
1

Supplementary Material of “Communication-efficient
ADMM using Quantization-Aware Gaussian Process

Regression”
Aldo Duarte‡, Truong X. Nghiem§, and Shuangqing Wei‡

‡ Louisiana State University. § Northern Arizona University.



2

Output Value

Input Value 

000

001

010

011

100

101

111

110

Fig. S1: Diagram representing the proposed adaptation of the uniform quantizer using the statistics of the Gaussian input y.
The uniform quantizer’s mid-point is set as the mean of y and the range depends on the variance of y.

In this attachment we present supplementary information to the one presented in the main document ”Communication-efficient
ADMM using Quantization-Aware Gaussian Process Regression”.

I. SUPPLEMENTARY ILLUSTRATIONS

A. Illustration on the Adaptive Uniform Quantization presented in Section V-B1

The proposed quantization adaptation of a mid-thread uniform quantizer presented in Section V-B1 is illustrated in Figure S1.
Such a figure presents a quantizer with 8 quantization levels in which the quantizer’s input y will be expressed by 3 bits at the
quantizer’s output. The illustration shows how the statistics of the quantizer’s Gaussian input y are used to set the mid-value ȳ
and the range l of the uniform quantizer. Given the quantizer’s input y ∼ N

(
µy, σ

2
y

)
, we adapt a uniform quantizer by setting

its mid-value y = µy and its range l = 2cσy, for some given c > 0. The proposed quantizer (denoted by Qua(y;µy, σy, c, b)
has parameters that are adapted for a quantization resolution appropriate for the most likely values of y. The quantization levels
will be constructed by setting uniform quantization intervals around the mid-value where the length of each interval is given by
q = 2cσy/2

b. Depending on which interval the quantizer’s input belongs to, it will be assigned one of the 8 different 3-bits
binary numbers considered in this case.

B. Illustration on the Gaussian Process concept presented in Section V-A

In Figure S2 the concept of GP is depicted. The distribution of a Gaussian process is the joint distribution of infinitely many
random variables. Every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear
combination of them is normally distributed. The blue lines in Figure S2 represent such a collection of random variables. The
crosses in the graph represent the observed values of the function f(x) and we can see that the many random variables all
converge to those points. This shows that for a given set of training points, there are potentially infinitely many functions that
fit the data. Gaussian processes assign a probability to each of these functions and the mean of this probability distribution then
represents the most probable characterization of the data. The black curve in Figure S2 is the mean function of the GP. Finally,
the use of a probabilistic approach allows us to incorporate the confidence of the prediction into the regression result. Such
confidence region is represented in the gray area in the illustration and uses the second-order statistics of the joint distribution
to be constructed. It is noticeable that the farther we are from a point of the training set, then the mentioned region becomes
bigger making the predictive mean more unreliable.

II. MATHEMATICAL PROOFS

A. Proof of Proposition 2

The dequantized value ŷ will be ŷ = A−1Qua(y
A; 0, σw, c, b) + µ(x) , but can be also expressed as

ŷ = A−1[A(y − µ(x)) + ϵQ] + µ(x) = y +A−1ϵQ = y + ϵ̂Q (1)
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Fig. S2: Diagram representing the GP regression.

Analyzing the auto correlation of ϵ̂Q we have:
E[ϵ̂Qϵ̂

′
Q] = (A)−1E[ϵQ ϵ′Q]((A)−1)′ = (A)−1ΛϵQ((A)−1)′ (2)

where E[ϵQ ϵ′Q] is the auto correlation of the quantization error and ΛϵQ is a diagonal matrix with entries given by 1
12 q̃

2.
If A1 is used then q̃ will be q̃ = 2c

2b
Ip+1 = Γ(b, c)Ip+1, where Γ(b, c) = 2c

2b
.

On the other hand, if A2 is used then q̃ = 2c
2b

√
Λ = Γ(b, c)

√
Λ. Therefore we will have that

E[ϵ̂Qϵ̂
′
Q] = A−1ΛϵQ(A

−1) =
Γ2(b, c)

12
(A−1Λ̃ϵQ(A

−1)′) (3)

with Λ̃ϵQ being Ip+1 or Λ depending on the selection of A.
Finally, we have that since A−1Λ̃ϵQ(A

−1)′ = Σ(x) then no matter the selection of A the result will be

E[ϵ̂Qϵ̂
′
Q] =

Γ2(b, c)

12
Σ(x) = ∆ (4)

B. Proof of Theorem 1

The proposed LMMSE will be given by the linear combination
µ(x∗) = HŶ (5)

Then, if (5) is a LMMSE then it must follow the orthogonal principle which will be given by E[(µ(x∗) − ŷ∗)(Ŷ )′] = 0.
From this point we can obtain an expression for H

E[(HŶ − ŷ∗)(Ŷ )′] = 0

HE[Ŷ (Ŷ )′] = E[ŷ∗(Ŷ )′]

HE[(Y + ϵn + ϵQ)(Y + ϵn + ϵQ)
′] = Φ(x∗, X) (6)

Since ϵQ is uncorrelated from y and ϵn is independent from the rest, all cross products will be turn to zero by the expectation.
Therefore we can simplify the expression to

H[Φ(X,X) + E[ϵQϵ
′
Q] + σnIm(p+1)] = Φ(x∗, X) (7)

Defining E[ϵQϵ
′
Q] = ∆,we have the expression

H = Φ(x∗, X)[Φ(X,X) + ∆ + σnIm(p+1)]
−1 (8)

Now, the error covariance of the estimator will be given by
Σ(x∗) = E[(ŷ∗ − µ(x∗))(ŷ∗ − µ(x∗))

T ] (9)
Σ(x∗) = E[(ŷ∗ −HŶ )(ŷ∗ −HŶ )T ] (10)

Expanding this expression and operating the expectations we get

Σ(x∗) = Φ(X∗, X∗)−
HTΦ(X,X∗)− Φ(X∗, X)H −HTΦ(X,X)H

Finally, introducing the expression of H in (8) we get

Σ(x∗) = Φ(X∗, X∗)−
Φ(X∗, X)[Φ(X,X) + σ2

nIm(p+1) +∆]−1Φ(X,X∗)
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C. Proof of Theorem 2

The expression for our estimator will be defined as
ȳ∗ − µ(x∗) = B(ŷ∗ − µ(x∗)) (11)

where B is the matrix determined by resorting to the orthogonal principle. Using the orthogonal principle for this LMMSE like
in the LGP case the expression for B will be

E[(B(ŷ∗ − µ(x∗))− (ŷ∗ − µ(x∗)))(ŷ∗ − µ(x∗))
′] = 0

B E[(ŷ∗ − µ(x∗))(ŷ∗ − µ(x∗))
′] = E[(ŷ∗ − µ(x∗))(ŷ∗ − µ(x∗))

′] (12)

So, inserting the definition of µ(x∗) and Σ(x∗) from Theorem 1 into (12) will lead to the simplified version
B = Σ(x∗)[Σ(x∗) + σnIp+1 +∆p+1]

−1 (13)

III. SUPPLEMENTARY INFORMATION TO NUMERICAL RESULTS

A. Details on the Calculation of Variables θi and Υi in Section VII-A2

In [1] the variables θi and Υi are updated at each iteration of the ADMM algorithm. In this work, those variables are fixed by
following the variable’s initialization for the first iteration made in [1]. In such, to calculate each θi we first create θ0i which is
a p-dimensional vector with entries randomly generated and uniformly distributed on [-1,1]. Then, the value of θi to be used is

θi = θ0i + ηui (14)
where η is some small positive number, ui is a p-dimensional vector for agent i whose entries are randomly generated and
uniformly distributed on [-1,1].

Next, to calculate each Υi we first create Υ0
i as a symmetric p×p matrix whose entries are randomly generated and uniformly

distributed on [-1,1]. Then, we generate Υ̃i = Υ0
i + ηEi, where Ei is a symmetric p× p matrix whose entries are randomly

generated and uniformly distributed on [-1,1]. Subsequently, Υi is constructed as

Υi =

{
Υ̃i, if λmin(Υ̃i) > ϵ

Υ̃i +
(
ϵ− λmin(Υ̃i)

)
Ip, otherwise

(15)

where λmin(Υ̃i) denotes the smallest eigenvalue of Υ̃i and ϵ > 0 is some positive constant. The procedure in (15) is performed
to ensure that Υi is positive definite.

B. Details of MAC Metric presented in Section VII-C1

Assuming that the coordinator communicates with the agents wirelessly following the IEEE 802.11 specification, a MAC
layer simulator was implemented. The 802.11 CSMA/CA simulator presented in [2] was chosen because of its simplicity, which
was modified to our purposes. The simulator implemented in MATLAB will return the number of total transmissions, successful
transmissions, and an efficiency value defined by ξ = st/tt, where st is the successful transmissions observed and tt the total
amount of transmissions performed. The simulation was run offline 1000 times to obtain an average efficiency ξ. Once the
average values are obtained for different payloads and number of agents, those values will be used with the results given by the
distributed optimization simulation to calculate the communication time for each round. In particular, at the k-th iteration, the
coordinator will receive a certain amount of simultaneous responses which are expressed in the variable T k

simul. The expected
transmission time in one iteration round will be T k

round = T k
simul/ξ

∗ , where ξ∗ is the average efficiency in the MAC simulation
for the given scenario. The total transmission time will be Txt =

∑N
k=1 T

k
round, where N is the number of iterations taken to

reach convergence. This metric is not only affected by the total number of communications that were performed but also the
number of agents communicating at each iteration and the payload size, thereby making it a more robust metric to compare the
performance of the proposed methods.

C. Complementary Numerical Results Graphs

In Fig. S3 we present the results for 10 and 30 agents when the dimension of the variables is set to be p = 10 discussed in
Section VII-E.

IV. SUPPLEMENTARY STATISTICAL RESULTS FOR 30 AGENTS p = 10

The results presented up to this point were only considering the median among the 100 simulation performed for each case.
Such approach is useful to visualize the general trend among all cases, however there is information lost by only considering
such statistic. For that reason we also generated boxplots to get more insight about the data sets distribution. Such boxplots
show how the data of our 100 simulations is spread around the median and in between the first and third quartile. In this
subsection, we are going to discuss boxplot result for the data sets coming from 30 agents with p = 10. Because not all methods
can be presented in a single graph we decided to present the graph comparing only four methods.
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Fig. S3: Performance in the LOT metric of the adaptive quantization methods at different bit resolutions for 10 agents (left) and
30 agents (right) with p = 10. The plots show the median LOT of 100 simulations for different sets of parameters θi and Υi.
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Fig. S4: Boxplot comparing the methods STEP-GP:Exact, LGP:UniAd, LGP:UniAd-Dec, and LGP:UniAd-DecDit for 30 agents
with p = 10 in terms of the LOT metric for different resolutions. The results presented gather the information out of 100
simulations for different sets of parameters θi and Υi. Since STEP-GP:Exact is not affected by quantization it is presented with
a single boxplot with gray color.

Fig. S4 shows the boxplots comparing STEP-GP, STEP-LGP:UniAd, STEP-LGP:UniAd-Dec, and STEP-LGP:UniAd-DecDit
for the case where we have 30 agents with p = 10. The Sync:Exact was not shown in the graph since it did not have much
variation among the 100 simulations, not giving much more information than the one already presented in the median plots.
Since STEP-GP:Exact is not affected by quantization it is presented with a lone boxplot. Comparing STEP-GP:Exact with
STEP-LGP:UniAd, we can see that the former presents less spread of its data while STEP-LGP:UniAd has a significant spread
for the 7 to 14 bits cases. Also, for all bit resolution STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit present slightly
more variation than STEP-LGP:UniAd.
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