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Abstract—This paper outlines a new approach to detect
anomalies in hyperspectral images based on peripheral pixels.
The proposed methodology contains two main steps. First, a
new distance score is introduced based on the sigmoid function
and root mean square error (RMSE). We estimate how likely
the target pixel is an anomaly by averaging the new metric
over its neighboring window. Second, a state-of-the-art method
is applied to eliminate unacceptable objects according to their
size. In this light, the objects whose size is out of an acceptable
interval are removed. Comprehensive experimental evaluations
have been conducted to confirm that the proposed method
significantly outperforms several recent algorithms in accuracy
and computational time.

Index Terms—Anomaly detection, hyperspectral image, object
area filtering

I. INTRODUCTION

YPERSPECTRAL remote sensing (HRS) is a burgeon-

ing, multidisciplinary field with wide applications. In
the HRS, each pixel represents a vector of spectral responses
across the electromagnetic spectrum [1, 2]. Various research
disciplines benefit from these sensors such as geology, hy-
drology, urban planning, geography, cadastral mapping, car-
tography, and military [3]. Mainly, two types of applications
are prevalent: anomaly classification and anomaly detection
[4]. In the latter, the goal is to recognize a distinction that
differentiates uncommon observations, such as human-made
objects. Here, there is a significant difference between the
spectral signatures of anomalies and the natural background
materials [5]. Different objects may be considered an anomaly,
such as species in agriculture and ecology, rare animals in
geology, ships in a sea background, or planes in an airport
[6, 7]. Traditionally, anomaly detection is divided into super-
vised and unsupervised, where unsupervised algorithms often
employ statical techniques. For example, Reed-Xiaoli (RX) is
an unsupervised algorithm for hyperspectral imaging (HSI)
based on a sample correlation matrix to detect anomalies
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using both a full hyperspectral image, known as global RX
(GRX), or a single local sliding window centered around
each image pixel, known as local RX (LRX) [8, 9]. There
are many improved methods based on RX, such as The
Gaussian Mixture Model Method (GMMM) [10]. The GMMM
uses a combination of multivariate Gaussian distributions to
model the background statistical information. Reference [11]
presents a method of anomaly detection for HSI via global and
local joint modeling of the background. Another approach to
anomaly detection for HSI is the local joint subspace process
and support vector machine (SVM) in three consecutive steps:
1) a local joint subspace process, 2) improving detection
using SVM, and 3) extracting final anomalies [12]. Another
study uses background joint sparse representation (BJSR) for
HSI anomaly detection [13]. Reference [14] is developed as
a method for HSI anomaly detection using a background-
anomaly component projection and separation optimized filter
(BASO).

Lately, tensor decomposition has been proposed for anomaly
detection [!5]. Consecutively, another method is proposed
based on a local filtering operation, called attribute and edge-
preserving (AED) [16]. AED with multiscale attribute and
edge-preserving filters is also presented in [I17]. Reference
[18] introduces random-selection-based anomaly detection
(RSAD). First, it selects a proper subset of background pixels.
Then, it uses blocked adaptive computationally efficient outlier
nominators to detect anomalies. Finally, a fusion procedure is
employed to avoid contamination of the background statistics.

Comparably, deep learning is also gaining significant at-
tention in HSI. For instance, the convolutional neural net-
works (CNN) are applied for HSI anomaly classification,
and detection in [19]. Reference [20] is a novel example of
their application to anomaly detection in HSI. However, there
are still significant challenges for CNNs in processing high-
dimensional information contained in multidimensional data
cubes, although they show excellent performance on various
visual tasks [21, 22]. In particular, they need vastly time-
consuming training and a training dataset. Furthermore, they
might not apply to data gathered from a different sensor, i.e.,
the network might not adapt to a new domain.

Here, we propose an anomaly detection strategy based on
pixel pairs root mean square error (PPRMSE) and object area
filtering (OAF). The main contributions are as follows:

o First, a dual structure window is used through the picture
to compute the similarity of the central pixel in the
window with peripheral pixels by applying root mean
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Fig. 1: Flowchart of the proposed approach steps

square error on each pair of pixels, and then the average
of similarity in the window is calculated.

« Next, object area filtering is applied to get a binary image
with omitted undesirable objects regarding their area
size. Finally, the final result is calculated by multiplying
the PPRMSE result and OAF output. This approach
outperforms current methods in terms of accuracy and
time.

This paper is organized into four Sections. In Section II,
the details of the newly-developed method are explained.
This section contains different subsections, each presenting a
critical step of the proposed method. In Section III, a practical
dataset is applied to evaluate the proposed method. Then,
the result is compared with the most recent state-of-the-art
algorithms. Finally, the conclusion is presented in Section IV.

II. PROPOSED APPROACH

A hyperspectral image is a data cube that contains both
the spatial and spectral information of a sample. In the
hyperspectral cube, the first two dimensions (x and y axes)
are spatial, while the third dimension (z axis) is wavelength
or spectral. The proposed method uses a pixel-wise process.
That is, a pixel is used in the form of 1 x 1 x L, where L is the
number of spectral bands. Principally, the proposed approach
can be divided into four steps given in Fig. 1:

1) calculating the similarity between the target pixel and its
neighboring pixels in a dual structure window using pixel
pairs root mean square error (PPRMSE),

2) calculating the average similarity between the central
pixel in the window and its neighbors,

3) applying object area filtering to eliminate unacceptable
objects,

4) generating the final result by multiplying the results of
steps (2) and (3).

Each step is further detailed in the following sections:

A. Similarity Calculation of the Current Pixel

In the HSI, each pixel in the form of 1 x 1 x C can be
considered as a discrete signal. The similarity of two pixels
in a hyperspectral dataset can simply be calculated through
signal cross-correlation, or equivalently Euclidean distance. In
this paper, the pixel pair root mean square error (PPRMSE) is

used to find the similarity score of two pixels. Consider the
two pixels d = [dy, ...,dz]T and u = [uy,...,ur]T. Then, we
have

1., 2
PPRMSE = ||d — ul|s= ZEizl(diqu. )

where d; and wu; refer to value of i-th index of current
and neighboring pixels, and ||.||2 denotes Euclidean distance,
respectively. Then, the PPRMSE value is given to a sigmoid
function to map it into the [0, 1]-interval, where the sigmoid
function is defined by:

1

Strictly speaking, we define a new metric on R, named as
sigmoid metric or distance. In this light, the distance between
two vectors x,y € R is defined as

do(x,y) :=o([[x = yll2). (©)
We observe that (R”, d,(.)) is indeed a metric space through
following Lemma.

Lemma IL1. The function d,(.,.) defined in (3) is a metric
for the set RE.

Proof. Three proposition should be verified for all x,y,z €
RE: D dU(X,Y) =0 <= x=vy,2 da(xvy) = dcr(yax)v
and 3) dy(x,y) < do(x,2) + dy(2,y). The first two are
straightforward. We prove the last by noting that o(z) is an
increasing concave function for x > 0. Because of concavitity
it is also sub-additive, i.e., o(z+y) < o(z)+o(y),Va,y > 0.
Therefore, we have

do(x,y) = o([[x = yll2)
<o(llx—zll2 + |z - yll2) @
<o(llx—zll2) +o(|z - yll2)
=dy(x,2) + dy(z,y)

where we also used sub-additivity for ||.||2- O

The objects in a picture are determined by employing the
newly-defined metric between the two pixels. In particular,
two main operations are performed here. First, a dual window
structure, given Fig. 2, is run through the picture. Then, the
sigma distance of central pixel, denoted by D, with neighbors
are calculated using (3).
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Fig. 2: The left depicts a (wiy, Wout) = (5,7) window while
right shows a (1, 7) window, d; to d are the peripheral pixels
which their similarity with D is of interest
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Fig. 3: The masks and the neighborhood of pixel d. used in
OAF algorithm

B. Mean Distance Score

In this step, we compute the average sigmoid metric be-
tween the central pixel of the window, D, and the pixels
between the two square windows, known as peripheral pixels.
In this regard, the notation (w;,,, wy:) specifies a windowing
structure with odd edge lengths w;, and w,,; for the inner
and outer windows, respectively. For example, (3, 9) indicates
a square of length 3 surrounded by a square of length 9. The
number of D peripheral pixels is calculated as below:

N = (w(Q)ut - wz2n) 4)
Therefore, the distance score between each peripheral pixel
and generic pixel D is calculated and collected into the
vector sg = [s1, 82, ..., sn| 7. The final score is generated by
averaging these scores over peripheral pixels:

1

M(D) = 525 s (©)

This method is applied for each pixel in the image by using

the same window. In this regard, M (D) can be defined as
the membership of the pixel, D, to its corresponding object,
which is a real number ranging between zero and one. This
number has a higher value in the central pixels of an object
than other pixels. Here, M denotes the resulting image, known
as the membership map.

C. Object Area Filtering

The main goal of this step is to find connected components
and then calculate their areas. For this purpose, a binary
image is applied instead of a membership map. As a result, a
binary map of objects is generated by applying thresholding

Algorithm 1: Forward Scan Masking

Input: A binary image, M
Result: Connected components of the image given by
labels

Initialize labels to a all zero matrix with the same
dimensions as M;

Initialize uf as an instance of U Farray;
for (x,y) in M do
if M(x,y) is 1 then
| do nothing
if y >0 and M(x,y-1) is O then
| labels[(z,y)] = labels|(z,y — 1)]
if x+1 <width and y >0 and M(x+1,y-1) is O then
c = labels[(z + 1,y — 1)]
labels[z,y] = ¢
if x >0 and M(x-1,y-1) is O then
a = labels[(x — 1,y — 1)]
uf.union(c,a)
if x >0 and M(x-1,y) is O then
d = labels|(z — 1,y)]
uf.union(c, d)
if x >0 and y >0 and M(x-1,y-1) is O then
| labels|z,y] = labels[(x — 1,y — 1)]
if x >0 and M(x-1,y) then
| labels[z,y] = labels|[(z — 1,y)]

else
| labels[z,y] = uf.makeLabel()

on the membership map. Then, a predefined threshold, 7, is
compared to M (D). The differentiate between M (D) and T
defines which pixel is an anomaly pixel. The pixel D is more
likely to be an anomaly pixel; if M (D) is higher than T'; oth-
erwise, it is a background pixel. Next, non-anomaly objects are
omitted by object area filtering (OAF). This method is a two-
pass algorithm inspired by the connected component filtering
given in [23]. The 8-connected neighborhood is depicted in
Fig. 3, backward and forward scan masks are used in this
method.

In this approach, a union-find data structure (UFDS) is
employed after the initial scan to record identical information
between provisional labels. Here, we implement the UFDS
through a makeLabel and union functions. In this light, a
new label is created by the makeLabel function for each new
node. Then, every two nodes with equal labels are unified by
the union function. A UFDS can be seen hypothetically as a
rooted tree, where each node of the tree is a temporary label,
and each edge represents the equivalence between two labels.
The two passes of UFDS are detailed as below:

1) Forward Scan Masking: This phase gets a binary version
of the image as input and gives connected components as its
output. The objects in the detected image, and d.. is the current
pixel with dy, do, d3 and d, as its neighbors. Two types of
pixels exist: 1 and 0. During the scanning, we ignore zero
pixels that are part of the background. Any pixel that lies
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Fig. 4: Here are the test data images. The first column contains color composites images, and the second column shows ground
truth, and the rest of the columns show the result of different methods

outside the image’s bounds is one by default. As a result, six
states exist during forward scan masking (FSM):

1. If pixel d. is equal to one, then it is not a component.
As a result, we ignore it.

2. If pixel do is part of the image and equal to zero, di,
ds and d4 are all member of the same component as
neighbors. Therefore, we assign do’s label to d..

3. If pixel d3 is part of the image and equal to zero, and ds
is one of its neighbor, but not d; and dy, then:

« If pixel d; is part of the image and equal to zero, there
is a connection between d; and d3 through d.. As a
result, the union is considered for their sets.

o If pixel d4 is part of the image and equal to zero, there
is a connection between d4 and ds through d.. As a
result, the union is considered for their sets.

4. If pixel d; is part of the image and equal to zero, and
already it is clear that dy and dg are one, d4 and dy are
neighbors, so both of them own the same label. Therefore,
dy’s label will be assigned to d..

5. If pixel d4 is part of the image and equal to zero, and
already it is clear that d;, d> and d3 are one. Therefore,
dy’s label will be assigned to d..

6. Otherwise, any neighboring pixels is one. As result d,
pixel is a new component.

To simplify implementation, we bring the involved steps
in FSM Algorithm 1:

2) Component Size Classification: Here, the labels matrix
produced by the previous part is used to calculate the size
of each component. Then, the connected components are
classified based on their area. Acceptable anomaly area range
(AARR) is defined as the interval where the anomalies’ area
lies. Each object with a size out of this range of anomalies is
removed. In this light, the anomalies are filtered, and a binary
map, denoted by @, is produced. The pseudo-code for this
pass is given in Algorithm 2.

D. Generating Final result

The final result is generated by multiplying the membership
map and the output of OAF:
Q x M. @)
Here, the multiplication is pixel-wise and the output is the
final result of our proposed method.

output =

III. NUMERICAL EXPERIMENTATION

The proposed approach is evaluated in terms of process
time and accuracy. It is compared with six well-known al-
gorithms. The benchmark algorithms are CNND [20], BASO
[14], LAD [24], RX [8], KRX [9], and CKRX [25]. All
mentioned benchmarks are grouped into recent approaches
to hyperspectral image anomaly detection and established
traditional benchmarks. A personal Core-i5 computer with 8
Gbytes RAM is used for all simulations. Matlab 2016 is used
for BASO, LAD, RX, LRX, and CKRX, which is their original
language. The Keras of the TensorFlow libraries in Python
is used for CNND implementation. The parameters for all
algorithms are selected as the corresponding paper suggested
to insure that all algorithms work on their best capacity. The
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is
used [26] as the dataset for evaluation.

A. Test Data Sets

Four AVIRIS dataset spectrometer images are used for
testing purposes. The size of all images is 100 x 100 except for
image (c), which is 150 x 150. The AVIRIS uses a second-
generation remote sensing instrument to gather its data. An
opto-mechanical line arrays of detectors captures a 550-pixel
swath in 224-bands ranging from 0.4 to 2.4 microns. The used
images are depicted in Fig. 4 and briefly explained bellow:

« Image (a): an image captured from Gulfport airport scene
with 3.4 m resolution.
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Fig. 5: ROC of proposed algorithm and different benchmarks
when operating on image (a)

« Image (b): image captured from San Diego airport scene
with unknown resolution.

o Image (c): image captured from Cat Island beach scene
with 17.2m resolution.

« Image (d): image captured from Texas Coast urban scene
with 17.2m resolution.

B. Parameter Tuning

During prediction, three main parameters are involved that
should be carefully tuned: window sizes, a threshold for
constructing the binary image, and the AARR. In this regard,
the following remarks should be noted:

« Two type of window shapes are used in this method: the
single and dual. In the single window, the distance score
of the center pixel and its neighbors is calculated using
sigmoid metric. This score is only calculated between the
center pixel and the pixels between the inner and exterior

Algorithm 2: Component Size Classification

Input: labels
Result: (), a matrix with the same size as original
image, where each pixel represents the size of
the component it blongs to
Initialize @ to an all zero matrix with same size as
labels;
for label in labels do
| ComponentSize(label) = 0
for x,y in labels do
ComponentSize(labels|(x,y)]) =
ComponentSize(labels|(z,y)]) + 1
for x,y in labels do
if ComponentSize(labels[(x,y)]) is in AARR then
‘ Q(ﬂ?, y) =1
else

| Qz,y) =0
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Fig. 6: ROC of proposed algorithm and different benchmarks
when operating on image (b)

windows in the dual window. It is worth noting that
different sizes of windows bring different performances
for the proposed method.

¢ A good binary image for the OAF requires the best
possible threshold value. This value is vital for this
method because the binary image has a huge influence
on the final result.

C. Detection Performance

The receiver operating characteristic (ROC) [27] and area
under the curve (AUC) [28] are used to evaluate and illustrate
the performance. In this regard, the experimental results of the
proposed and benchmark strategies are compared by ROC.
Moreover, AUC is used to summarize the performance as
a single number, where better performance corresponds to
larger value. The ROC figures reveal that the proposed method
outperforms other methods in terms of accuracy as depicted
in Figs. 5, to 8 for images (a) to (d), respectively.

Furthermore, we evaluate the proposed method in various
scenarios. They include varing window sizes and presence or
absence of the OAF. First, the impact of different window sizes
on the AUC, when OAF is present, is reported in Table I for
all images. Table II reports the same parameters when OAF
is absent. Bold text indicates the best accuracy in each Table.
According to Table IIl(a), the proposed approach shows the
highest AUC numbers across all images. The results in Table
ITI(b) confirms that the proposed method consumes less time
compared to some of the state-of-the-art benchmarks, such as
CNND, KRX, and CKRX.

IV. CONCLUSION

We introduced a new detector algorithm for hyperspectral
data anomaly detection. The chief idea of this paper is based
on a newly-introduced distance score of each pixel with respect
to their peripheral pixels. This score is created by feeding
the pixel pairs root mean square error (PPRMSE) into a
sigmoid function. We then applied object area filter (OAF)



TABLE I: AUC results of the Proposed method for images (a), (b), (c), and (d) with applying different window sizes and
AARR intervals

(a) (b)
(sec) (9]

(1, 3) 5.64 0.9709 0.50 (70, +<) 1,3) 6.69 0.9956 0.60 (7, 70)

1, 5) 16.62 0.9804 0.70 (25, +=) (1,5) 22.07 0.9961 0.70 (4, 80)

1,7 30.78 0.9835 0.30 (90, +2) 1,7 40.38 0.9967 0.70 (3, 70)

(1,9) 49.21 0.9869 0.70 (40, +) 1,9 56.00 0.9982 0.75 (11, 80)
(3, 5) 11.57 0.9802 0.60 (25, +<) (3,5) 12.71 0.9955 0.70 (5, 110)
3,7 25.74 0.9838 0.70 (20, +=) (3,7 28.81 0.9966 0.75 (10, 80)
(3,9 45.22 0.9853 0.70 (20, +<) (3,9 45.33 0.9977 0.75 (13, 80)
(5,7 16.37 0.9805 0.70 (15, +) (5,7) 17.31 0.9975 0.76 (13, 80)
(5,9 43.79 0.9836 0.60 (30, +<) (5,9) 38.10 0.9964 0.76 (11, 80)
(7,9 22.35 0.9800 0.72 (30, +=) (7,9) 23.50 0.9938 0.80 (9, 80)

(c) (d)
(sec) (9]

1,3) 12.46 0.9995 0.30 (1, 50) 1,3) 6.73 0.9892 0.60 (15, 200)
1, 5) 36.73 0.9997 0.30 (15, +) (1, 5) 17.44 0.9940 0.60 (15, 50)
1,7) 74.38 0.9998 0.30 (20, +<) 1,7 33.55 0.9967 0.68 (15, 50)
(1,9) 126.60 0.9998 0.35 (20, +<) 1,9 54.08 0.9979 0.68 (10, 50)
(3,5) 22.36 0.9995 0.30 (20, +<) (3,5) 12.14 0.9949 0.68 (15, 50)
3,7 55.68 0.9998 0.35 (15, +) 3,7 27.47 0.9967 0.70 (15, 50)
(3,9 97.93 0.9998 0.33 (15, +<) (3,9) 48.01 0.9975 0.70 (15, 50)
(5,7) 37.34 0.9998 0.35 (15, +<) (5,7) 17.82 0.9965 0.70 (15, 50)
(5,9) 77.79 0.9998 0.40 (15, +<) (5,9) 41.16 0.9970 0.70 (15, 50)
(7,9) 49.61 0.9998 0.40 (15, +=) (7,9) 23.18 0.9970 0.75 (10, 50)

TABLE II: AUC results of the Proposed method for images (a), (b), (c), and (d) with applying different window sizes and
without using OAF

(a) (b) () (d)
(g W)

(1, 3) 0.9630 (1, 3) 0.9875 (1, 3) 0.9916 (1, 3) 0.9841
1, 5) 0.9771 (1, 5) 0.9903 (1, 5) 0.9905 (1, 5) 0.9936
(1, 7) 0.9825 1,7) 0.9903 1,7 0.9910 (1,7 0.9960
(1, 9) 0.9845 (1,9) 0.9896 (1, 9) 0.9911 (1, 9) 0.9973
(3, 5) 0.9788 (3, 5) 0.9840 (3, 5) 0.9881 (3, 5) 0.9940
(3,7) 0.9827 (3,7) 0.9858 (3, 7) 0.9897 3,7 0.9963
(3,9) 0.9840 (3,9) 0.9859 (3, 9) 0.9903 (3,9) 0.9972
(5, 7) 0.9798 (5,7) 0.9806 (5, 7) 0.9901 (5,7) 0.9959
(5, 9) 0.9816 (5, 9) 0.9824 (5, 9) 0.9908 (5, 9) 0.9967
(7, 9) 0.9766 (7,9) 0.9793 (7, 9) 0.9903 (7, 9) 0.9963



TABLE III: Assessment of AUC (a) accuracy and (b) compu-
tation time between the proposed and benchmark methods

(a)

Proposed

Approach

(a) 0.9869 0.7292 0.8546 0.8076  0.9526  0.9516 0.5310
(b) 0.9982 0.8840 0.3849 0.9855  0.9403  0.8681 0.3722
(c) 0.9998 0.9589 0.9571 0.9203  0.9807  0.9293 0.8168
(d) 0.9979 0.9376 0.9521 0.9853  0.9907  0.9282 0.8180

(b)
Proposed | pAgy | ONND | LAD | RX | KRX | CKRX
Approach
(a) 49.21 16 1505 0.19 0.26 2007.2 247.9
(b) 56.00 18.3 107 0.21 0.22 1739.6 275.6
(c) 37.34 73 1203 0.39 0.66 7854 465.6
(d) 54.08 32 807 0.19 0.26 2080 264.2
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Fig. 7: ROC of proposed algorithm and different benchmarks
when operating on image (c)

to find connected components and calculated their areas to
remove objects with an unacceptable defined range. Extensive
empirical simulations are used to confirm that the proposed
method is both time-efficient and highly accurate in detecting
anomalies in hyperspectral images compared to state-of-the-art
approaches.
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