als) exp[n 3 ucs Posr (R + VT ()]
Ti1(als) =

eXP(nV{tH (8))
(17)

Such a loop can be further simplified based on the action
preferences function [1] ¥ which is close to the () function:

Viiq(s,a) = logm (als)+ Z Pe(Ray +7VI ("))
s'eS
(18)
The simplified update loop becomes:
1
Tii1(8) = —log > exp(n¥y(s,a)), (19)

acA
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exp(n¥y(s, a))
Yarcacxp(n¥e(s,a’))
The action preferences function is updated by pluging the loop
above into Eq. (18):

7_rt+1(a|s) = (20)

Uipa(s,a)=W(s,a)—L, V(s Z 2 (Re+7L, T (s)),
s'eS

(2D

L,¥(s) £ = log Z exp(n¥(s,a)). (22)

acA

In this work, we extended the distributional form of action
preferences function ¥ as ® which satisfies:

\I/tJrl(S, a) =E [(I)t+1(8, a)] . (23)

The update rule of @ is derived following Eq. (22) without
the expectation over the next step state s’:

D1 (s,a)20(s,a)— L, D(s) + R, + YLy ®i(s'). (24)

According to [17], the operator £,, could be replaced to the
Boltzmann softmax operator for a more analytically tractable
recursion:

exp(n®(s,a))®(s,a)

MUCD(S) - acA za’eA eXP(U‘I’(sv a'/)) .

(25)

The final update rule of the distributional action preferences
function @ therefore satisfies:

- an)t( ) + Rss’ + 'YMT,(I)t(S/).
(26)

D,11(s,a) 2 D,(s,a)

B. Distributional TD Error with Kullback-Leibler Divergence

In this subsection, we derived the TD errors in Eq. (26).
Compared with the one of C51 in Eq. (8) where Z.(s’,a*) is
calculated based on a greedy action a*, it requires calculating
the Boltzmann softmax terms —M, ®(s) and v M, ®(s’) over
the dimension of actions as described in the left side of Fig. 3.
How to properly process the Boltzmann softmax operator
M,,(+) to the distributional actions becomes the key of the
proposed approach. Following the illustration in the right side
of Fig. 3, C51 calculates the target distribution of action
preferences function in the following step: 1) shrink the initial

distribution with the greedy action Z(s’,a*) by the discount
factor ; 2) shift the distribution by reward RZ,,; 3) project the
distribution to the pre-aligned 51 atoms following Section II-B.

We proposed two strategies to calculate the Boltzmann
softmax terms in a distributional perspective. The first strategy
is distribution of Boltzmann softmax (DB) which directly
calculates the Boltzmann softmax terms as distributions. Given
an initial distribution ®(s,a), KLC51 (DB) first adds it with
a shrinked Boltzmann softmax term M, ®(s’) and then
minus another term M, ®(s). The resulted distribution is
finally shifted by reward R, and projected to the pre-
aligned atoms following C51. This strategy enjoys the full
distribution information on the Boltzmann softmax operator.
On the other hand, since both yM,®(s’) and M,P(s)
directly change the target distribution, the performance of DB
strategy may be strongly deteriorated due to the misestimated
action preferences function, especially in the early stage of the
RL process.

To tackle this issue, we proposed the second strategy,
mean of Boltzmann softmax (MB). Instead of calculating the
Boltzmann softmax terms as distributions, MB strategy simply
calculated the expectation of R%,, + v M, ®.(s") — M, D;(s)
as the shift of the given initial distribution ®(s, a). Although
it removes the distribution information in Boltzmann softmax
operator, its robustness in RL framework is improved without
the capriciously changed distribution in DB strategy. The
evaluation of both DB and MB strategies in KLC51 was
detailed in Section IV.

C. Kullback-Leibler Divergence-regularized Distributional RL

In this subsection, we detailed the workflow of the proposed
KLC51 following Algorithm 1. Be similar with DQN [6], the
proposed method employs the main network with parameters
0 and target network with fixed parameters 6~ to stabilize
the learning. @~ copies values from 6 every C' steps. Before
learning, a replay buffer of samples D with size E is initialized
and warmed up by Niia collected by a random policy. The
training procedure has N steps. At each step ¢, the agent first
interacts with the environment. It observes the current state
s; and determines the optimal action based on the current
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Algorithm 1: KL divergence-regularized C51
Input: C, E, J, N, Niitial, VMmN, Varax, 0, o, ¥
Initialize replay buffer memory D with size E
Initialize the weights of main networks 6
Initialize weights of target networks 6~ = 0
# Pre-train phase
for k =1 to Nyjsiw do

Randomly collect samples into replay buffer:
D« (Skv ay, Rg:sk+1a sk+1)

fort =1t N do
if t%C == 0 then
L set @0~ =6
# Interaction phase
Observe current state s;
Determine a; by a softmax policy Teypiore(@:|St)
Execute a;, obtain s;41 and Ry, |
D« (sta ag, Rgfst_H ) St-‘rl)
# Training phase
Randomly select J samples from D
for =11t J do

if use DB strategy then
Add Boltzmann softmax distributions:

i’(sjlaj, 0_) = (i>(Sj,Cle7 9_) —
an)(Sj, ) 0_) + 'YMH(I)<31+17 * 6_)
Shift by the reward:

@’(sj,aj,O*) = @’(sj,aj,O*) + josj+1

if use MB strategy then
Calculate the expected action preferences:
\II(SJ7 Y 07) = ]E[(I)(‘?]v B 07)]
qj(sj-i-l? K 9_) = ]E[(I)(Sj-‘rla K 0_)]
Shift by the expected action preferences:
'(sj,a;,07) = (sj,a;,07) -
Mﬂqj(sjv K 07) + ’YMTI\IJ(SJ'-&-M K 07)
Shift by the reward:
L <I>’(sj7aj,0_) = @’(sj,aj,e_) + josj+l
Project target to pre-aligned atoms:
'(sj,a;,07) = ,;(s5,a;,607)
Calculate TD error via KL divergence:
L(0) = DxL(®),,;(85,a;,07)[[®(s;,a;,0))
Reduce L(0) by updating 0 via gradient
descent optimization methods with learning
rate c.

return (-, -, 0)

knowledge following a Boltzmann softmax policy:

exp(1E[B(5,0))
Za’e_A eXp(neE[(I)t(s’ a/)])

where 7, controls the randomness of the exploration policy.
The agent then operates the selected action a; and receives
the next step state s;11 and reward signal Rg/,, . The whole
transition (8¢, ar, Rg/s, ., St+1) is stored in D.

After interaction, the agent moves to the training phase.
Following the description in Section III-B, the DB strategy

will calculate the distributional Boltzmann softmax terms

27)

7Tre.'chlore ((1 | 3) =

N
W
S

[y

(=3

S
T

W
S
T

AvaregeReturn
S
(=)

(=)

|

9
S

20 40 60 80 100
Step/k
[ KLC51(MB) —KLC5I(DB) DPP—C51

(=}

DQNJ

Fig. 4. Learning curves of the proposed KLC51 and other baseline approaches
in CartPole-v0 task.

—/\/ln@(sj, ,07) and 7./\/177@(3]41, -,07). After projecting
to the pre-aligned, these distributions are added to the target
action preferences function ®’(s;, a;,87). It is then shifted by
the reward R/, . Using the simplified MB strategy, the ex-
pectation of the Boltzmann softmax terms, — M, ¥(s;,-,07)
and Y M, ¥(s;j41,-,07) are first calculated. The target ac-
tion preferences function ®'(s;,a;,07) is shifted by these
expected terms and the reward Rgf, . After obtaining
qA)'(sj,aj,O’), KLC51 projects it to the pre-aligned atoms
@;mj(sj,aj,ef). The TD error L(0) is calculated as the
KL divergence between distributions @;mj(sj,ajﬂ*) and
<i>(sj, a;,0). It is reduced by any gradient descent optimiza-
tion methods with learning parameters o following the settings

of related works [6], [11].

IV. EXPERIMENTS
A. Experimental Setting

In this section, we evaluated the proposed KLC51 in three
benchmark tasks in OpenAl gym ! with increasing complexity,
cartpole-v0, Lunarlander-v2 and Fetchreach-v1. The proposed
KLC51 was developed by Tensorflow [26] and Tensorflow
Agents [27]. DQN [6], C51 [11] and DPP [17] were selected
as the baseline approaches. We used the implementations of
DQN and C51 in Tensorflow Agents, and implemented DPP
with neural networks in the same framework following [21].
All experiments were conducted on a computational server
with Xeon-W2275 CPU, 64 GB memory and Ubuntu 20.04
OS. The common parameters of all RL approaches were set
as Nigiga = 1000, N = 10%, v = 0.99. Five independent
trials were conducted with different random seeds to collect
statistical evidence.

B. Evaluation of the Distributional TD Error in KLC51

We started from a simple control task, CartPole-v0 which
has 2-dimensional state and 2 discrete actions to evaluate
the Distributional TD Error with different strategies. The
proposed method and other baseline approaches shared a

Uhttps://gym.openai.com/
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Fig. 5. Action preferences function distribution of one example state-action
pair learned in KLC51 using MB and DB strategies in CartPole-v0 task.

same network structure, one fully-connected layer with 100
neurons and ReLU activation function. The learning rate was
set as o = 1073, the parameters of replay buffer was set as
J = 64, E = 105, the main and target networks shared weights
every C = 5 steps. KLC51 and DPP utilized Boltzmann
exploration policy with . = 0.1 while DQN and C51
employed a e—greedy exploration policy with e = 0.1. We set
the number of atoms as 51 and chose Viyjax = —Vurn = 20
for both KLC51 and C51. The KL divergence penalty term 7
in KLC51 and DPP was set to 0.1.

The learning curves of average return using the evaluation
policy over all approaches were demonstrated in Fig. 4. C51
and DQN had close performances which required more than
10k steps to converge and slightly fluctuated during the learn-
ing process as they shared a very similar network structure.
On the other hand, DPP achieved a slower convergency (more
than 20k steps) and could not reach our expectation of the
regularization of KL divergence. One possible reason is the
original DPP [17] was not designed for the neural network
structure, the replay buffer and main/target networks intro-
duced additional randomness which turned to over-cautious
policy update with low data-efficiency. As comparison, KLC51
using MB strategy significantly outperformed other baseline
approaches in not only convergency speed (less than 5k steps),
but also the robustness during training (no fluctuation in
average return). Processing the additional randomness in a
distributional perspective, it successfully improved the data-
efficiency under the neural network structure. On the other
hand, the DB strategy could not work in KLC51 and resulted
in a fluctuating learning curve without convergency. This result
is consistent to our discussion in Section III-B that directly
changing the target distribution by the distributional Boltz-
mann softmax terms may deteriorate the learning performance,
especially with misestimated value distribution in the early
stage of RL. As one case study, an example state-action pair’s
action preferences function distributions of both DB and MB
strategies were compared in Fig. 5. It is clearly observed that
the distribution learned in MB strategy successfully captured
a distribution around high returns, while the one learned by
DB strategy was close to the uniform distribution with less
information.

C. Evaluation of the Learning Capability

In the second experiment, the learning capability and the
effect of KL divergence regularization were evaluated in a
more complex control problem, LunarLander-v2 which has 8-
dimensional state and 4 discrete actions. The proposed method
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Fig. 6. Learning curves of the proposed KLC51 and other baseline approaches
in LunarLander-v2 task.
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Fig. 7. Learning curves of the proposed KLC51 with different parameter 7
in LunarLander-v2 task.

and other baseline approaches shared a same network struc-
ture with two fully-connected layers with [256, 256] neurons
and ReLU activation function. The learning rate was set
as a = 107%, the parameters of replay buffer was set as
J = 256,F = 10* the main and target networks shared
weights every C = 100 steps. KLC51 and DPP utilized
Boltzmann exploration policy with 1. = 0.05 while DQN and
C51 employed a e—greedy exploration policy with e = 0.1. We
set the number of atoms as 51 and chose Vayjax = —Vyrn =
200 for both KLC51 and C51. The KL divergence penalty term
7 in KLC51 and DPP was set to 0.1.

The learning curves of the average returns using the evalu-
ation policy were compared in Fig. 6. DQN had the worst
performance with neither the distributional value fucntion
nor the KL divergence regularization. Compared with DPP
and C51 that converged to relatively low returns after 80k
steps, the proposed KLC51 using MB strategy successfully
improved over 75% data-efficiency with better robustness: it
quickly converged to the highest average return within 20K
steps and maintained stability after convergency. This result
demonstrated the advantages of proposed KLCS51 in both
data-efficiency and robustness in a complex control task by
employing the KL divergence regularization in a distributional
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Fig. 8. Samples colloected by KLC51 and C51 during the learning procedure. The high-dimensional samples were embedded by t-SNE, the color presents

the expectation of value function.

perspective.

The effect of parameter n which controls the weight of
KL divergence regularization in KLC51 was studied in this
subsection. The learning curves of average returns with dif-
ferent setting of n were shown in Fig. 7. This result is similar
to the one of DPP-based engineering implementations [20],
[21]. A small 1 not only contributed to a strong penalty
items to the over-large policy update but also slowed down
the convergence. With an increasing n from 0.001 to 0.1,
the convergency speed and the final average return were all
improved. On the other hand, an over-large n = 0.15 in
KLC51 could damage data-efficiency and learning capability
and turned to a close performance to C51 as the over-large
policy is not sufficiently constrainted. This result indicated the
importance of properly selecting the parameter 1 in KLC51’s
engineering application.

We finally explored the effect of KL divergence regulariza-
tion to the sampling behaviors in KLC51. The seperated 10k
high-dimensional samples collected within (0, 10], (30, 40],
(60, 70], (90, 100] thousand steps were illustrated using a reli-
able dimensionality reduction technique, t-distributed stochas-
tic neighbor embedding (t-SNE) [28] in Fig. 8 where the colors
from blue to red presented expected value function with low
to high values. At the early stage of learning (10k step), C51
explored more samples with high expected value (yellow and
red dots) while KLC51 was restricted to low value samples by
the KL divergence penalty term. From 40k step to 100k step,
KLC51 smoothly imporved its policy to collect more samples
with high values while avoiding the one with extremely low
value. On the other hand, the larger variance of expected values
in C51’s samples indicated an insufficient exploration caused
by the drastically changed policy without constraint which
resulted in poor data-efficiency and stability compared with
KLC51.

AvaregeReturn

0 20 40 60 80
Step/k
DPP—C51

100

[—KLCs1 DQN]

Fig. 9. Learning curves of the proposed KLC51 and other baseline approaches
in Fetchreach-v1 task.

D. Evaluation of the KL-regularized Behaviors

The last experiment focused on the FetchReach-v1 task with
a 13-dimensional dictionary-based observation space and a 4-
dimensional continuous action space in order to indicate the
control performances of KLC51 in robot control domain. The
continuous action space was discretized to 7 discrete actions.
The proposed method and other baseline approaches shared
a same network structure with three fully-connected layers
with [256, 256, 256] neurons and ReLU activation function.
The learning rate was set as o = 107*, the parameters of
replay buffer was set as J = 64, E = 10°, the main and
target networks shared weights every C' = 5 steps. KLC51
and DPP utilized Boltzmann exploration policy with 1, = 0.2
while DQN and C51 employed a e—greedy exploration policy
with € = 0.1. We set the number of atoms as 51 and chose
Viiax = —Varn = 10 for both KLC51 and C51. The KL
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Fig. 11. Exploration policies’ average returns during training using the
proposed KLC51 and other baseline approaches in Fetchreach-v1 task.

divergence penalty term 7 in KLC51 and DPP was set to 0.15.

According to the learning curves of average return using
the evaluation policy compared in Fig. 9, although KLC51
could not outperformed C51 and DQN in the first 10k step,
it quickly converged to the highest return —2 within about
20k steps and achieved 50% and 66.7% better data-efficiency
compared with C51 and DQN which converged within 40k
and 60k steps respectively. DPP had the worst performance, it
slowly converged to a lower average return within 40k with a
fluctuated learning curve.

In the next step, we studied the exploration behaviors in a
more intuitive way to investigate the effect of KL divergence
regularization in a distributional perspective. Define 50 steps
as one episode, the whole training process of 100k steps had

Euclidean Distance
I o o o o
— [\e) w i W

(=3
L

40 60 80
Step/k

|—KLC51—C51

.
e
=

20 100

DON|

Fig. 12. Average Euclidean distance between the end-effector and target
position during training using the proposed KLC51 and other baseline
approaches in Fetchreach-v1 task.

2000 episodes. The end-effector positions (red dots) and the
corresponding goal position (blue dots) in three continuous
episodes e — 1, e and e 4+ 1 (from light to dark colors) were
demonstrated in Fig. 10 with four different phases of training
e =[299,599,1199, 1799]. It is clearly observed that C51 and
DQN rapidly switched their sampling distributions to track the
goal positions from episode e—1 step to e+1. As the algorithm
converged, the sampling policy focused on a shrinking local
space around the goal positions. As comparison, a more
extensive exploration was encouraged in KLC51. Regularized
by the KL divergence between the current and previous
policies, KLC51 naturally focused on a larger area between
each goal positions to efficiently collect samples over the task
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Fig. 13. Update of distributional value functions in KLC51 and C51 over three continuous update steps where the main and target networks shared weights
in different learning procedure. Light and dark colors represent the distributions in current and next steps.

space. On the other hand, directly modeling the expected value
function with such an extensive exploration resulted in both
slow convergency and poor control performance in DPP due to
the randomness from the wide range of sampling, the replay
buffer and the structure of main and target neural networks
while KLC51 successfully achieved great data-efficiency and
robustness by handling these randomness in a distributional
perspective following C51. The average rewards and the
Euclidean distances between end-effector and the goal shown
in Figs. 11 and 12 supported the results in Figs. 10 and 9:
KLC51’s extensive exploration with lower average reward
contributed to better learning performance using the evaluation
policy compared with the baseline approaches.

Finally we investigated the effect of KL divergence regular-
ization in the update of distributional value function. Both &
and Z distributions in KLC51 and C51 of one example state-
action pair over three continuous update steps when the main
and target networks shared the weights were demonstrated in
Fig. 13 as a case study to indicate the robustness against
neural networks’ stochasticity given by the KL divergence
regularization. The distributions in current and next steps were
indicated by light and dark colors. In the horizontal view
of Fig. 13, it is clearly observed in C51 that the weights
copy in the target network every C steps turned to strongly
flattened and shifted distributional value functions between
steps t — 1 and t + 1. These different distributions therefore
introduced additional uncertainties to the learning process.
As comparison, the over-large update of distributional value
functions was alleviated in KLC51 through the Boltzmann
softmax operator. The distributions updated in step ¢ shared
more information of the previous step than C51 in a rela-
tively flat shape which not only contributed to an exclusive
exploration, but also captured the stochasticity caused by the
nature of neural networks. In the vertical view of Fig. 13,

the update of distributional value function from 13% to 90%
learning procedure also enjoyed better smoothness with the
KL divergence regularization. Compared with C51 that kept
shifting and shrinking its distribution during the learning,
KLCS51 quickly converged to a high average return according
to Fig. 9 while maintaining a flatten distribution without over-
large update. This result indicated the smooth update and sta-
ble learning reported by [20], [22] were successfully inherited
by the proposed approach in a distributional perspective.

V. CONCLUSIONS

In this article, a novel RL approach, KLC51 was pro-
posed to tackle the issues of stability and data-efficiency
in RL by integrating the advantages of both distributional
RL approach C51 and the KL divergence-regularized RL
approach DPP. The proposed method derived the Bellman
equation and TD errors regularized by KL divergence in a
distribution perspective and explored the approximated update
strategies to map the corresponding Boltzmann softmax term
in DPP to distributions. With a distributional value function,
KLC51 successfully stabilized and accelerated the learning
procedure by properly handling the stochasticity from not
only the exclusive exploration regularized by KL divergence
but also its neural networks structure. Evaluated by several
benchmark tasks with different complexity, KLC51 demon-
strated its significant superiority in both learning stability and
data-efficiency compared with related baseline approaches. We
further studied and illustrated the positive effect of the KL
divergence regularization in distributional RL including the
exploration behaviors and the update of distributional value
function. All these results indicated the potential of KLC51 as
an emerging stable and data-efficient RL approach for various
control problems.
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