
Assessing the Security of Inter-App Communications in Android through Reinforcement
Learning

Andrea Romdhanaa,b, Alessio Merloa, Mariano Ceccatoc, Paolo Tonellad

a DIBRIS - Università degli Studi di Genova
b FBK-ICT, Security & Trust Unit

c Università di Verona
d Università della Svizzera italiana

Abstract

A central aspect of the Android platform is Inter-Component Communication (ICC), which enables the reuse of functionality
across apps and components via message passing. While a powerful feature, ICC still constitutes a serious attack surface. This
paper addresses the issue of generating exploits for a subset of Android ICC vulnerabilities (i.e., IDOS, XAS, and FI) through
static analysis, Deep Reinforcement Learning-based dynamic analysis and software instrumentation. Our approach, called RONIN,
achieves better results than state-of-the-art and baseline tools, in the number of exploited vulnerabilities.

Keywords: reinforcement learning, security testing, Software security engineering

1. Introduction

Nowadays, mobile phones are the most pervasive electronic
devices worldwide [1]. Among the available mobile operating
systems, Android rose as the most used platform [2]. The rea-
son for this success lies in the high number of available apps,
whose number currently exceeds 3 billion at the time of writ-
ing [3]. The presence of app construction frameworks and rich
libraries, as well as easy distribution via online app stores such
as Google Play, have significantly lowered the barrier to entry
in app development and deployment [4]. Bhattacharya et al. [5]
claim that the low barrier to enter the market means apps (or
app updates) are subject to limited scrutiny before dissemina-
tion, allowing error-prone apps through and therefore affecting
also their security. Therefore, developers and designers of such
apps need to utilize proper approaches, tools, and frameworks
that assist them in creating secure apps.

Numerous methodologies have been developed to find se-
curity flaws in Android apps [6]. Most of these methods rely on
static analysis of Android apps to find such vulnerabilities [6]
[7] [8] [9], but there are also strategies that make use of dynamic
analysis [10] [11]. A few methods detect vulnerabilities by
combining static and dynamic analysis [12] [13] [14]. Although
these methods and procedures have made it possible to detect
vulnerabilities, it is frequently necessary for security analysts to
decide manually whether those flaws are actually exploitable,
possibly with the aid of dynamics tools such as Drozer [15],
Inspeckage [16], and Objection [17]. However, such a manual
task is laborious and slow. A method should ideally be able

Email addresses: andrea.romdhana@dibris.unige.it (Andrea
Romdhana), alessio.merlo@unige.it (Alessio Merlo),
mariano.ceccato@univr.it (Mariano Ceccato),
paolo.tonella@usi.ch (Paolo Tonella)

to automatically find vulnerabilities in Android apps and de-
termine whether such vulnerabilities are exploitable. Discov-
ering automatically exploitable security flaws would help soft-
ware engineers choose which issues to address first. It would
also give them information useful to fix the security bugs and
to evaluate the vulnerability risk, i.e., likelihood and impact of
the vulnerability.

One challenge to address to enable automatic exploit gen-
eration for Android apps is how to penetrate Android’s spe-
cific attack surface, including its distributed event-based and
message-based frameworks. In particular, asynchronous mes-
sages, or what Android refers to as Intents, are largely used
for inter-component communication (ICC) within and between
Android apps. Thus, it is essential to model the Android frame-
work, especially the ICC interface. When generated, Intents
accept parameters that specify which action the app should per-
form. Additionally, the Android framework offers several pre-
defined components that respond to Intents in various ways. For
example, to show the user a location on a map, a developer can
use an Intent to request that another capable app show a spec-
ified location on a map; or can use Intents to start a service to
download a file in the background.

Defining a method for automatically determining whether
a vulnerability has been exploited is another challenge when
generating automatic exploits for Android. Garcia et al. [18]
proposed an approach called Letterbomb for automatically gen-
erating exploits for Android apps. Letterbomb relies on two
phases. The first phase leverages combined path-sensitive sym-
bolic execution-based static analysis. During the second phase,
the tool tries to exploit the statically discovered vulnerabilities
by generating an Intent and sending it to the analyzed app. The
focus of Letterbomb is ICC vulnerabilities. Specifically, it fo-
cuses on three types: 1) inter-process denial of service, 2) cross-

Preprint submitted to Elsevier May 2022



application scripting, 3) and Fragment injection. However, Let-
terbomb stimulates an app only by directly triggering Intents,
ignoring the possible internal usage of Intents triggered by GUI
events [19]. Due to this, Letterbomb misses specific possible
true positives, which can only be exposed by a proper sequence
of GUI events. Moreover, the exploitability of a vulnerabil-
ity at a particular statement depends on the different program
paths that may lead to reaching that statement. A specific path
may reach a statement without exploiting the vulnerability, but
there may be more paths that reach the same statement in the
program, and only some of them may exploit the vulnerable
statement. Hence, when we modify the payload of an Intent to
exploit a vulnerability, its execution along a specific path may
or may not trigger the vulnerability, depending on the chosen
path. Letterbomb includes path-sensitive analyses for path se-
lection but faces path explosion problem as the program grows
due to the potentially exponential number of program paths to
be analyzed. Another related challenge is the generation of the
parameter values for the Intent. Letterbomb uses a Satisfiabil-
ity Modulo Theory (SMT) solver to generate parameters for the
Intent. The drawback of such an approach is that it loses effi-
ciency when dealing with an increasing number of parameters.
At last, it becomes inapplicable when the constraints to reach
a certain path within the app are too difficult to handle for an
SMT solver.

We propose a different approach to exploit generation, which
we call RONIN, based on Deep Reinforcement Learning. Deep
Reinforcement Learning (Deep RL) is a machine learning tech-
nique that does not require a labeled training set as input since
the learning process is guided by the positive or negative reward
experienced during the tentative execution of a task. Hence, it
can be used to dynamically learn how to build an Intent that
exposes a specific vulnerability based on the feedback obtained
during past successful or unsuccessful attempts. More specifi-
cally, RONIN manipulates the parameters of the Intents by ap-
plying a sequence of actions to them. Each action receives pos-
itive feedback if we move closer to the target statement (i.e.,
the vulnerable statement) upon execution of the Intent; neu-
tral (zero) feedback if the minimum distance between the state-
ments that we reached and the target statement does not change;
negative feedback if we increase the distance from the target
concerning the last Intent execution. RONIN uses a Deep Neu-
ral Network (DNN) to generate (initially random) actions dur-
ing the training phase and observes their outcome (i.e., states
and rewards). Then, RONIN leverages the collected informa-
tion and iteratively trains the DNN to take a given action when
in a given state. Our paper gives the following major contribu-
tions to the state of the art:

• The first Deep RL approach to Android security testing
focused on ICC vulnerabilities. This approach applies
to a wide range of Android apps by relying on feedback
provided through dedicated instrumentation.

• RONIN, an open source tool, whose code is available at
the url: https://github.com/H2SO4T/RONIN.

• An empirical study shows our approach’s effectiveness

compared with existing and baseline techniques.

2. Background

This section introduces the basics of RL as well as the tar-
geted ICC vulnerabilities in detail.

2.1. Reinforcement Learning
Reinforcement learning’s [20] objective is to teach an agent

how to interact with a specific environment to achieve a particu-
lar goal. The agent determines the environment’s present state,
takes actions that possibly affect the environment, and receives
a positive, neutral or negative reward.

At each time step t, the agent takes an action at, according to
an observation xt, which may be a partial or full representation
of the environment state st. The action at causes the transition
of the environment from state st to state st+1, and its quality is
measured by the reward function R(xt, at, xt+1). A Markov Deci-
sion Process (MDP) formally describes the agent environment.
An MDP is 5-tuple, ⟨S , A,R, P, ρ0⟩, where: S is the set of states,
A is the set of actions, R the reward function, P the transition
probability function, and ρ0 ⊆ S is the set of initial states. The
goal in RL is to learn a policy π, i.e., a rule for deciding which
action to take, based on the perceived state st. The learned pol-
icy must maximize the so-called expected return. Earlier RL al-
gorithms approximate states and actions using tables that store
discrete values. As it may be impractical to describe all possi-
ble states and actions in a table, these tabular techniques cannot
learn appropriate policies in vast or unbounded discrete spaces
(e.g., programs with numerous inputs, constraints, and states
to be modeled)[21]. Deep Reinforcement Learning is a novel
technique that has emerged due to the advent of Deep Learn-
ing, which relies on the sophisticated function approximation
capabilities of Deep Neural Networks [21] to learn an optimal
policy even in the presence of large state and action spaces.

2.2. Android Background
The Android Software Development Kit (SDK) offers pro-

grammers a collection of communication components for build-
ing mobile applications. Activities, Services, Broad-
cast Receivers, and Content Providers are the four
Android’s pre-defined components. All such components (ex-
cept dynamically registered Broadcast Receivers) are declared
in the app’s manifest file (AndroidManifest.xml).

An Activity is a GUI that an app displays to a user and
that the user can interact with. A Service manages back-
ground tasks for an app. A Content Provider manages
access to a central repository of data primarily intended to be
used by other applications, allowing secure access. A Broad-
cast Receiver receives Intents that are broadcast by other
apps or the Android framework (for example, informing the
user that the battery is low). Intents can be exchanged be-
tween Activities, Services, and Broadcast Receivers. Activities
might be made up of Fragments, each of which could be a user-
viewable portion or a full screen. Fragments introduce mod-
ularity and reusability into the activity’s UI by allowing devel-
opers to divide the UI into smaller, more manageable discrete

2

https://github.com/H2SO4T/RONIN


pieces. Moreover, fragments support the dynamic composition
of a GUI, allowing developers to add and remove fragments
(and the layouts therein) dynamically and programmatically.

Android apps execute in a sandboxed environment to pre-
vent malware from infecting the system, and the hosted appli-
cations [22]. The Android sandbox utilizes the isolation capa-
bilities of the Linux kernel. Although sandboxing is an essen-
tial security feature, interoperability is negatively affected as a
result. Apps need to be able to interact in a variety of ways.
For instance, if the user points to the Google Play website, the
browser app should be able to launch the Google Play app.
To support interoperability, Android supplies high-level ICC
mechanisms via the Binder class, implemented as a driver in
the Linux kernel. ICC is achieved via Messages and Intents.
Intents are messaging objects that contain both the payload
and the target application component. Intents can either be im-
plicit, which means that the target is not specified, or explicit,
which means that a specific target is provided. Intents can be
broadcast to Broadcast Receivers, invoke activities, or launch a
Service. External parties can invoke an application component
via an Intent if the manifest file allows that. The manifest also
defines the permissions that the external party must possess.

According to the Android documentation [23], Intents con-
tain actions, categories, and supplementary data that an app
utilizes to decide how to carry out activities based on it. The
attribute known as an Intent’s action denotes the general ac-
tion to be taken in response to an Intent (e.g., deliver data to
some agent). The categories of Intent offer more details about
how the Intent’s action should be carried out by the app. A
developer can declare categories in the application manifest,
allowing the system to know if the application can handle a
specific Intent category. For example, by putting the CATE-
GORY BROWSABLE category, an app specifies that a specific
activity can be invoked through intent by a browser.

2.3. Vulnerabilities related to ICC Channels
We can refer to an Android component as public if 1) it is

exported via Intent filters, either explicitly or implicitly; 2) it
requires neither signed nor system permissions; or 3) unsani-
tized data originating from a public component flows into it.
The presence of public components leaves a hole in the An-
droid sandbox. They expose themselves to incoming data from
malicious parties, which might lead to vulnerabilities if the data
is not sanitized or validated. Fragments are also potentially vul-
nerable, as they can access incoming ICC data via their enclos-
ing Activity and its initiating Intent. Malicious parties can be
both local and remote. Malware is highly prevalent in Android
and can interact directly with the public ICC interfaces through
explicit Intents without special permissions [24]. Unsafe han-
dling of incoming ICC data can result in different forms of at-
tack. Below we list three of the main threats that we aim to
discover.

Cross-Application Scripting (XAS). Similarly to Cross-Site
Scripting (XSS) in the Web landscape, XAS [24] arises when
script content (mostly JavaScript code) is injected into the HTML
UI of a hybrid mobile application. Hybrid apps allow develop-
ers to write code based on platform-neutral web technologies

and wrap them into a single native app that can render HTM-
L/CSS content and execute JavaScript. This enables different
forms of attack, including: 1) UI defacing/rewriting to trig-
ger phishing attacks, 2) access to sensitive information, and
3) run native code via JavaScript. A concrete entry point for
XAS attacks is the WebView class, which renders HTML con-
tent within a mobile app. The main method of WebView is
loadUrl. If a malicious app can control the current URL, all
the attacks above become potential threats. To exploit an XAS
vulnerability, an attacker can inject JavaScript code using ei-
ther the JavaScript URI scheme or the file scheme. The attacker
creates a malicious HTML file and directs the target WebView
object to load that file via an Intent.

Fragment injection. The static instantiate(Context
ctx, String fname, Bundle args) method of class
Fragment accepts as fname the name of the Fragment sub-
class to load reflectively. An attacker can leverage this to ar-
bitrary load code obtainable through the class loader of ctx.
A successful Fragment injection attack can result in loading an
attacker-selected class into the context of the vulnerable app,
which grants that class the same privileges and access rights as
its host app. Otherwise, an exception is thrown, but before that,
the class’ static initializer and default constructor are executed,
creating another attack vector. Another alternative is to load
a Fragment already defined by the application or Android/Java
framework but inject malicious initialization data into the Frag-
ment. Fragments that are normally loaded by private Activities
are more likely to trust rather than validate their initialization
arguments, which renders them more exploitable to Fragment
manipulation attacks.

Unhandled Exceptions (Denial of Service). Programming
errors that trigger unchecked exceptions (like null dereference)
will usually cause the target app to crash if the exception is
missed. This presents an opportunity for Denial-of-Service (DoS)
attacks and can generally drive the application into an unex-
pected state.

Running Example. The code in Listing 1 illustrates the dif-
ferent ways incoming ICC messages are processed. An attacker
can take advantage of an ICC-based vulnerability in an Android
app by including actions, categories, or additional data with ma-
licious payloads or by deleting these parameters. getExtra-
String retrieves the value of the custom string field of an
Intent. The Activity contains two exploitable vulnerabilities
that are reachable from the app’s ICC interface. If the Activ-
ity receives an Intent whose ExtraString s1 contains the
string URL (line 20) the WebView of the Activity will load
the string associated to ExtraString s2 (line 22). This
leads to a first XAS vulnerability. When ExtraString s1
does not contain URL, the app performs a string comparison
between ExtraString s2 and a hardcoded string (line 27).
If ExtraString s2 is a null object, a Null Pointer
Exception will be thrown, which results in the app crash-
ing as the thrown exception is not caught. A malicious app can
leverage this vulnerability to perform an inter-process denial-
of-service (IDOS) attack on the MainActivity by periodically
sending an Intent with no ExtraString s2. The function
getFragmentInstance contains a Fragment injection (FI)

3



vulnerability [24], which occurs because within getFragmentInstance
an incoming Intent with a string of extra data containing the key
fname can be exploited by supplying as its value the name of a
Fragment that resides in the corresponding app. This Fragment
is then instantiated and loaded into the app (line 39).

1 public class MainActivity extends AppCompatActivity {
2 @Override
3 protected void onCreate (Bundle savedInstanceState) {
4 // ...
5 }
6
7 @Override
8 protected void onResume(){
9 super.onResume();

10 Button button = (Button) findViewById(R.id.get):
11 WebView webView = (WebView) findViewById(R.id.webView1) :
12 button.setonClickListener(new View.OnClickListener() {
13
14 @override
15 public void onclick(View v) {
16 TextView textView = (TextView) findViewById(R.id.concat);
17 Intent intent = getIntent():
18 String a = intent.getStringExtra("s1");
19 if ("URL".equals(a)) {
20 /* If s2 contains a malicious site it will be loaded by the WebView

*/
21 webView.LoadUrl(intent.getstringExtra("s2"));
22 } else {
23 String b = intent.getStringExtra("s2");
24 /* If String b is null the app will crash */
25 if (b.equals ("www.test.com"))
26 webView.LoadUrl(intent.getStringExtra("s2"));
27 }
28 }
29 });
30 }
31
32 // ...
33
34 public static void getFragmentInstance(Intent my_intent){
35 /* If fame is not checked we can have a Fragment Injection */
36 String fname = my_intent.getStringExtra("fname");
37 return Fragment.instantiate(this, fname) ;
38 }
39 }

Listing 1: RONIN: An example app that contains ICC vulnerabilities

3. RONIN: Approach

This section describes RONIN (ReinfOrcement learning for
security testiNg of INter-app communication), our approach
to automatic generation of Inter-App Communication exploits.
Figure 1 shows an overview of the approach. RONIN takes
as input an app, and starts the Vulnerability Identifier. This
analysis outputs all the statically identified vulnerable state-
ments within the app. Moreover, the Vulnerability Identifier
constructs a dictionary of the possible parameters that can be
used as payloads in the Intents and the taint graph that leads
to each identified vulnerability. According to the information
coming from the taint graph, the Oracle Instrumenter injects
code lines within the app to let RONIN’s dynamic analysis ver-
ify its distance to the vulnerability during the exploitation of the
app. The Oracle Instrumenter produces as output many instru-
mented APKs, one for each identified vulnerability. At last, the
Dynamic Exploiter leverages the information collected during
the static phase and dynamically stimulates each instrumented
APK with random GUI events and Intents crafted through Deep
RL.

3.1. Static Phase: Vulnerability Identifier

The Vulnerability Identifier analyzes an APK in search for
ICC vulnerabilities. At first, it searches for a possible entry
point. An entry point consists of an Intent function that can
lead to an ICC vulnerability (an Intent function is any function

Figure 1: The RONIN workflow. At first RONIN analyzes the APK using static
analysis and collects potential vulnerabilities. Then RONIN instruments the
APK to verify whether a vulnerability has been reached or not. At last, RONIN
leverages Intent generation through DeepRL and GUI stimulation to effectively
exploit a vulnerability.

that retrieves the parameters of Intents, such as getString-
Extra). Once an entry point is found, Vulnerability Identifier
taints the related Intent variable (e.g., variable Intent at line
18 in Listing 1). Subsequently, Vulnerability Identifier analyzes
the taint graph in search for possible improper usages of the
tainted variables. If so, RONIN produces: 1) a file that con-
tains the vulnerable statements, 2) a dictionary of parameters
related to the possible payloads of the Intent, and 3) the inter-
components taint graph. To identify the vulnerable statements
we rely on the SEBASTiAn tool [25].

3.2. Static Phase: Oracle Instrumenter

To detect whether a generated Intent successfully exploits
a vulnerability, RONIN instruments the app. The Oracle In-
strumenter leverages the vulnerable statements and taint graphs
previously produced by the Vulnerability Identifier to instru-
ment the original APK. We describe how Oracle Instrumenter
instruments the app for the three aforementioned vulnerability
types. We only need to introduce the instrumentation once per
identified vulnerability. After such one-time instrumentation,
we can reuse it to detect multiple successful exploitations.

4



To instrument apps vulnerable to an IDOS attack, for each
vulnerable statement RONIN adds a log instruction to record
that the vulnerable statement has been executed. Additionally,
RONIN instruments the statements can help the exploration dur-
ing the dynamic phase, i.e., the statements that connect the In-
tent function to the vulnerability.

XAS instrumentation requires to instrument each statement
where a URL is loaded. Instrumentation must ascertain the
URL loaded after the WebView’s page has finished loading to
verify whether the malicious URL injection was successful. To
that end, RONIN logs the current HTML page loaded from the
URL of a WebView once its page has finished loading.

For the FI instrumentation, RONIN injects logging state-
ments to check for three conditions that together indicate a suc-
cessful FI: (1) the target Activity has received the FI Intent, (2)
the injected Fragment was instantiated successfully, and (3) the
Activity is running without throwing any exception.

3.3. Dynamic Phase: Overview

This section describes the dynamic phase of RONIN, which
leverages Deep RL to generate Intents for the app under test
and uses a random algorithm to generate GUI events. Figure
2 shows the workflow of this phase. The RL environment is
represented by an app under analysis, which is subject to seve-
ral interaction steps. The objective is to successfully exploit the
vulnerabilities discovered during the static phase. At each time
step, RONIN observes the app state, computes the state st, and
chooses an action at which modifies the current Intent. Then,
it launches the Intent and it optionally generates random GUI
events. Subsequently, it iterates, receiving the new state st+1
and the reward rt+1 (not shown in Figure 2).

Intuitively, if RONIN comes closer to the vulnerability, the
reward is positive; it is neutral if the distance remains the same.
Otherwise, the reward is negative if the distance from the vul-
nerability increases.

The reward is used to update the neural network, which
learns how to guide the Deep RL algorithm to generate Intents
that exploit the app’s vulnerabilities. The actual update strategy
depends on the selected Deep RL algorithm.

3.4. Dynamic Phase: Deep RL and GUI Events

The Dynamic Analysis of RONIN relies on Deep RL and
random GUI events generation. Algorithm 1 represents the
logic of the dynamic phase. The algorithm takes as input the in-
strumented APKs, the dictionary of the Intent parameters, and
the taint graphs. The algorithm iterates on each vulnerability
of each APK and tries to exploit it within a maximum time
(10 minutes in our scenario) by mutating a default Intent and
eventually generating a random GUI event. The GUI event is
generated only if the Intent does not produce any log trace. At
last, the algorithm computes the distance from the target vul-
nerability and the reward used to train the DeepRL algorithm.
This process iterates until the timer expires, and the algorithm
returns all the exploits generated during the execution.

Figure 2: The dynamic phase workflow.

Algorithm 1 : The Dynamic Phase

Input: Instrumented apks, Dictionary of Intent parameters,
Taint Graphs
for apk ∈ Instrumented apks do

for vulnerability ∈ apk do
Start App Testing
Intent = EmptyIntent
while not Timer Expired do

mutateIntent(Intent)
Launch Intent
LogTrace = CollectLogTrace()
if LogTrace is empty then

GenerateRandomGuiEvent()
LogTrace = CollectLogTrace()

end if
Distance = DistanceFromVulnerability()
Reward = ComputeReward(Distance)
if Distance = 0 &

LogTrace = Vulnerability-Exploited then
Store Intent and Actions to Take

end if
trainDeepRLAlgorithm(Distance, Reward)

end while
end for

end for

3.5. Dynamic Phase: Deep RL

To apply RL, we have to map the problem of generating
Android Intents to the standard mathematical formalization of
RL: an MDP, defined by the 5-tuple, ⟨S , A,R, P, ρ0⟩.

State Representation. The state st ∈ S is defined as a com-
bined state (a0, ...an, node0, ...nodem). The first part of the state
a0, ...an is a one-hot encoding of the current activity, i.e., ai is
equal to 1 only if the currently displayed activity is the i-th ac-

5



tivity, it is equal to 0 for all the other activities. The second part
of the state vector, node0, ...nodem represents all the nodes of
the paths that lead to a specific vulnerability. When a specific
node is traversed by the last action generated by RONIN we set
the corresponding node flag to 1; un-executed nodes have their
flag set to 0.

Action Representation. Each time RONIN takes an action,
it manipulates a previously generated Intent. RONIN mutates
an Intent by adding, removing, or modifying one of its parame-
ters. Hence, an action a = ⟨a0, a1, a2⟩ is 3-dimensional: the first
component a0 specifies which type of action RONIN will apply
to one of the Intent parameters. If zero, RONIN will remove a
parameter from the Intent. Otherwise, if one, it will add/mod-
ify the corresponding parameter. The second component a1 en-
codes the index of the parameter to be manipulated. The third
component a2 specifies which payload is associated with the pa-
rameter selected by the previous action component. For exam-
ple, RONIN can associate to a boolean parameter the payloads
True or False. Transition Probability Function. The transition
function P determines which state the application can transit to
after RONIN has taken an action. This is decided solely by the
app’s execution: RONIN observes the process passively, col-
lecting the new state after the transition has occurred.

Reward Function. The RL algorithm used by RONIN re-
ceives a reward rt ∈ R every time it executes an action at. We
define the following reward function:

rt =


Γ1 if dist f rom vuln()t = 0
Γ2 if dist f rom vuln()t − dist f rom vuln()t−1 < 0
−Γ2 if dist f rom vuln()t − dist f rom vuln()t−1 > 0
Γ0 if dist f rom vuln()t − dist f rom vuln()t−1 = 0

(1)
with Γ1 ≫ Γ2 ≫ Γ0 (in our implementation Γ0 = 0, Γ1 = 10,
Γ2 = 1).

At time t, the reward rt is positive (Γ1) if RONIN was able
to trigger the selected vulnerability, i.e., the distance from the
vulnerability is zero. When an action takes RONIN closer to the
vulnerability without triggering it with respect to the previous
execution, the reward is slightly positive (Γ2). The reward is
negative (−Γ2) when the action taken does not reach the target
and decreases the distance from the vulnerability with respect to
the last execution. If the distance from the vulnerability remains
the same as in the last execution, the reward is neutral (Γ0 = 0).

4. Implementation

RONIN features a custom environment based on the Ope-
nAI Gym[26] interface, which is a de-facto standard in the RL
field. OpenAI Gym is a toolset with a number of built-in en-
vironments for building and comparing RL algorithms. It also
includes instructions for defining custom environments. Our
custom environment interacts with an Android app.

4.1. Tool Overview
As soon as it is launched, RONIN starts the static analysis

on the target app in search for ICC vulnerabilities. The static

analysis leverages the plugin that extracts ICC vulnerabilities
in the SEBASTiAn tool [25], by extracting the vulnerable state-
ments and the taint graph. Moreover, we added a method to the
plugin to search and extract the parameters associated with the
Intent functions.

Afterwards, if any vulnerability is present, RONIN starts
the instrumentation phase. The Oracle Instrumenter is based
on SOOT [27] and it uses the taint graph to decide where to
inject log statements. Listing 2 shows an example of injected
logs: each node that can potentially lead to the vulnerability is
logged during the execution of the code.

RONIN generates as output many instrumented APKs, one
per identified vulnerability. Then, RONIN starts the dynamic
analysis on the instrumented APKs, leveraging the informa-
tion collected during the static analysis: it builds the dictionary
of values to use during Intent mutation, it instantiates a cus-
tom environment to interact with the application, and it starts
the search for exploitations (Algorithm 1). At each time step,
RONIN takes an action (i.e., it modifies the Intent) according to
the current policy of the Deep RL algorithm. The action con-
sists of crafting and launching the Intent, and possibly generat-
ing random GUI events on the target app. To generate random
GUI events, we used the ARES tool [28]. Once the action has
been fully processed, RONIN elaborates the log information,
from which it computes observation and reward for the algo-
rithm. RONIN arranges the whole testing session into finite-
length episodes, the goal being to maximize the total reward
received in each episode. Every episode lasts 100 time steps.
Once an episode comes to an end, RONIN resets the Intent to
the default value, and then it uses the acquired knowledge to
reach the target node of the app in the next episode.

1 public void onClick(View v){
2 TextView textView = (TextView) findViewById(R.id.concat);
3 Intent intent = getIntent();
4 Log.v("{’method’: ’onClick()’, ’unit’: ’intent.getStringExtra(..’, ’id’:

’24503’}");
5 String example = intent.getStringExtra("example");
6 Log.v("{’method’: ’onClick()’, ’unit’: ’textView.setText(..’, ’id’: ’24504’}");
7 textView.setText("total length: " + Integer.toString(example.length()));
8 }

Listing 2: An example of instrumentation

4.2. ICC Environment

The ICC environment is responsible for handling the ac-
tions to interact with the app. Since the environment follows
the guidelines of the Gym interface, it is structured as a class
with two key functions. The first function, init(configu-
ration file), is the initialization of the class. The addi-
tional parameter configuration file consists of a dictio-
nary containing the app to be analyzed and its setup. The sec-
ond function is the step(a) function, which takes an action
a as input and returns a list of objects, including observation
(code coverage state) and reward.

4.3. Algorithm Implementation

RONIN leverages Stable Baselines [29], a modular library
that adopts a plugin architecture to integrate the Deep RL al-
gorithm to use. Currently, one Deep RL exploration strategy
is integrated into RONIN: Soft Actor Critic (SAC) [30]. SAC

6



represents one of the state-of-the-art algorithms at the time of
writing [31]. Its implementation comes from the Python library
Stable Baselines. RONIN also implements a second exploration
strategy, considered as a baseline in our empirical evaluation:
random exploration, where the algorithm interacts with the tar-
get app by randomly selecting a mutation to perform on the
Intent.

RONIN is publicly available as open source software at the
url: https://github.com/H2SO4T/RONIN.

5. Evaluation

We seek to address the following research questions:

• RQ1 To what extent can RONIN identify exploits for the
three types of vulnerabilities described? Exploit genera-
tion is the ultimate goal of RONIN. We evaluate RONIN’s
exploit generation capability by considering both exploits
and unique exploits. We aim to evaluate the ability of
RONIN to generate multiple different exploits.

• RQ2 How does RONIN compare with the state-of-the-art
on a vulnerability benchmark? We aim to evaluate the
performance of RONIN in comparison with one baseline,
Letterbomb. To the best of our knowledge, Letterbomb
represents the state-of-the-art, and produces a diversified
set of exploits capable of triggering a vulnerability. We
evaluate the two tools on a benchmark to understand the
key differences between them.

• RQ3 How does RONIN compare with the state-of-the-art
on apps obtained from the wild? We aim to evaluate the
performance of RONIN and Letterbomb in detecting the
three considered vulnerabilities in the wild, considering
a set of apps coming from Google Play Store.

• RQ4 How does RONIN behave when the generation of
GUI events is disabled? We aim to evaluate RONIN’s
performance in detecting the three considered vulnera-
bilities when GUI event generation is disabled (ablation
study).

• RQ5 How does RONIN behave when Deep RL is sub-
stituted with a random algorithm? We aim to evaluate
RONIN’s performance in detecting the three considered
vulnerabilities when it generates Intents using a random
algorithm (ablation study).

5.1. Evaluation Design
To evaluate the proposed approach, we used the software

subjects from the Ghera dataset [19] and the Google Play Store.
Ghera contains benign apps with vulnerabilities related to Crypto,
ICC, Networking, NonAPI, Permission, Storage, System, and
Web APIs. From the Ghera dataset, we used three ICC apps
that contain four vulnerabilities related to IDOS, XAS, and FI.
From the Google Play Store, we randomly selected 1500 apps
among the 20k most downloaded apps. Such apps are the top
free Android apps ranked by the number of installations accord-
ing to Androidrank [21], and have been downloaded from the
Google Play Store between Dec. 2021 and Jan. 2022.

5.2. Evaluation Procedure

With RQ1, we evaluated RONIN in terms of: 1) How many
apps coming from Google Play Store are vulnerable; 2) How
many exploits can RONIN generate; 3) how many of them are
unique exploits.

In RQ2, we compare RONIN to Letterbomb on three apps
from the Ghera dataset. These apps contain four vulnerabili-
ties (i.e., 3 IDOS, 1 FI). The objective is to successfully detect
and then exploit the vulnerabilities within the apps, obtaining a
correct sequence of actions that fulfill exploitation of the vul-
nerability. We investigate the reasons behind failures and the
successes of both tools being compared.

In RQ3, we compare RONIN to Letterbomb on the num-
ber of generated exploits and unique exploits. Moreover, we
evaluate whether the exploits generated by the two tools differ
among them or belong mostly to the same set.

In RQ4, we disable GUI events generation in RONIN to
evaluate their impact on the overall performance (number of
exploits and number of unique exploits).

In RQ5, we evaluate RONIN’s performance (number of ex-
ploits and number of unique exploits) when generates Intents
randomly. We also compare the Deep RL and random algorithm
on the time necessary to generate the first exploit in each of
the exploited vulnerabilities. To account for non-determinism,
we applied the Wilcoxon non-parametric statistical test to draw
conclusions on the difference between Deep RL and random
algorithm, adopting the conventional p-value threshold at α =
0.05.

6. Experimental Results

6.1. RQ1: Exploit Generation

Table 1 (top) shows the results of RQ1, split by each of
the three considered vulnerability types (i.e., IDOS, XAS, and
FI). In Column 2, we report the number of Google Play Store
apps for which RONIN statically detected a vulnerability, fol-
lowed by the number of detected vulnerabilities. In Column 4,
we report the number of apps for which RONIN successfully
generated an exploit (Expl. Apps), followed by the number of
successfully generated exploits and the number of unique ex-
ploits, where an exploit is unique if it either reaches a unique
vulnerable statement or, in the case of FI, it successfully injects
a unique Fragment.

RONIN successfully exploited 25 apps containing IDOS
vulnerabilities, ten apps containing XAS vulnerabilities, and
one with an FI vulnerability. RONIN obtained 46 unique ex-
ploits and 180 total exploits for IDOS, 10 unique and 18 total
exploits for XAS, two unique and six total exploits for FI. It
should be noticed that a vulnerable statement may be exploited
from more than one program path, resulting in multiple non-
unique exploits for the same vulnerable statement. These re-
sults indicate that RONIN is capable of producing a sizeable
number of exploits.

7

https://github.com/H2SO4T/RONIN


RONIN
Vuln. Type Apps Vulnerabilities Expl. Apps Exploits Unique Expl.

IDOS 537 867 25 180 46
XAS 158 134 10 18 10

FI 28 31 1 6 2
Letterbomb

IDOS 1232 1523 12 74 15
XAS 174 231 3 10 3

FI 84 119 0 0 0

Table 1: Detected vulnerabilities and generated exploits

Bench. App Vuln. Letterbomb RONIN
Detected Exploited Detected Exploited

FragmentInjec. IDOS ✗ ✗ D D
FI ✗ ✗ D D

UnhandledExc. IDOS D ✗ D D
UnprotectedBroad. IDOS ✗ ✗ D D

Table 2: Comparison between RONIN and Letterbomb on Ghera

6.2. RQ2: Comparison with Letterbomb on Ghera
Table 2 shows the comparison between RONIN and Letter-

bomb on the apps from the Ghera dataset. RONIN detects the
known ICC vulnerabilities in all the apps, while Letterbomb
only in one. In most cases of false negatives, Letterbomb fails
to detect the lack of null checks when executing backward data-
flow analysis along the use-def chains. Listing 3 shows the
IDOS vulnerability of app UnprotectedBroadcastRecv-PrivEsca-
lation-Lean at line 8. This vulnerability can be exposed when
the Intent provided to the BroadcastReceiver does not contain
one of the extra strings at lines 5-6. RONIN successfully de-
tects the IDOS, while Letterbomb can not identify the function
sendTextMessage as a possible cause of a crash.

1 public class MyReceiver extends BroadcastReceiver {
2 @Override
3 public void onReceive (Context context, Intent intent) {
4 if (intent.getAction() != null && intent.getAction().equals("edu.ksu.cs.

benign.myrecv")){
5 String number = intent.getStringExtra("number");
6 String text = intent.getStringExtra("text");
7 SmsManager smsManager = SmsManager.getDefault();
8 smsManager. sendTextMessage(number, null, "Benign: " + text, null, null);
9 Log.d("benign", "Message sent");

10 }
11 }
12 }

Listing 3: IDOS vulnerability occurring when either of the extra strings at lines
5-6 is not supplied

Let us consider the exploited vulnerabilities (Columns 4
and 6 in Table 2). RONIN successfully exploited all the stati-
cally detected vulnerabilities, while Letterbomb fails in exploit-
ing the single IDOS it was able to detect statically. The latter
failure happened because Letterbomb does not generate GUI
events when trying to exploit a vulnerability. Listing 4 shows
that the vulnerability at line 12 in the app UnhandledException-
DOS-Lean is triggered when the button instantiated at line 3 is
pressed. Once pressed, the button consumes the Intent (line 9),
then extracts the extra values (lines 10-11), and at last calls the
function length on both extra values. Suppose one of the ex-
tra values is unavailable: then, the app crashes. RONIN can ex-
ploit such a vulnerability, firstly sending the correct Intent and
secondly clicking on the button that uses the payload coming
from the Intent.

In summary, RONIN can detect and exploit all vulnera-
bilities in the Ghera benchmark, while Letterbomb can detect

just one vulnerability, but it can not exploit it.
1
2public void onResume() {
3super.onResume();
4Button button = (Button) findViewById(R.id.get);
5button.setOnClickListener(new View.OnClickListener(){
6@Override
7public void onclick(View v) {
8TextView textView = (TextView);
9MainActivitv.this.findViewById(R.id.concat);
10Intent intent = MainActivity.this.getIntent();
11String a = intent.getStringExtra("s1");
12String b = intent.getstringExtra("s2") ;
13textView.setText("total length:" + Integer.toString(a.Length() + b.Length

()));
14}
15});
16}

Listing 4: IDOS vulnerability occurring when the button instantiated at line 3
is pressed

6.3. RQ3: Comparison with Letterbomb in the Wild

RONIN is the only approach that generates exploits in the
wild for all the three types of vulnerabilities that both tools tar-
get. Table 1 (top vs bottom) shows the results of RONIN’s vul-
nerability comparison with Letterbomb in the wild. For IDOS
and XAS, RONIN generates three times more unique exploits
than Letterbomb. For FI, Letterbomb can not generate any ex-
ploit, while RONIN generates two exploits.

We also compared the two sets of vulnerabilities exploited
by the two tools and found that 93% of the vulnerabilities ex-
ploited by Letterbomb are also triggered by RONIN. The re-
maining 7% of vulnerabilities are not covered by RONIN be-
cause its static analysis does not detect them. Moreover, 12%
of the vulnerabilities that RONIN has exploited are related to
GUI events that Letterbomb can not manage.

Listing 5 shows an example of vulnerability that Letter-
bomb does not exploit. This vulnerability is similar to the one
presented for RQ2. At line 12, we have an IDOS vulnera-
bility contained within the function attached to a button. If
RONIN sends an Intent that does not contain the extra param-
eter emergency number, the if condition at line 12 will gen-
erate a crash, raising a NullPointerException. Letterbomb misses
it because it does not generate GUI events to reach vulnerable
code.

In summary, RONIN can generate three times more unique
IDOS/XAS exploits than Letterbomb and can generate FI ex-
ploits that are missed by Letterbomb.

1 call.setOnClickListener(new View.OnClickListener(){
2 @override
3 public void onClick(View view) {
4 Intent intent = getIntent();
5 String emergency_number = intent.getStringExtra("emergency_number");
6 if (ContextCompat.checkSelfPermission(getcontext(),
7 Manifest.permission.CALL_PHONE) != PackageManager.PERMISSION_GRANTED) {
8 ActivityCompat.requestPermissions(getActivity(), new String[]{Manifest.

permission.CALL_PHONE}, REQUEST_CALL);
9 } else {

10 if (emergency_number.length() = 10) {
11 String dial = "tel:" + emergency_number;
12 startActivity(new Intent(Intent.ACTION_CALL, Uri.parse(dial)));
13 }
14 }
15 }
16 });

Listing 5: IDOS vulnerability occurring when the button attached to the
onClick

8



6.4. RQ4: Disabling GUI Events

Table 3 shows the difference of behaviors when we disable
GUI events in RONIN. The overall number of unique exploits
found by RONIN decreases by 7, 6 IDOS, and 1 XAS, respec-
tively (see Column 4 in Table 3). The number of exploited apps
also decreases, specifically by five apps (for IDOS). These re-
sults confirm that adding GUI event generation is extremely
useful for covering a broader range of vulnerabilities.

RONIN Without GUI Events
Vuln. Type Expl. Apps Exploits Unique Expl.

IDOS 20 (-20%) 162 (-10%) 40 (-13%)
XAS 10 14 (-22%) 9 (-10%)

FI 1 6 2

Table 3: RONIN’s reduced performance when GUI Events are disabled

6.5. RQ5: DeepRL vs Random

Table 4 shows the vulnerabilities exploited by RONIN when
using random Intent generation instead of Deep RL. The two
approaches perform similarly regarding the number of exploited
apps and unique exploits. RONIN with the random method only
misses two vulnerabilities and one app. We can appreciate the
difference between the two methods when looking at the to-
tal number of generated exploits. Actually, RONIN with Deep
RL generates 48 more exploits than RONIN with the random
method.

Let us now consider the time required by either version of
RONIN to generate an exploit. Figure 3 shows the comparison
between Deep RL and Random on one of the analyzed apps.
When the point lies on the x − axis (y = 0), the action did not
generate any exploit at the corresponding time step. When y
equals 1, one of the two algorithms generates a valid exploit for
the analyzed app. The Deep RL approach remains more con-
sistent than Random in generating exploits after generating the
first one and it generates the first exploit earlier than random.
The reason is that once the Deep RL algorithm generates the
first exploit, it is encouraged to generate new exploits similar
to the previous one, leveraging the knowledge acquired so far.
On the contrary, the random method does not have any memory
of the past actions, resulting in poor performance compared to
Deep RL.

Figure 4 shows the distribution of the number of time steps
needed to generate the first exploit for each of the apps under
analysis. The Deep RL approach employs fewer time steps to
generate the first exploit, driven by the negative or the posi-
tive reward it receives. Instead, the random approach could not
leverage any information collected during the dynamic phase,
so the occurrence of the first exploit is unpredictable and is not
consistent across runs. Moreover, the Wilcoxon non-parametric
statistical test demonstrates that the difference between the al-
gorithms is statistically significant (p-value < α).

In summary, while RONIN with random Intent generation
can still generate almost the same number of unique exploits
as RONIN with Deep RL, the latter generates the first exploit
much earlier than Random and it then continues to generate
valid exploits much more consistently than Random.

RONIN Random
Vuln. Type Expl. Apps Exploits Unique Expl.

IDOS 24 (-4%) 137 (- 24%) 44 (-5%)
XAS 10 14 (-22%) 10

FI 1 5 (-17%) 2

Table 4: RONIN’s reduced performance when random Intent generation is
adopted and Deep RL is disabled

Figure 3: Time required by Deep RL vs Random to generate an exploit

Figure 4: Distribution of the time steps required by Deep RL vs Random to
generate the first exploit

7. Related Works

Several approaches have been developed to identify vulner-
abilities in Android apps [32]. ComDroid [33] was one of the
first significant works to target ICC-based vulnerabilities in de-
tail, Epicc [34] and IC3 [35] extracted information about Intents
in a flow-sensitive manner. IccTA [36] and COVERT [37] iden-
tified vulnerabilities involving interaction between apps rather
than only individual apps. FlowDroid [38] performs a static
taint analysis to identify flows and privacy leakages from An-
droid API sources to sinks. Amandroid [7] is a static analysis
approach based on Soot [27] that performs inter-component,

9



and intra-component data flow point-to-point analysis. This
methodology combines FlowDroid and IccTA approaches, re-
sulting in more precise results with respect to both. DroidPa-
trol [8] identifies a list of potential vulnerabilities and proposes
quick fixes. MobSf [9] executes a plethora of security evalua-
tions. However, none of these approaches can determine pro-
gram paths and the Intents needed to execute them.

Another set of approaches relies solely on dynamic anal-
ysis to discover vulnerabilities. Buzzer [39] fuzzes Android
system services to find flaws. Stowaway [40] detects permis-
sion overprivileged dynamically. Mutchler et al. [41] look for
vulnerabilities in Android web apps. IntentDroid [24] dynami-
cally stimulates an app’s Intent interface to find flaws. None of
these strategies use static analysis, preventing them from find-
ing many potential ICC-based program paths that may lead to a
vulnerability.

A variety of approaches rely upon the conjunction of static
and dynamic analysis to detect vulnerabilities. ContentScope
[42] examines Android app Content Providers to identify in-
stances when data from those components leaked or was con-
taminated. This happens when one app manipulates the Con-
tent Provider of another app without the necessary permissions
or authorization. To avoid privilege escalation threats, IPC In-
spection [43] is an OS-based security mechanism that evaluates
an app’s privileges as it gets requests from other apps. AppAu-
dit [14] is primarily concerned with discovering privacy leak-
age vulnerabilities. However, it only conducts minimal Intent
analysis (e.g., failing to account for various Intent attributes).
AppCaulk [44] detects and stops data breaches through static
and dynamic analysis and the ability to establish data leak poli-
cies. The DynaLog [10] framework leverages existing open-
source tools to extract high-level behaviors, API calls, and crit-
ical events that can be used to examine an application. He et
al. [11] developed a tool that can first identify the third-party
libraries inside apps, then extracts call chains of the privacy
source and sink functions during its execution, and finally eval-
uates the risks of privacy leaks of the third-party libraries ac-
cording to the privacy leakage paths.

Methods such as [12] [13] also detect vulnerabilities by
combining static and dynamic analysis. Chao et al. [13] pro-
pose an approach that uses a static analysis method to obtain
some basic vulnerability analysis results for the application.
Then, the application security vulnerability is verified by means
of dynamic taint analysis and is reported to the user. Schindler
et al. [12] combine free open-source tools to support developers
in checking that their application does not introduce security is-
sues by using third-party libraries. None of these methods are
thought to generate exploits. In [45, 46] Demissie et al. present
an approach based on static analysis and automated test case
generation to generate exploits that target the Permission Re-
delegation vulnerabilities. To the best of our knowledge, Letter-
bomb [18] is the only tool that automatically generates exploits
for IDOS, XAS, and FI vulnerabilities. Letterbomb relies on
two phases. The first phase leverages combined path-sensitive
symbolic execution-based static analysis. During the second
phase, the tool tries to exploit the statically discovered vulner-
abilities by generating an Intent and sending it to the analyzed

app. However, Letterbomb only stimulates an app using the
Intents, but Intent usage can also be triggered by other events
coming from the GUI, which may result in missed vulnerabil-
ities for Letterbomb. Moreover, Letterbomb becomes inappli-
cable when the constraints to reach a certain path within the
app are too difficult to traverse. RONIN overcomes the lim-
itations of Letterbomb by automatically triggering GUI events
and by adopting a Deep RL algorithm to generate valid exploits.
Our empirical evaluation showed the superiority of our new ap-
proach w.r.t. Letterbomb.

8. Conclusion

This paper introduces RONIN, an approach for generating
exploits for Android ICC vulnerabilities through static analy-
sis, Deep Reinforcement Learning-based dynamic analysis and
software instrumentation. RONIN, achieves better results than
state-of-the-art and baseline tools, improving the number of ex-
ploited vulnerabilities. RONIN can generate three times more
unique IDOS/XAS exploits than Letterbomb and can generate
FI exploits that are missed by Letterbomb.

References

[1] Statista, Number of smartphone subscriptions worldwide from 2016 to
2027 (2022).
URL https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/

[2] StatCounter, Mobile operating system market share worldwide (2022).
URL https://gs.statcounter.com/os-market-share/
mobile/worldwide

[3] Statista, Number of available apps in the google play store from 2nd
quarter 2015 to 2nd quarter 2022 (2022).
URL https://www.statista.com/statistics/289418/
number-of-available-apps-in-the-google-play-store-quarter/

[4] W. Enck, D. Octeau, P. D. McDaniel, S. Chaudhuri, A study of android
application security., in: USENIX security symposium, Vol. 2, 2011.

[5] P. Bhattacharya, L. Ulanova, I. Neamtiu, S. C. Koduru, An empirical anal-
ysis of bug reports and bug fixing in open source android apps, in: 2013
17th European Conference on Software Maintenance and Reengineering,
2013, pp. 133–143. doi:10.1109/CSMR.2013.23.

[6] A. Sadeghi, H. Bagheri, J. Garcia, S. Malek, A taxonomy and qualita-
tive comparison of program analysis techniques for security assessment
of android software, IEEE Transactions on Software Engineering 43 (6)
(2017) 492–530. doi:10.1109/TSE.2016.2615307.

[7] F. Wei, S. Roy, X. Ou, Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android
apps, ACM Transactions on Privacy and Security (TOPS) 21 (3) (2018)
1–32.

[8] M. A. I. Talukder, H. Shahriar, K. Qian, M. Rahman, S. Ahamed, F. Wu,
E. Agu, Droidpatrol: a static analysis plugin for secure mobile software
development, in: 2019 IEEE 43rd annual computer software and applica-
tions conference (COMPSAC), Vol. 1, IEEE, 2019, pp. 565–569.

[9] MobSF, Mobile security framework (mobsf) (2022).
URL https://github.com/MobSF/
Mobile-Security-Framework-MobSF

[10] M. K. Alzaylaee, S. Y. Yerima, S. Sezer, Dynalog: An automated dynamic
analysis framework for characterizing android applications, in: 2016 In-
ternational Conference On Cyber Security And Protection Of Digital Ser-
vices (Cyber Security), IEEE, 2016, pp. 1–8.

[11] Y. He, X. Yang, B. Hu, W. Wang, Dynamic privacy leakage analysis of
android third-party libraries, Journal of Information Security and Appli-
cations 46 (2019) 259–270.

10

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/289418/number-of-available-apps-in-the-google-play-store-quarter/
https://www.statista.com/statistics/289418/number-of-available-apps-in-the-google-play-store-quarter/
https://www.statista.com/statistics/289418/number-of-available-apps-in-the-google-play-store-quarter/
https://www.statista.com/statistics/289418/number-of-available-apps-in-the-google-play-store-quarter/
https://doi.org/10.1109/CSMR.2013.23
https://doi.org/10.1109/TSE.2016.2615307
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF


[12] C. Schindler, M. Atas, T. Strametz, J. Feiner, R. Hofer, Privacy leak iden-
tification in third-party android libraries, in: 2022 Seventh International
Conference On Mobile And Secure Services (MobiSecServ), IEEE, 2022,
pp. 1–6.

[13] W. Chao, L. Qun, W. XiaoHu, R. TianYu, D. JiaHan, G. GuangXin, S. En-
Jie, An android application vulnerability mining method based on static
and dynamic analysis, in: 2020 IEEE 5th Information Technology and
Mechatronics Engineering Conference (ITOEC), IEEE, 2020, pp. 599–
603.

[14] M. Xia, L. Gong, Y. Lyu, Z. Qi, X. Liu, Effective real-time android ap-
plication auditing, in: 2015 IEEE Symposium on Security and Privacy,
IEEE, 2015, pp. 899–914.

[15] M. InfoSecurity, Drozer (2022).
URL https://github.com/WithSecureLabs/drozer

[16] ac pm, Inspeckage (2022).
URL https://github.com/ac-pm/Inspeckage

[17] sensepost, Objection (2022).
URL https://github.com/sensepost/objection

[18] J. Garcia, M. Hammad, N. Ghorbani, S. Malek, Automatic generation
of inter-component communication exploits for android applications, in:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 661–671.

[19] J. Mitra, V.-P. Ranganath, Ghera: A repository of android app vulner-
ability benchmarks, in: Proceedings of the 13th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering,
PROMISE, Association for Computing Machinery, New York, NY, USA,
2017, p. 43–52. doi:10.1145/3127005.3127010.
URL https://doi.org/10.1145/3127005.3127010

[20] Sutton, Reinforcement Learning: An Introduction, MIT Press, 2014.
[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, M. Riedmiller, Playing atari with deep reinforcement learning, arXiv
preprint arXiv:1312.5602 (2013).

[22] W. Enck, M. Ongtang, P. McDaniel, Understanding android security,
IEEE security & privacy 7 (1) (2009) 50–57.

[23] Google, Intent (2022).
URL https://developer.android.com/reference/
android/content/Intent

[24] R. Hay, O. Tripp, M. Pistoia, Dynamic detection of inter-application com-
munication vulnerabilities in android, in: Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, 2015, pp. 118–
128.

[25] F. Pagano, A. Romdhana, D. Caputo, L. Verderame, A. Merlo,
SEBASTiAn: a Static and Extensible Black-box Application Se-
curity Testing tool for iOS and Android applications (10 2022).
doi:10.36227/techrxiv.21261573.v1.
URL https://www.techrxiv.org/articles/preprint/
SEBASTiAn_a_Static_and_Extensible_Black-box_
Application_Security_Testing_tool_for_iOS_and_
Android_applications/21261573

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, W. Zaremba, Openai gym, arXiv preprint arXiv:1606.01540
(2016).

[27] S. R. Group, Soot - a framework for analyzing and transforming java and
android applications (2022).
URL http://soot-oss.github.io/soot/

[28] A. Romdhana, A. Merlo, M. Ceccato, P. Tonella, Deep reinforcement
learning for black-box testing of android apps, ACM Transactions on
Software Engineering and Methodology (2022).

[29] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, Stable baselines, https://github.
com/hill-a/stable-baselines (2018).

[30] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor
(2018). doi:10.48550/ARXIV.1801.01290.
URL https://arxiv.org/abs/1801.01290

[31] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert,
A. Radford, J. Schulman, S. Sidor, Y. Wu, Stable baselines al-
gorithms, https://stable-baselines3.readthedocs.io/
en/master/guide/algos.html (2018).

[32] A. Sadeghi, H. Bagheri, J. Garcia, S. Malek, A taxonomy and qualita-
tive comparison of program analysis techniques for security assessment
of android software, IEEE Transactions on Software Engineering 43 (6)
(2016) 492–530.

[33] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Analyzing inter-
application communication in android, in: Proceedings of the 9th inter-
national conference on Mobile systems, applications, and services, 2011,
pp. 239–252.

[34] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
Y. Le Traon, Effective {Inter-Component} communication mapping in
android: An essential step towards holistic security analysis, in: 22nd
USENIX Security Symposium (USENIX Security 13), 2013, pp. 543–
558.

[35] D. Octeau, D. Luchaup, M. Dering, S. Jha, P. McDaniel, Composite con-
stant propagation: Application to android inter-component communica-
tion analysis, in: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1, IEEE, 2015, pp. 77–88.

[36] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, P. McDaniel, Iccta: Detecting inter-
component privacy leaks in android apps, in: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1, IEEE, 2015,
pp. 280–291.

[37] H. Bagheri, A. Sadeghi, J. Garcia, S. Malek, Covert: Compositional anal-
ysis of android inter-app permission leakage, IEEE transactions on Soft-
ware Engineering 41 (9) (2015) 866–886.

[38] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, P. McDaniel, Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps, Acm Sigplan
Notices 49 (6) (2014) 259–269.

[39] C. Cao, N. Gao, P. Liu, J. Xiang, Towards analyzing the input validation
vulnerabilities associated with android system services, in: Proceedings
of the 31st Annual Computer Security Applications Conference, 2015,
pp. 361–370.

[40] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions
demystified, in: Proceedings of the 18th ACM conference on Computer
and communications security, 2011, pp. 627–638.

[41] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, G. Vigna, A large-scale
study of mobile web app security, in: Proceedings of the Mobile Security
Technologies Workshop (MoST), Vol. 50, 2015.

[42] Y. Z. X. Jiang, Detecting passive content leaks and pollution in android
applications, in: Proceedings of the 20th Network and Distributed System
Security Symposium (NDSS), 2013.

[43] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, E. Chin, Permission
re-delegation: Attacks and defenses., in: USENIX security symposium,
Vol. 30, 2011, p. 88.

[44] J. Schutte, D. Titze, J. M. De Fuentes, Appcaulk: Data leak prevention
by injecting targeted taint tracking into android apps, in: 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing
and Communications, IEEE, 2014, pp. 370–379.

[45] B. F. Demissie, M. Ceccato, Security testing of second order permis-
sion re-delegation vulnerabilities in android apps, in: Proceedings of the
IEEE/ACM 7th International Conference on Mobile Software Engineer-
ing and Systems, 2020, pp. 1–11.

[46] B. F. Demissie, M. Ceccato, L. K. Shar, Security analysis of permission
re-delegation vulnerabilities in android apps, Empirical Software Engi-
neering 25 (6) (2020) 5084–5136.

11

https://github.com/WithSecureLabs/drozer
https://github.com/WithSecureLabs/drozer
https://github.com/ac-pm/Inspeckage
https://github.com/ac-pm/Inspeckage
https://github.com/sensepost/objection
https://github.com/sensepost/objection
https://doi.org/10.1145/3127005.3127010
https://doi.org/10.1145/3127005.3127010
https://doi.org/10.1145/3127005.3127010
https://doi.org/10.1145/3127005.3127010
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://www.techrxiv.org/articles/preprint/SEBASTiAn_a_Static_and_Extensible_Black-box_Application_Security_Testing_tool_for_iOS_and_Android_applications/21261573
https://www.techrxiv.org/articles/preprint/SEBASTiAn_a_Static_and_Extensible_Black-box_Application_Security_Testing_tool_for_iOS_and_Android_applications/21261573
https://doi.org/10.36227/techrxiv.21261573.v1
https://www.techrxiv.org/articles/preprint/SEBASTiAn_a_Static_and_Extensible_Black-box_Application_Security_Testing_tool_for_iOS_and_Android_applications/21261573
https://www.techrxiv.org/articles/preprint/SEBASTiAn_a_Static_and_Extensible_Black-box_Application_Security_Testing_tool_for_iOS_and_Android_applications/21261573
https://www.techrxiv.org/articles/preprint/SEBASTiAn_a_Static_and_Extensible_Black-box_Application_Security_Testing_tool_for_iOS_and_Android_applications/21261573
https://www.techrxiv.org/articles/preprint/SEBASTiAn_a_Static_and_Extensible_Black-box_Application_Security_Testing_tool_for_iOS_and_Android_applications/21261573
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://doi.org/10.48550/ARXIV.1801.01290
https://arxiv.org/abs/1801.01290
https://stable-baselines3.readthedocs.io/en/master/guide/algos.html
https://stable-baselines3.readthedocs.io/en/master/guide/algos.html

	Introduction
	Background
	Reinforcement Learning
	Android Background
	Vulnerabilities related to ICC Channels

	RONIN: Approach
	Static Phase: Vulnerability Identifier
	Static Phase: Oracle Instrumenter
	Dynamic Phase: Overview
	Dynamic Phase: Deep RL and GUI Events
	Dynamic Phase: Deep RL

	Implementation
	Tool Overview
	ICC Environment
	Algorithm Implementation

	Evaluation
	Evaluation Design
	Evaluation Procedure

	Experimental Results
	RQ1: Exploit Generation
	RQ2: Comparison with Letterbomb on Ghera
	RQ3: Comparison with Letterbomb in the Wild
	RQ4: Disabling GUI Events
	RQ5: DeepRL vs Random

	Related Works
	Conclusion

