
1

TDOA Data Selection for Accurate Passive

Coherent Location
Daniel P. Nicolalde-Rodrı́guez, Student Member, IEEE, Wallace A. Martins, Senior Member, IEEE,
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Abstract—This paper addresses the problem of selecting suit-
able time difference of arrival (TDOA) measurements for passive
coherent location with multiple–transmitters/receivers. Firstly,
we propose a unified mathematical framework for the following
target location algorithms: spherical interpolation (SI), spherical
intersection (SX), and nonlinearly constrained least squares
(NLCLS). This paper generalizes the currently available models
for scenarios with multiple–transmitters/one–receiver and one–
transmitter/multiple–receivers. The SI/SX algorithms use closed-
form expressions to tackle the location problem without con-
sidering all the nonlinear relationships among the optimization
variables. As for the NLCLS algorithm, such nonlinearities
are taken into account with the help of nonlinear constraints.
Effects like multipath propagation and shadow fading increase
TDOA measurement values resulting in outliers. To remove the
outliers, we propose three TDOA selection processes. The first one
uses a simple comparison rule. The second approach iteratively
detects outliers based on cost function comparisons. The last
approach divides the search region into cuboids. The cuboid-
based approach separates consistent TDOAs from outliers, and
its centroid represents a new location estimate. The numerical
experiments show that the proposed cuboid-based method has
greater robustness when increasing the probability of outliers.

Index Terms—Passive coherent location, time difference of
arrival, TDOA selection, outliers, cuboid.

I. INTRODUCTION

PASSIVE coherent location (PCL) systems have been used

for they do not need exclusive transmitters (TXs) to

detect and locate target units [1], [2]. PCL systems, also

known as passive radars, use already deployed electromagnetic

radio systems like analog audio broadcaster (FM), digital

audio broadcasting (DAB), digital video broadcaster-terrestrial

(DVB-T), automatic identification system satellite (AIS-S),

global positioning system (GPS), and mobile communication

systems (2G, 3G, 4G, and 5G) [3]. In these systems TXs are

illuminators of opportunity that cover the location region.

Many different PCL investigations have been conducted

based on time difference of arrival (TDOA) measurements [4]–

[11]. TDOA represents the time difference between the signal

emitted by the TX and collected by the RX (Reference chan-

nel) and the replicated signal reflected in the target (Surveil-

lance channel). The literature mainly deals with TDOA–based
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PCL solutions either for multiple TXs and one RX, or for

multiple RXs and one TX. However, the authors in [12] present

a least square solution of a passive location system based

on time sum of arrival (TSOA) measurements in a scenario

of multiple TXs and multiple RXs. TSOA represents the

travel time of the signal reflected in the target and associated

with a specific TX-RX pair. Nevertheless, a PCL formulation

consisting of TDOA measurements associated with multiple

TXs and RXs is also possible. Current systems as 5G NR (New

Radio) technology, with massive multiple–input and multiple–

output (MIMO) and flexible frequency access, expect to use

a dynamic location scenario that takes advantage of multiple

TXs and RXs with low latency and high reliability [13]–[15].

This paper extends the formulation of PCL algorithms using

spherical intersection (SX) and spherical interpolation (SI),

previously derived for multiple TXs and one RX scenario [7]

as well as multiple RXs and one TX scenario [8], to the

general case of multiple TXs and multiple RXs. We also

propose the multiple TXs and multiple RXs formulation of

the nonlinearly constrained least square (NLCLS) algorithm,

designed initially for multiple RXs and one TX [8], where we

use all the constraints to improve the accuracy of the original

SI technique. In addition, the paper proposes a simplified

scheme (S-NLCLS) with a single constraint. In terms of

accuracy, S-NLCLS is close to NLCLS, but with reduced

computational load.

Location algorithms usually rely on accurate TDOA estima-

tion for each TX-RX pair. It is common, however, that among

the TDOA measurements we find outliers. An outlier has a

much larger value than a nominal TDOA, and it may appear

due to effects such as multipath propagation and shadow

fading [16]. For example, multipath propagation generally

produces outliers considering that the generated propagation

signal has a longer path than the signal reflected in the

target. Moreover, the shadow fading effect can introduce a

high attenuation due to the large-scale fluctuation (line-of-sight

blocking), therefore creating a longer signal path [17].

In order to improve the performance of PCL algorithms,

one may appropriately select TDOA measurements (removing

outliers). Investigations for selecting time difference of flight

(TDOF) and time of flight (TOF) measurements have been

published for active location systems (when the target directly

receives reference signals from transmitters or when the target

emits reference signals that sensors detect) [17]–[24].

The authors in [20] and [21] proposed region-based search

algorithms that select consistent TOF/TDOF measurements

for acoustic sensor location. The proposals split the location
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region into cuboids. The cuboid that potentially contains the

target location separates consistent data from outliers. This

cuboid is associated with most TOF/TDOF measurements.

Considering that a region of constant TDOF is a hyperboloid

of two sheets with foci located at two loudspeakers, the

problem could be seen as selecting the cuboid that intersects

most of the hyperboloids associated with the different pairs

of loudspeakers. We extend this criterion to PCL, where the

selected cuboid intersects most of the ellipsoids associated

with most TDOA measurements collected from the different

TX/RX pairs. Moreover, the centroid of the final cuboid that

separates consistent TDOAs and outliers can be considered

a new target estimate. As will be seen in Section V, this

proposed target location estimation shows promising results in

terms of accuracy, especially when reducing the cuboid sizes.

Other techniques select data based on comparisons of cost-

function evaluations over different combinations of TDOA

data. The works in [19] and [12] select, respectively, TDOAs

in a source location system and TSOAs in a passive location

system. They define a fixed number of selected data, and the

data set that obtains the least cost is employed to compute

the final location. On the other hand, an iterative proce-

dure in [25], [26] removes, one-by-one, time delay estimates

(TDEs) associated with a pair of acoustic sensors in a scenario

that detects direction of arrival of gunshots. The algorithm’s

stopping criterion also depends on a fixed number of selected

data. We proposed another TDOA selection method for PCL

that iteratively discards outliers (one-by-one) of a candidate

list. At each iteration, a cost function determines the TDOA

measurement that must be discarded. The iterative process

stops automatically when all the selected TDOA errors are

below a predefined threshold. We also benchmark our pro-

posal against a simple TDOA selection technique that quickly

removes outliers using a simple decision ratio.

The organization of this paper is as follows. Section II

describes the mathematical formulation of PCL algorithms (SI,

SX, and NLCLS/S-NLCLS) in the scenario of multiple TXs

and multiple RXs. Section III addresses the proposed selection

methods that separate consistent TDOA measurements from

outliers. Section IV details the adaptation that must be carried

out in the location algorithm, the removal of columns and rows

of the matrices and vectors associated with outliers previously

selected. Section V presents the experimental results obtained

from simulations. Finally, conclusions are stated in Section VI.

II. LOCALIZATION ALGORITHMS

We assume M RXs and L TXs denoted as RXm, m ∈M ,
{1, 2, . . . ,M}, and TXl, l ∈ L , {1, 2, . . . , L}, respectively.

Fig. 1 sketches the PCL geometry of the pair RXm-TXl.
Vectors pRXm and pTXl represent the known positions of

RXm and TXl, respectively. The unknown location of the

target is represented by vector pT. The target location system

can be applied for an N–dimension problem, N ∈ {2, 3}.
As shown in Fig. 1, the distances of interest in the PCL

scenario are defined as: TXl–target distance rTXl-T , ‖pTXl−
pT‖, RXm–target distance rRXm-T , ‖pRXm − pT‖, and

RXm–TXl distance rRXm-TXl , ‖pRXm − pTXl‖.
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Fig. 1. Geometry of a passive coherent location system.

In PCL jargon, the difference between the reflected

path length (rRXm-T + rTXl-T) and the line-of-sigh length

(rRXm-TXl) is known as bistatic range [1]. For each pair

RXm–TXl, we denote its bistatic range as

rBml , rRXm-T + rTXl-T − rRXm-TXl. (1)

The range difference (reflected path length) of the RXm–

TXl pair, rml, is the total distance defined by the bistatic range

plus the line-of-sight distance, rBml + rRXm-TXl, which from

Eq. (1) becomes

rml = rRXm-T + rTXl-T, (2)

which is the basis of the PCL approach for multiple TXs/RXs.

From Eq. (2), we have an identity that, after squaring, yields

(rml − rTXl-T)
2
= r2RXm-T, (3)

Eq. (3) is the second degree equation used to formulate the

PCL problem when the number of RXs is larger than the

number of TXs, i.e., when M ≥ L. In case L ≥ M , one

can use

(rml − rRXm-T)
2
= r2TXl-T. (4)

In this paper, we assume M ≥ L in the forthcoming deriva-

tions for the sake of conciseness.

Eq. (3) can be rewritten as

p̄
⊺
RXm-TXlp̄T-TXl − rmlrTXl-T =

1

2
(r2RXm-TXl − r2ml), (5)

where p̄RXm-TXl , pRXm−pTXl and p̄T-TXl , pT−pTXl.

The unknown variables p̄T-TXl and rTXl-T must be computed

to find the estimated target location.

To consider the complete data in our PCL scenario (M
RXs, L TXs, and one target), we define the ML×NL matrix

PRX-TX as

PRX-TX ,











P̄RX-TX1 . . . 0M×N . . . 0M×N

...
. . .

...
. . .

...

0M×N . . . P̄RX-TXl . . . 0M×N

...
. . .

...
. . .

...

0M×N . . . 0M×N . . . P̄RX-TXL











, (6)

where the M ×N matrix P̄RX-TXl is given as

P̄RX-TXl ,






p̄
⊺
RX1-TXl

...

p̄
⊺
RXM -TXl




 . (7)
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We also define the ML× L matrix R as

R ,











r1 . . . 0M×1 . . . 0M×1

...
. . .

...
. . .

...

0M×1 . . . rl . . . 0M×1

...
. . .

...
. . .

...

0M×1 . . . 0M×1 . . . rL











, (8)

where rl ,
[
r1l . . . rml . . . rMl

]⊺
. Moreover, p̄T-TX (NL×

1 vector), rTX-T (L × 1 vector), and z (ML × 1 vector) are

defined as

p̄T-TX ,






p̄T-TX1

...

p̄T-TXL




, rTX-T ,






rTX1-T

...

rTXL-T




, z ,






z1
...

zL




, (9)

where zl (M × 1 vector) has the following structure:

zl ,
1

2






r2RX1-TXl − r21l
...

r2RXM -TXl − r2Ml




 =






z1l
...

zMl




 . (10)

Considering Eq. (5) applied for M RXs and L TXs, we

have

PRX-TXp̄T-TX −RrTX-T = z. (11)

Associating matrix A ,
[
PRX-TX −R

]
with known vari-

ables, Eq. (11) can be expressed as

A

[
p̄T-TX

rTX-T

]

︸ ︷︷ ︸

,x

= z . (12)

The entries of x are nonlinearly related since rTX-T is a

(known) nonlinear function of p̄T-TX, which makes Eq. (12)

a nonlinear equation on p̄T-TX. Moreover, Eq. (12) does not

usually hold equality when we employ practical measurements

to obtain the target location, so that usually one searches for

p̄T-TX that minimizes some model mismatch metric (e.g., a

norm of the error vector e , Ax− z).

Following [7], two classical methods approximate the solu-

tion p̄T-TX to the nonlinear Eq. (12), namely: spherical inter-

polation (SI) and spherical intersection (SX). The application

of the two methods to the case of multiple TXs and one RX

is addressed in [7], and to the scenario of multiple RXs and

one TX is addressed in [8]. In the following, we extend the

mathematical formulations of the two methods to the more

generic case of multiple TXs and multiple RXs.

A. Spherical Interpolation

Eq. (12) can be approached using the unconstrained least

square (LS) solution, which is obtained by equating to the

null vector the gradient of the LS cost function ξ(x), i.e.,

∇xξ(x) = 0, where

ξ(x) , e⊺e. (13)

Thus, knowing that A is ML × (N + 1)L, a necessary

condition for A⊺A to be invertible is M ≥ N + 1, i.e.,

the number of receivers must be larger than the problem

dimension (2D or 3D); in that case, the unconstrained LS

solution becomes

x̂ = (A⊺A)
−1

A⊺z =

[
ˆ̄pT-TX

r̂TX-T

]

. (14)

Note that ˆ̄pT-TX corresponds to the first NL elements of x̂.

Since we can express p̄T-TX as





pT − pTX1

...

pT − pTXL






︸ ︷︷ ︸

p̄T-TX

=






IN×N

...

IN×N






︸ ︷︷ ︸

Ia

pT −






pTX1

...

pTXL






︸ ︷︷ ︸

pTX

, (15)

we expect to have ˆ̄pT-TX ≈ IapT − pTX, and therefore the

final estimate of pT is computed as

p̂T = (Ia
⊺Ia)

−1
Ia

⊺ (ˆ̄pT-TX + pTX

)
, (16)

which represents the mean of L individual estimates for each

case of 1 TX and M RXs:

p̂T =
1

L

L∑

l=1

(
ˆ̄pT-TXl + pTXl

)
. (17)

B. Spherical Intersection

From Eq. (11), we can estimate p̄T-TX as

ˆ̄pT-TX = P† (z+RrTX-T) , (18)

where P† = (P⊺
RX-TXPRX-TX)

−1
P

⊺
RX-TX and, in this case,

a necessary condition for (P⊺
RX-TXPRX-TX)

−1
to be solvable

requires M ≥ N . Eq. (18) can be compactly expressed as

ˆ̄pT-TX = a+BrTX-T (19)

where a , P†z and B , P†R.

Considering the block-diagonal structure of PRX-TX in

Eq. (6), we can write P† as

P† =












P
†
1 . . . 0N×M . . . 0N×M

...
. . .

...
. . .

...

0N×M . . . P
†
l . . . 0N×M

...
. . .

...
. . .

...

0N×M . . . 0N×M . . . P
†
L












, (20)

thus allowing us to rewrite the LN × 1 vector a in Eq. (19)

as

a =






a1
...

aL




 =






P
†
1z1
...

P
†
LzL




 , (21)

and the NL× L matrix B as

B =











b1 . . . 0N×1 . . . 0N×1

...
. . .

...
. . .

...

0N×1 . . . bl . . . 0N×1

...
. . .

...
. . .

...

0N×1 . . . 0N×1 . . . bL











, (22)
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where bl = P
†
l rl (an N×1 vector) is positioned between rows

N(l − 1) + 1 and lN , and in column l. Expanding Eq. (19),

the following equality is obtained:











ˆ̄pT-TX1

...

ˆ̄pT-TXl

...
ˆ̄pT-TXL












=











a1 + b1rTX1-T

...

al + blrTXl-T

...

aL + bLrTXL-T











. (23)

We expect to have r2TXl-T ≈ ||ˆ̄pT-TXl||
2, so that

r2TXl-T ≈ (al + blrTXl-T)
⊺
(al + blrTXl-T) . (24)

Therefore, the estimate of rTXl-T can be seen as the solution

of a simple second–degree equation:

r̂TXl−T =
−2a⊺l bl ±

√

4(a⊺l bl)2 − 4(b⊺
l bl − 1)a⊺l al

2(b⊺
l bl − 1)

. (25)

As shown in Eq. (25), there are two options for each r̂TXl−T,

l ∈ L. Therefore, we have, in total, 2L possible estimates of

vector rTX-T. All those estimates are evaluated in Eq. (18) to

obtain the possible vectors of ˆ̄pT-TX. Those vectors are used to

compute the cost function ξ(x). The vector ˆ̄pT-TX that obtains

the lowest value of ξ(x) is used to compute the final target

estimate using Eq. (16).

C. Nonlinearly Constrained Least Square

The SI algorithm in Section II-A and the SX algorithm in

Section II-B approximate the solution of Eq. (12) without con-

sidering the complete problem. The SI algorithm approaches

Eq. (12) disregarding the nonlinear relationship of the entries

of x (||ˆ̄pT-TXl|| should correspond exactly to r̂TXl-T). On

the other hand, although the SX algorithm guarantees that

||ˆ̄pT-TXl|| = r̂TXl-T, it does not necessarily satisfy the identity

in Eq. (12).

In [8], a nonlinearly constrained least square (NLCLS)

solution, defined for a scenario with M RXs and 1 TX, was

proposed considering the complete mathematical problem in

Eq. (12). By considering all the constraints of the original

nonlinear problem in Eq. (12), the resulting method enjoys

some regularization effects that implicitly compensate TDOA

estimation errors, as corroborated by simulation results [8].

This section extends the NLCLS mathematical formulations

to the generic case of M RXs and L TXs.

1) The NLCLS Method: We have L nonlinear constrained

functions to satisfy the interdependence of the entries of x

defined as

fl(x) = x⊺Īlx = 0, l ∈ L, (26)

where the L(N + 1)× L(N + 1) matrix Īl is given as

Īl =

[
Ī
top
l 0LN×L

0L×LN Ībottoml

]

. (27)

Ī
top
l =





0(l−1)N×(l−1)N 0(l−1)N×N 0(l−1)N×(L−l)N

0N×(l−1)N IN×N 0N×(L−l)N

0(L−l)N×(l−1)N 0(L−l)N×N 0(L−l)N×(L−l)N



 , and

the L×L matrix Ībottoml has all its entries equal to zero, but

the entry in row l and column l, which is equal to −1.

With the L constraints in Eq. (26), we can use Lagrange

multipliers and write the following relation:

∇xξ(x) =

L∑

l=1

λl∇xfl(x), (28)

where λl is the Lagrange multiplier for each constraint (L in

total). Eq. (28) can be simplified to:

2 (A⊺Ax−A⊺z) = 2

(
L∑

l=1

λlĪl

)

x. (29)

An iterative numerical method can be used to solve Eq. (29).

As in [8] and [27], the Newton–Raphson method is used here.

We define vector v, with unknown variables, as

v =
[

x̂⊺
λ̂
⊺
]⊺

, where λ̂ =
[

λ̂1 . . . λ̂L

]⊺
(30)

and the vector f , whose Euclidean norm must be minimized,

is defined as

f=











∇xξ(x̂)−
L∑

l=1

λ̂l∇xfl(x̂)

f1 (x̂)−K1

...

fL (x̂)−KL











=











2(A⊺Ax̂−A⊺z)−2
L∑

l=1

λ̂lĪlx̂

x̂⊺Ī1x̂
...

x̂⊺ĪLx̂











.

(31)

The iterative process minimizes ||fk|| updating vk at each

iteration k:

vk+1 = vk − J−1(vk)f(vk), (32)

where J(vk) is the Jacobian of f evaluated at vk:

J(vk)=











2(A⊺A−
L∑

l=1

λ̂lĪl) −2Ī1x̂ . . . −2ĪLx̂

2x̂⊺Ī1 0 . . . 0
...

...
...

...

2x̂⊺ĪL 0 . . . 0











. (33)

The initial value v0 can be set with vector x̂ of the un-

constrained LS solution as x̂0, as defined in Eq. (14), and

[λ̂]0 = 0L×1: v0 =
[(

(A⊺A)
−1

A⊺z
)⊺

0
⊺
L×1

]⊺
.1 The

iterative procedure stops when ‖fk‖ < ǫ, where ǫ represents

the algorithm’s tolerance.

2) Simplified Method: If Eq. (26) holds for all l ∈ L (i.e.

||p̄T-TXl|| corresponds exactly to rTXl-T for all l ∈ L), then

it follows that

L∑

l=1

||p̄T-TXl||
2 −

L∑

l=1

r2TXl-T = 0. (34)

We propose a simplified version of the NLCLS (S-NLCLS))

scheme by replacing the L constraints in Eq. (26) with the

following single nonlinear constraint function that guarantees

that f(x) corresponds to Eq. (34)

f(x) = x⊺Īcx = 0, (35)

1We use [λ̂]k to denote the estimated λ̂, Lagrange multiplier vector of the

NLCLS algorithm, at iteration k; and we use [λ̂l]k to represent the estimated

λ̂l, the element of λ̂ in row l, at iteration k.
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where

Īc =

[
INL×NL 0NL×L

0L×NL −IL×L

]

. (36)

In order to use this simplified scheme to estimate the

solution of Eq. (12), we have

∇xξ(x) = λ∇xf(x), (37)

where λ is the Lagrange multiplier. Eq. (37), after some

algebraic manipulation, leads to

2(A⊺Ax−A⊺z) = 2λĪcx. (38)

We also solve Eq. (38), as in Section II-C1, iteratively

using Newton–Raphson method. Similarly, we define the cor-

responding vectors v and f , and the matrix J(vk) as:

v=
[

x̂⊺ λ̂
]⊺

, (39)

f=

[
∇xξ(x̂)−λ∇xf(x̂)

f (x̂)−K

]

=

[
2(A⊺Ax̂−A⊺z)− 2λĪcx̂

x̂⊺Īcx̂

]

, (40)

and

J(vk)=

[
2(A⊺A− λĪc) −2Īcx̂

2x̂⊺Īc 0

]

. (41)

The initial value v0 can be set with x̂0 as defined in Eq. (14),

and [λ]0 = 0: v0 =
[(

(A⊺A)
−1

A⊺z
)⊺

0
]⊺

.2

The NLCLS and S-NLCLS methods are summarized in

Algorithm 1.

The S-NLCLS method has a reduced computational com-

plexity when compared to the NLCLS method. We can see it

when obtaining the matrix Jk (for it has less (L−1) rows and

(L− 1) columns for the S-NLCLS) and vector fk (it has less

(L−1) rows). As a result, Jk and fk require less matrix sums

and multiplications, and vk+1 has significantly less complexity

since it involves the solution of a linear system of equations

(or equivalently a matrix inversion, J−1
k ). Such computations

have a complexity in the order of n3
M , with nM representing

the matrix size.

III. TDOA DATA SELECTION

The aforementioned location methods assume the knowl-

edge of the bistatic range rBml. In practice, this parameter is

estimated, for instance, by using the TDOA measurement from

the signals of each pair RXm–TXl, τ̂ml, to get the bistatic

range estimate r̂Bml , τ̂mlc, where c represents the speed

of light. In some specific cases, due to effects like multipath

propagation or line-of-sight (TX–RX) blocking, TDOA esti-

mations present much higher errors. Those abnormal values

are considered outliers. These outliers may yield inaccurate

target estimations (even for the NLCLS methods); therefore,

they must be detected and removed.

2We use [λ̂]k to represent the estimated λ̂, Lagrange multiplier of the S-
NLCLS algorithm, at iteration k.

Algorithm 1: Nonlinearly constrained least square

methods: NLCLS and S-NLCLS

Result: Estimated target position: p̂T

1 k ← 0;

2 [λ̂]0 ← 0L×1
︸ ︷︷ ︸

NLCLS

or [λ̂]0 ← 0
︸ ︷︷ ︸

S-NLCLS

;

3 x̂0 ← (A⊺A)
−1

A⊺z;

4 v0 ←

[
x̂0

[λ̂]0

]

︸ ︷︷ ︸

NLCLS

or v0 ←

[
x̂0

[λ̂]0

]

︸ ︷︷ ︸

S-NLCLS

;

5 do

6 k = k + 1;

7 Jk=











2(A⊺A−
L∑

l=1

[λ̂l]k Īl) −2Ī1x̂k . . . −2ĪLx̂k

2x̂⊺
k Ī1 0 . . . 0
...

...
...

...

2x̂⊺
k ĪL 0 . . . 0











︸ ︷︷ ︸

NLCLS

or Jk =

[

2(A⊺A− [λ̂]k Īc) −2Īcx̂k

2x̂⊺
k Īc 0

]

︸ ︷︷ ︸

S-NLCLS

;

8 fk =








2(A⊺Ax̂k −A⊺z)− 2
∑L

l=1[λ̂l]k Īlx̂k

x̂
⊺
k Ī1x̂k

...

x̂
⊺
k ĪLx̂k








︸ ︷︷ ︸

NLCLS

or

fk =

[

2(A⊺Ax̂k −A⊺z)− 2[λ̂]kIcx̂k

x̂
⊺
kIcx̂k

]

︸ ︷︷ ︸

S-NLCLS

;

9 vk+1 = vk − J−1
k fk;

10 x̂k+1 ← first (N + 1)L entries of vk+1;

11 [λ̂]k+1 ← last L entries of vk+1
︸ ︷︷ ︸

NLCLS

or

[λ̂]k+1 ← last entry of vk+1
︸ ︷︷ ︸

S-NLCLS

;

12 while ‖fk‖ > ǫ;
13 ˆ̄pT-TX ← first NL entries of vk+1;

14 p̂T = (Ia
⊺Ia)

−1
Ia

⊺ (ˆ̄pT-TX + p̄TX

)
;

A. Proposed Method: A Cuboid-based Search

Inspired by the works in [20] and [21], we propose the

cuboid-based search (CS) method, which starts by dividing

the location region, V ⊂ R
N ,3 into C1 cuboids with di-

mensions d
(1)
x , d

(1)
y , and d

(1)
z .4 Each individual cuboid, c

(1)
i ,

i ∈ C , {1, . . . , C1}, is disjoint and connected with its

neighbor cuboids. Fig. 2 shows an example of a PCL system,

whose TXs and RXs have their positions given in Table I.

3For the forthcoming explanations, we shall consider here the more general
case where N = 3.

4In this method, we use a superscript in parenthesis (s) to denote the first
or second search, s ∈ {1, 2}
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Fig. 2. PCL system with M = 10 RXs and L= 4 TXs. Positions of TXs
and RXs are given in Table I. The location volume V has dimensions (2.2×
2.2× 1.6) km3 and is divided into C1 = 11× 11× 8 = 968 cuboids with

d
(1)
x = d

(1)
y = d

(1)
z = 200 m.

Fig. 3. Cuboids associated with a target location and a single TX-RX pair of
the PCL system of Fig. 2 in the location volume V with dimensions (2.2×
2.2× 1.6) km3: RX7, TX1 and pT =

[

840 −559 1088
]⊺

.

The search region (volume) V , with dimensions (2.2×2.2×
1.6) km3, is split into C1 = 11× 11× 8 = 968 cuboids with

dimensions d
(1)
x = d

(1)
y = d

(1)
z = 200 m.

Each individual cuboid c
(1)
i in V has a specific TDOA

interval associated with each RXm–TXl pair: T
i(1)
ml ,

[

min τml

(

c
(1)
i

)

,max τml

(

c
(1)
i

)]

⊂ R, where τml

(

c
(1)
i

)

⊂

R is the set of all RXm–TXl TDOA nominal values for

target locations in the cuboid c
(1)
i ⊂ V . Geometrically,

min τml

(

c
(1)
i

)

is related to the minimum bistatic range of

the cuboid vertexes min rBml

(

c
(1)
i

)

and max τml

(

c
(1)
i

)

is

related to the maximum value max rBml

(

c
(1)
i

)

. For each

RXm–TXl pair, m ∈M and l ∈ L, a TDOA τml, associated

with a specific target location, pT, belongs to a group of

cuboids that intersect the surface of an ellipsoid with foci

associated with RXm and TXl, and a constant bistatic range

rBml. Fig. 3 shows the cuboids associated with the pair RX7-

TX1 (τ71 = 4.16×10−6 s) corresponding to the target position

pT =
[
840 −559 1088

]⊺
, in meters, and the PCL system in

Fig. 2. The cuboids in Fig. 3 intersect the ellipsoid whose

Algorithm 2: Cuboid-based search

Result: outliers o∈O and selected TDOAs t∈T
1 Q ← V ⊲ initialize the search volume;

2 for all s ∈ S , {1, 2} do

3 Split Q into cuboids of sizes
(

d
(s)
x ,d

(s)
y , d

(s)
z

)

;

4 i ∈Cs,{1, . . ., Cs} ⊲ indexes of new cuboids c
(s)
i ;

5 for all i ∈ Cs do

6 P
(s)
i ←0 ⊲ initialize the counter per c

(s)
i ;

7 end

8 for all m ∈M do

9 for all l ∈ L do

10 for all i ∈ Cs do

11 T
i(s)
ml =

[

min τml

(

c
(s)
i

)

,max τml

(

c
(s)
i

)]

;

12 if τ̂ml ∈ T
i(s)
ml then

13 P
(s)
i ←P

(s)
i +1 ⊲ add the counter;

14 end

15 end

16 end

17 end

18 Ws←

{

argmax
i∈Cs

P
(s)
i

}

⊲ winner cuboid(s)’ index;

19 Q←c
(s)
w , w∈Ws ⊲ new search volume;

20 end

21 pccw ← center of cuboid(s) of c
(2)
w , w ∈ W2;

22 ξ(w)(x)← cost(s) associated with pccw , w ∈ W2;

23 w̄←

{

argmin
w∈W2

ξ(w)(x)

}

24 c
(2)
w̄ ← final winner cuboid;

25 pccw̄ ← centroid of c
(2)
w̄ and location estimation based

on CENTROID-CS method;

26 o∈O,{τ̂ml /∈T
w̄(2)
ml , ∀m∈M, l∈L} ⊲ outliers;

27 t∈T,{τ̂ml∈T
w̄(2)
ml , ∀m∈M, l∈L}⊲ selected TDOAs;

surfaces crosses pT =
[
840 −559 1088

]⊺
m and with foci

in RX7 and TX1 (one single pair).5 Note that the complete

solution in our tested scenario has 40 ellipsoids (coming from

ML pairs of TXs and RXs).

The main principle underlying the CS method is to select

the cuboid(s) that are intersected more times by the ellipsoids

corresponding to the TDOA measurements τ̂ml, for all m ∈M
and l ∈ L. The winner cuboid(s) represents the new search

volume, which will be further split into smaller cuboids of

dimensions d
(2)
x , d

(2)
y , and d

(2)
z , where the TDOA selection is

again performed. This second search gets a fine adjustment

in the final selection. Algorithm 2 summarizes the TDOA

selection process based on the CS method.

In case we have more than one winner cuboid as a result of

the second search, we propose taking each cuboid’s centroid

as possible target locations to compute the cost function ξ(x).
The cuboid associated with the least cost is the final cuboid

5We do not see all cuboids that intercept the complete ellipsoid because
Fig. 2 shows the cuboids in our PCL volume V with dimensions (2.2×2.2×
1.6) km3
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that classifies consistent data and outliers. In any case, the

centroid of the selected cuboid can also be considered the

target location estimate. Therefore, we name this estimate as

CENTROID-CS.

B. Simple Choice Method

The simple choice (SC) method quickly classifies consistent

TDOAs and outliers based on a comparison rule. Initially, we

compute the target location (SI, SX, NLCLS or S-NLCLS

method) considering all TDOAs. Then, this target location

is used to obtain the bistatic range of each RXm–TXl pair,

rBml
, using Eq. (1). An estimate of rBml

can also be obtained

employing the corresponding TDOA measurements: r̂Bml
=

cτ̂ml.

The normalized error of bistatic range for each RXm–TXl
pair is defined as

ηml ,
r̂Bml

− rBml

rBml

. (42)

In case we have an outlier, r̂Bml
will likely be much greater

than rBml
. However, it is only possible when we have a

reasonable initial target estimation with outliers. As we will

see in Section V, it only works properly with few outliers.

In order to determine if τ̂ml is an outlier, a decision rule is

stated as

ηml

τ̂ml∈O

≷
τ̂ml∈T

αSC, (43)

where αSC is the threshold of the SC method. If ηml is greater

than αSC, τ̂ml belongs to the outlier set O. Otherwise, τ̂ml

belongs to the selected set T.

C. Closest Neighbor Method

A closest neighbor (CN) method, as the one proposed

in [25] and [26], discards outliers in an iterative process where

one outlier is detected in each iteration. Initially, the outlier

set O is empty and the selected set T contains all TDOA

measurements.

Subsequently, in each iteration, this method establishes a

list of candidates for most likely outliers. The candidates are

selected from set T, when the normalized error ηml associated

with the RXm–TXl pair follows the rule ηml > mean(ηml)
(this mean value is computed across the elements in the set T).

For each candidate TDOA measurement, we estimate the target

position discarding all TDOAs in O and the candidate itself.

This target position serves to compute the cost function ξ(x).
The candidate associated with the maximum cost is classified

as an outlier; consequently, included in the set O and removed

from the set T.

The iterative process automatically stops, when the normal-

ized errors ηml of all TDOA measurements in the set T follow

the rule ‖ηml‖ < αCN, αCN being the threshold of the CN

method that ensures that there is not a considerable difference

between the bistatic ranges rBml
, computed employing the

estimated target position, and its estimated versions r̂Bml
, from

the TDOA measurements. Algorithm 3 summarizes the TDOA

selection process based on the CN method.

Algorithm 3: Closest Neighbor

Result: outliers o∈O, selected TDOAs t∈T, and

target location p̂T

1 O ← ∅ and T← {τ̂ml, ∀m∈M, l∈L};
2 Estimate p̂T;

3 Compute ηml as in Eq. (42) for all τml ∈ T;

4 while any ‖ηml‖ > αCN do

5 g∈G, {̂τml∈T|ηml > mean(ηml)} ⊲ candidate

outliers;

6 for all τ̂ml ∈ G do

7 p̂
(ml)
T ← estimated p̂T discarding O and τ̂ml;

8 ξ(ml)(x)← cost associated with p̂
(ml)
T ;

9 end

10 Add τ̂ml associated with max
[
ξ(ml)(x)

]
to O;

11 Exclude τ̂ml associated with max
[
ξ(ml)(x)

]
from

T;

12 Compute ηml as in Eq. (42) for all τ̂ml ∈ T;

13 Estimate p̂T discarding τ̂ml ∈ O;

14 end

IV. TARGET LOCATION DISCARDING OUTLIERS

PCL algorithms need a proper TDOA selection to attain

good accuracy. Therefore, the target estimation algorithms

do not use the data associated with TDOA measurements

that belong to the outlier set O. Consequently, we have the

following modifications:

1) In each matrix P̄RX-TXl, l ∈ L, which is part of matrix

PRX-TX, remove the rows p̄
⊺
RXm-TXl whose TX/RX pairs

are associated with indexes in O.

2) In each vector rl, which is part of matrix R, remove the

rows rml associated with o ∈ O.

3) In each vector zl, l ∈ L, which is part of vector z, remove

the rows associated with o ∈ O.

4) For each TXl, l ∈ L, verify the amount of selected τ̂ml,

τ̂ml /∈ O: M•
l (not considering the outliers).

5) In case M•
l < N + 1 for SI, NLCLS and S-NLCLS, or

M•
l < N for SX, l ∈ L, remove the columns associated

with matrix P̄RX-TXl in PRX-TX, remove the column l
in matrix R and remove the rows associated with zl in

z.

The PCL algorithms investigated herein (SX, SI, NLCLS

and S-NLCLS) use the modified versions of vector z and

matrices PRX-TX and R to compute the target location. This

solution (that does not take into consideration the outliers in

O) can only be obtained when there exists at least one l ∈ L
for which M•

l ≥ N + 1 for SI, NLCLS and S-NLCLS, or

M•
l ≥ N for SX. Otherwise, the solution is incomplete, and

the estimation computation uses all TDOAs.

V. EXPERIMENTAL RESULTS

A. Simulation Scenario

We assessed the PCL algorithms and the TDOA selection

techniques in the simulated 3D PCL scenario of Fig. 2, con-

sidering Np=75 theoretical target locations. Vector pT(np)=[
xT(np) yT(np) xT(np)

]⊺
, np ∈ P , {1, 2, . . . , Np},
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(a) (b) (c)

Fig. 4. Target location estimations in the PCL system of Fig. 2 without outliers. Transmitters in blue, receivers in black, theoretical target
positions in red, and estimated target positions in grey. (a) SI method, (b) SX method, and (c) NLCLS method.

TABLE I
POSITIONS OF TXS AND RXS OF THE PCL SYSTEM SHOWN IN FIGURE 2

RX1 RX2 RX3 RX4 RX5 RX6 RX7 RX8 RX9 RX10 TX1 TX2 TX3 TX4
x(m) 1000 901 623 -623 -1000 -901 -623 -223 223 623 223 -223 -901 901

y(m) 0 434 782 782 0 -434 -782 -975 -975 -782 975 975 434 -434

z(m) 139 800 712 247 938 805 502 932 942 195 947 979 947 177

represents the np-th target location. The Np = 75 theoretical

target locations corresponds to all combinations of xT(np),
yT(np), and zT(np) taken from:

• xT(np)∈X ,{−1025,−525,−25, 475, 975} m,

• yT(np)∈Y,{−1020,−520,−20, 480, 980} m, and

• zT(np)∈Z,{330, 731.5, 1133} m.

To evaluate the behavior of the proposed methods, we

executed Nr=100 independent runs on each of the Np=75
theoretical target positions. As a result, a numerical assessment

was performed on each target position using the root mean

square error (RMSE):

RMSE(np) =

√
√
√
√ 1

Nr

Nr∑

k=1

∥
∥
∥pT(np)− p̂

(k)
T (np)

∥
∥
∥

2

, (44)

where p̂
(k)
T (np) is the k-th estimate of pT(np). In the com-

putation of RMSE(np), we considered 95% of the closest

estimations of the theoretical target location pT(np). The

global RMSE, which evaluates the location estimates in all

theoretical target positions, is defined as

RMSEG =

√
√
√
√

1

Np

Np∑

np=1

[RMSE(np)]
2
. (45)

These RMSE values represent accuracy indicators in the

location estimation. Firstly, we tested the proposed location

algorithms in simulated scenarios with TDOAs and considered

no outliers. Subsequently, we included corrupted TDOAs in

our PCL scenario to apply data selection for removing outliers

before computing the target location.

B. Location Algorithm Evaluation

Each theoretical target position pT(np), np ∈ P , has ML
associated theoretical TDOAs τml, m ∈ M and l ∈ L. We

artificially disturbed each τml by adding Gaussian noise with

zero mean and standard–deviation equivalent to στ = 1%
of the same τml. These artificial disturbances emulated the

background noise present in TDOA measurements τml due

to sensor and signal impairments. The applied TDOA distur-

bances depend on bistatic range distances. The authors in [28]

proved that the TDOA background noise varies according to

source-to-sensor distances in a more realistic TDOA-based

source location scenario.

We evaluated the location algorithms, described in Sec-

tion II, using the TDOA measurements τ̂ml of all RX–TX

pairs and considered no outliers. Fig. 4 shows the location

estimates of the 75 theoretical target positions using methods

SI, SX, and NLCLS. We omitted the S-NLCLS results, for

they were virtually the same of the NLCLS algorithm. In all

our experiments, the Newton method, in the same way as

in [8], converged in a few iterations for both the S-NLCLS

and NLCLS algorithms. The convergence was achieved in no

more than ten iterations.

As seen in Fig. 4c, the NLCLS method presents smaller

and less spread regions around the theoretical target positions,

confirming that this method compensates SI estimations and

reduces the impact of TDOA measurement errors. On the

other hand, the SX method shows more prominent and elon-

gated regions around the theoretical target positions, especially

outside the convex hull associated with the locations of TXs

and RXs. The global RMSE values of the SI, SX, S-NLCLS,

and NLCLS methods were 17.65, 30.82, 14.31, and 14.14 m,

respectively.

C. Location Algorithm Evaluation with Data Selection

In the following, we emulated outliers usually present in

TDOA measurements due to effects such as lack of line-of-

sigh (TX-RX) or multipath propagation. Then, based on a de-

fined probability of occurrence Poutlier, a uniformly-distributed

random variable (representing the outlier), distributed between

50% and 100% of τml, was added to each nominal τml,

m ∈ M and l ∈ L. In this case, the nominal τml with the

added uniform variable and the previously added Gaussian

variable generated the measurement τ̂ml. We also carried out

Nr = 100 independent runs for each of the 75 theoretical

target positions, considering TDOA measurements with both

background noise and outliers at different levels of probability
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TABLE II
TOTAL RMSEG (IN BLUE) FOR TARGET LOCATION WITH TDOA SELECTION TECHNIQUE: CUBOID-BASED SEARCH (CS), WHERE d1 , d2 AND RMSEG

ARE GIVEN IN meters. OUTLIERS EVALUATED AT DIFFERENT PROBABILITIES OF OCCURRENCE, Poutlier ∈ PO .

d1 366.7 275.0 275.0 220.0 220.0 200.0 200.0 200.0 200.0 200.0 100.0 100.0 50.0 50.0

d2 183.3 137.5 68.8 110.0 73.3 100.0 66.7 50.0 40.0 25.0 50.0 33.3 25.0 16.7

SI-CS RMSEG 138.4 98.3 108.4 77.4 92.6 72.3 80.4 97.3 122.8 173.4 42.9 44.7 34.5 38.8

S-NLCLS-CS RMSEG 106.3 72.3 74.1 56.1 59.3 52.9 52.1 59.1 69.7 91.8 27.5 27.6 21.1 20.8

NLCLS-CS RMSEG 101.6 69.5 72.7 54.1 56.9 51.4 50.6 57.8 68.6 91.3 25.7 25.4 19.0 19.0

CENTROID-CS RMSEG 206.8 148.2 123.3 117.1 101.9 105.3 89.8 78.1 79.8 77.7 29.9 31.0 21.7 14.6

(a) (b) (c)

Fig. 5. Target location estimations with TDOA selection in the PCL system of Fig. 2 with outliers. Transmitters in blue, receivers in black,
theoretical target positions in red, and estimated target positions in grey. Poutlier=0.3. (a) NLCLS-CN method: αCN = 0.15, (b) NLCLS-CS
method: d1 = 100 m and d2 = 50 m, and (c) CENTROID-CS: d1 = 100 m and d2 = 50 m.

TABLE III
PCL LOCATION ALGORITHMS WHEN APPLYING TDOA DATA SELECTION

PCL location
algorithms

TDOA
selection technique

Location algorithms
with data selection

Spherical

Interpolation

(SI)

Simple Comparison (SC)

Closest Neighbor (CN)

Cuboid-Search (CS)

SI-SC

SI-CN

SI-CS

Spherical

Intersection

(SX)

Simple Comparison (SC)

Closest Neighbor (CN)

Cuboid-Search (CS)

SX-SC

SX-CN

SX-CS

Nonlinearly

Constrained Least

Square (NLCLS)

Simple Comparison (SC)

Closest Neighbor (CN)

Cuboid-Search (CS)

NLCLS-SC

NLCLS-CN

NLCLS-CS

Simplified

NLCLS

(S-NLCLS)

Simple Comparison (SC)

Closest Neighbor (CN)

Cuboid-Search (CS)

S-NLCLS-SC

S-NLCLS-CN

S-NLCLS-CS

of occurrence, Poutlier ∈ PO , {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. In

our experiments, we applied the TDOA selection techniques

for the SI, S-NLCLS, and NLCLS algorithms, as seen in

Table III. These methods showed better accuracy than the SX

in the 3D PCL scenario depicted in Fig. 4.

To find the best threshold values for methods CN and SC,

we carried out individual experiments, varying the thresholds

between 0 and 0.7 and looking at the global RMSE. The des-

ignated thresholds are associated with the minimum RMSEG

value. The selected thresholds using NLCLS were αSC=0.05
and αCN = 0.15. The associated total RMSEG values were

173.56 m and 57.92 m, respectively, for NLCLS-SC and

NLCLS-CN. On the other hand, using the SC and CN TDOA

selection techniques with the S-NLCLS algorithm, the selected

thresholds were αSC = αCN = 0.1. S-NLCLS-SC obtained

RMSEG = 193.22 m. SI-CN obtained RMSEG = 89.98 m.

Finally, using the SC and the CN techniques with the SI

algorithm, the selected thresholds were αSC = 0.05 and

αCN = 0.35. SI-SC obtained RMSEG = 515.10 m. SI-CN

obtained RMSEG=256.06 m.

When applying the CS selection procedure, our simulations

used cuboids with equal sizes: d1 = d
(1)
x = d

(1)
y = d

(1)
z for

the bigger cuboids and d2 = d
(2)
x = d

(2)
y = d

(2)
z for the

smaller cuboids. Table II shows the results of total RMSEG

of different cuboid sizes for SI-CS, S-NLCLS-CS, NLCLS-

CS, and CENTROID-CS. We also tested the mentioned CS

procedures at different levels of probability of occurrence,

Poutlier ∈ PO.

The cuboid sizes are of paramount importance in the final

performance. The bigger cuboids select the region where the

target is located, and the smaller cuboids perform the fine

adjustment and the final TDOA selection. In Table II, we

see that NLCLS-CS has better RMSEG results than all S-

NLCLS-CS, SI-CS results, and most CENTROID-CS results.

CENTROID-CS also gets good results, especially when re-

ducing d1 and d2. One of the issues of reducing the cuboid

sizes too much is that the processing load increases. Therefore,

a good balance between RMSEG and processing load is

necessary for practical implementations. For our PCL system,

we consider suitable cuboid sizes d1=100 m and d2=50 m.

Their associated RMSEG values were 42.9, 27.5, 25.7, and

29.9 m, respectively, for SI-CS, NLCLS-CS, NLCLS-CS, and

CENTROID-CS.

Fig. 5 shows target estimates in the 75 theoretical target

points of the PCL system of Fig. 2, considering Poutlier = 0.3.

Fig. 5a, Fig. 5b, and Fig. 5c show, respectively, the target

estimates for NLCLS-CN when αCN = 0.15, NLCLS-CS

when d1 = 100 and d2 = 50 m, and CENTROID-CS when

d1 = 100 and d2 = 50 m. The associated RMSEG values

were 23.05, 20.07, and 26.19 m for NLCLS-CN, NLCLS-CS,

and CENTROID-CS.

Fig. 6 shows different RMSEG vs. Poutlier plots to analyze
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Fig. 6. RMSEG vs. Probability of outlier (a) NLCLS, NLCLS-CS, NLCLS-CN and NLCLS-SC, (b) S-NLCLS, S-NLCLS-CS, S-NLCLS-CN
and S-NLCLS-SC, (c) SI, SI-CS, SI-CN and SI-SC, and (d) CENTROID-CS.
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Fig. 7. TPR vs. Poutlier (a) NLCLS-CN and NLCLS-SC, (b) S-NLCLS-CN and S-NLCLS-SC, (c) SI-CN and SI-SC, and (d) CS.
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Fig. 8. FPR vs. Poutlier (a) NLCLS-CN and NLCLS-SC, (b) S-NLCLS-CN and S-NLCLS-SC, (c) SI-CN and SI-SC, and (d) CS.

the techniques’ accuracy in overcoming outliers at different

probabilities of occurrence. Fig. 6a shows the plots for NL-

CLS, NLCLS-SC (αSC = 0.05), NLCLS-CN (αCN = 0.15),

and NLCLS-CS (d1 = 100 and d2 = 50 m). Fig. 6b shows

the plots of RMSEG vs. Poutlier for S-NLCLS, S-NLCLS-

SC (αSC = 0.1), S-NLCLS-CN (αCN = 0.1), and SI-CS

(d1 = 100 and d2 = 50 m). Fig. 6c shows the plots of RMSEG

vs. Poutlier for SI, SI-SC (αSC = 0.05), SI-CN (αCN = 0.35),

and SI-CS (d1 = 100 and d2 = 50 m).

We see, in Fig. 6a, that NLCLS-CS best mitigated the

effect of outliers and reduced RMSEG. For example, in high

Poutlier values of 0.4 and 0.5, the associated RMSEG were,

respectively, 25.17 and 47.15 m. On the other hand, NLCLS-

CN effectively overcame (considering RMSEG ≤ 50 m as

good accuracy) the outlier presence when Poutlier ≤ 0.41.

Considering the same accuracy level as NLCLS cases, we

can see, in Fig. 6b , that S-NLCLS-CN and S-NLCLS-CS

effectively mitigated the outlier presence, respectively, when

Poutlier ≤ 0.34 and Poutlier ≤ 0.50. As seen in Fig. 6c, SI-CN

and SI-CS overcame the outlier presence, respectively, when

Poutlier ≤ 0.24 and Poutlier ≤ 0.42. NLCLS-SC, S-NLCLS-

SC, and SI-SC only reduced the outlier effect compared,

respectively, to NLCLS, S-NLCLS, and SI. However, it was

not possible to get good accuracy.

Fig. 6d shows the plots of RMSEG vs. Poutlier for

CENTROID-CS. We have 3 cases of (d1, d2): (200, 100),
(100, 50), and (50, 16.7) m. With cuboid sizes of (50, 16.7) m,

we obtained the best accuracy (RMSEG ≤ 18.14 m). How-

ever, because of its high number of comparisons (61952 per

TX-RX pair in the first search and at least 8 per TX-RX pair

in the second search) due to the small cuboid sizes (comparing

with our tested location region V as seen in Fig. 2), it requires

a high processing load. With cuboid sizes of (100, 50) m,

we also obtained good accuracy RMSEG ≤ 50 m using less

comparisons (7744 per TX-RX pair in the first search and at

least 8 per TX-RX pair in the second pair) and less processing.

We also corroborate RMSEG results with two crucial indi-

cators:

• True positive rate (TPR) represents the probability that

the TDOA is considered as an outlier when it indeed is

an outlier.

• False positive rate (FPR) constitutes the probability that

the TDOA is considered an outlier when it is not an

outlier.
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Fig. 7 shows TPR vs. Poutlier plots associated with RMSEG

results of Fig. 6. Fig. 8 shows FPR vs. Poutlier plots associated

with RMSEG results of Fig. 6. Generally, good RMSEG

results are associated with high TPR and low FPR rates.

However, TPR rates have a higher incidence in the final

location estimation accuracy. It means that the presence of

an outlier in the target location estimation has a hig her

interference than the absence of few consistent data. We can

see it in the CENTROID-CS case with d1 = 50 and d2 = 16.7:

RMSEG < 18.14 m. It had an associated TPR> 0.996 and

almost constant FPR≈ 0.14.

Based on our numerical results in the simulated PCL sce-

nario, cuboid-based methods (NLCLS-CS, S-NLCLS-CS, SI-

CS, and CENTROID-CS) overcame the outlier effects better

than CN and SC. The effectiveness was demonstrated with

lower RMSEG values, higher TPR rates, and lower FPR rates.

Outlier selection in these CS methods does not depend on

the location algorithm. The applied location methods helped

us obtain better accuracy in the final location estimation.

Consequently, NLCLS-CS got better results than S-NLCLS-

CS and SI-CS. On the other hand, CENTROID-CS directly ob-

tained reasonable estimates representing the selected cuboid’s

centroid.

Conversely, CN methods depend on the applied location

algorithms in the outlier selection procedure. Consequently,

NLCLS-CN obtained better results. Generally, CN meth-

ods had good results; however, when increasing the Poutlier

(Poutlier > 0.24 for SI-CN, Poutlier > 0.34 for S-NLCLS-

CN, and Poutlier > 0.41 for NLCLS-CN), we can see a

decrease of TPR, a rapid increase of FPR, and consequently

a considerable decrease of RMSEG. Finally, SC methods

(NLCLS-SC, S-NLCLS-SC, and SI-SC) are simpler and have

lower processing load (one simple comparison) than the other

methods; however, they have lower accuracy. They could be

useful only in case Poutlier was low (Poutlier < 0.05).

VI. CONCLUSION

Modern PCL environments using advanced radio networks,

such as massive MIMO 5G NR with millimetric waves, require

scenarios with multiple TXs/RXs. We started this work by for-

mulating the SI, SX, and NLCLS algorithms that use TDOAs

associated with multiple TXs/RXs systems. The authors in

[7] and [8] introduced these algorithms for environments with

multiple–TXs/one–RX and multiple–RXs/one–TX.

Location techniques based on electromagnetic radio waves

can suffer effects like multipath propagation and shadow

fading. Those effects corrupt TDOA measurements yielding

considerable errors in the estimation of the target position.

This paper showed that applying TDOA selection techniques

improves the accuracy of the target location. Numerical exper-

iments also corroborated that high TPR and low FPR rates in

the outliers’ detection task lead to good accuracy in the final

estimation.

The best-performing proposed selection technique (CS) di-

vides the location region into cuboids and discards the TDOAs

measurements whose associated bistatic ranges are outside

the cuboid that most likely contains consistent TDOAs. The

center of the selected cuboid is considered another location

estimation (CENTROID-CS). A significant contribution is

that CENTROID-CS estimation does not add computational

load considering that it is part of the original selection

process. In the tested PCL scenario, NLCLS-CS, S-NLCLS-

CS and CENTROID-CS showed to be effective in all cases

(Poutlier ≤ 0.5). SI-CS was effective when Poutlier ≤ 0.42.

The recommended cuboid sizes, considering the environment

of interest and the processing load, were d1 = 100 m and

d2 = 50 m.

On the other hand, CN excludes outliers using an iterative

process that compares the cost functions of some candidates.

This process resulted to be effective until a specific boundary:

Poutlier ≤ 0.24 for SI-CN, Poutlier ≤ 0.34 for S-NLCLS-CN,

and Poutlier ≤ 0.41 for NLCLS-CN. Finally, the SC method

quickly detects outliers based on a simple comparison rule.

However, this method resulted to be effective only when a

few outliers were present (Poutlier ≤ 0.05).
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