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Abstract—It is necessary to control contact force through 

modulation of joint stiffness in addition to the position of our limb 
when manipulating an object. This is achieved by contracting the 
agonist muscles in an appropriate magnitude, as well as, balancing 
it with contraction of the antagonist muscles. Here we develop a 
decoding technique that estimates both the position and torque of 
a joint of the limb in interaction with an environment based on 
activities of the agonist-antagonistic muscle pairs using 
electromyography in real time. The long short-term memory 
(LSTM) network that is capable of learning time series of a long-
time span with varying time lags is employed as the core processor 
of the proposed technique. We tested both the unidirectional 
LSTM network and bidirectional LSTM network. A validation 
was conducted on the wrist joint moving along a given trajectory 
under resistance generated by a robot. The decoding approach 
provided an agreement of greater than 93% in kinetics (i.e. torque) 
estimation and an agreement of greater than 83% in kinematics 
(i.e. angle) estimation, between the actual and estimated variables, 
during interactions with an environment. We found no significant 
differences in performance between the unidirectional LSTM and 
bidirectional LSTM as the learning device of the proposed 
decoding method.   
 

Index Terms—Human-machine interaction, Electromyography 
(EMG), Decoding, Machine learning, Prosthesis. 
 

I. INTRODUCTION 

N usual interactions with an object, human behaviors 
are described in neither an isometric manner nor an 

isotonic manner. When grasping or manipulating an 
object, the human regulates the position of the limb, while 
maintaining appropriate contact force or stiffness to 
perform a given task. Torque to position the limb toward 
the target is produced by differences between contractions 
of agonist and antagonist muscles about a joint. Joint 
stiffness increases when both agonist and antagonist 
muscles are simultaneously activated. It may be necessary 
to consider both the position and stiffness (or contact 
force) in controlling robot manipulators or prosthetic 
devices that replace the user’s limb. 
 

Surface electromyography (EMG) is recognized as a 
preferred interface versus other input media including a 
joystick or a haptic device with which mechanism that the 
user should be acquaint [1-5].  Indeed, frequent attempts 
to use surface EMG to decode limb kinematics or kinetics 
have been made through pattern recognition or regression 
(mapping EMG to angle or force) for controlling 
prosthetic devices or teleoperated robots [6-11]. Despite 
the need of taking both kinematics and kinetics in design 
of interactive devices into account, only the isometric 
condition or isotonic condition is considered in most 
EMG-based control applications. Kinematic data or 
kinetic data were obtained with no resistance to motions 
of participants involved or with the joint angle entirely 
restricted. It may be thought to be less useful or less 
realistic for applications in interactive environments 
which typically drive force exertion as well as motion.  
A few studies focused on simultaneous estimation 
schemes for joint angle and torque (stiffness) based on 
EMG signals. The majority of the simultaneous 
estimation schemes rely on mathematical models based 
on the intuitive fact [12-14]. These models predict the 
position of a joint based on the difference between flexor 
and extensor activations, while estimating stiffness using 
simultaneous activations of the flexor and extensor. 
Though these methods are capable of efficiently 
deciphering the user’s intention, the prediction accuracy 
of these methods is relatively low [12-14]. A significant 
improvement was achieved in a study that adopted hidden 
variables to model unobserved and intrinsic system states 
between muscle activation and limb kinematics/kinetics, 
linking the hidden variables with muscle activation and 
limb kinematics/kinetics using an optimization technique  
[15]. 
 
Nowadays, machine learning is one of the exploding 
application fields that enables one to predict outcomes of 
interest in a robust and accurate way based on a trained 
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black box that maps the inputs to the outputs. Certainly, 
machine learning techniques have been a tool in 
developing EMG-based decoding methods. Several 
studies have demonstrated the excellent performance of 
machine learning techniques in myoelectrically driven 
applications using surface EMG [10, 16-21]. Still, these 
are restricted solely to decoding either kinematics or 
kinetics only, however. The purpose of this study is to 
develop a method for EMG-based decoding of both joint 
kinematics and kinetics utilizing the power of machine 
learning.  
 
The time dependency of EMG signals is high; 
instantaneous EMG is also informative. It is a typical way 
to extract features from EMG signals with a time window 
of samples in a range between 50 ms and 500 ms [19, 22-
24]. Storage of history of the related information is 
required for processing EMG accordingly. The recurrent 
neural network (RNN) is known as a suitable network for 
processing sequential data by transferring information 
across time steps via hidden states, which enables the 
history of a sequence to be stored in the networks. 
Traditional RNNs, however, expose a disadvantage of the 
requirement for time lags to be predetermined to learn 
temporal sequence processing [25]. RNNs may not be 
fully appropriate to capture human movements that are 
often aperiodic in daily life, though they are a 
reciprocating action. As a variant of RNN, the long short-
term memory (LSTM) neural network was devised to 
learn time series with a long time span and determine 
optimal time lags for prediction [26]. Indeed, LSTM 
neural networks have produced successful applications in 
various areas with strong time dependency, including 
speech recognition [27] and human action recognition 
[28-30]. LSTM neural networks are an excellent 
candidate to decode human motion based on EMG 
signals. Recently, an EMG-based kinematics decoding 
method that combined LSTM neural network with 
convolutional neural network was proposed [19]. 
 
The proposed EMG decoding method of both joint 
kinematics and kinetics stands on unidirectional LSTM 
and bidirectional LSTM neural networks. We evaluate its 
performance in estimating the wrist angle and torque 
based on surface EMGs of a pair of wrist flexor and 
extensor muscles. While several magnitudes of resistance 
are imposed on the wrist joint by a robot, participants are 
asked to move their wrist joint according to given 
trajectories. To examine the efficacy of LSTM neural 
networks in learning time series with long time spans 
using varying time lags for prediction of the angle and 
torque of the wrist joint, we present different trajectories 
with irregularity and aperiodicity to the participants for 
the training and evaluation phases of the decoding 

procedure, respectively. This effort would provide an 
insight into the predictability of unlearned motions by the 
proposed technique based on learned motions. A 
comparison with a decoding method that possesses no 
device for time dependency of data demonstrates the 
proposed method’s advantageous capability of learning a 
long time-span data for EMG-based decoding of 
kinematics and kinetics. Part of this study was presented 
in a conference [31]. 

II. METHODS 

A. Participants 

  The experiment was approved by the Institutional 
Review Board at the University of Maryland. All 
participants gave written informed consent. A total of 8 
volunteers (4 female, 4 male), ranging in age from 23 to 
41 years (33.25 ± 7.94 standard deviation), took part in 
the study. All participants reported that they had no 
neurological or motor deficit and that they were right-
handed.  
 

B. Apparatus 

  A one degree-of-freedom robot for the wrist joint was 
developed. The motor (LS Mecapion, APM-SA01ACN-
8) embedded an encoder of a resolution of 2048 pulses per 
revolution and was connected with a Harmonic Drive gear 
with a ratio of 50:1. A torque sensor (Transducer 
Techniques, TRT-200) was installed between the 
Harmonic Drive and the hand plate. A custom Advanced 
Motion Controls (AMC) drive was used to convert the 
motor command into the current to the motor.  
 
Two wireless pre-amplified surface EMG electrodes 
(Delsys, Trigno) were used to acquire EMG signals from 
the flexor carpi radialis (FCR), and extensor carpi radialis 
(ECR) muscles.  
 
A monitor was placed in front of the participant with a 
distance of about half meter to display wrist flexion 
trajectories to follow. Fig. 1 displays the schematic of the 
experimental setup. 
 
Data processing including feature extraction as well as 
data acquisition and motor control were conducted in a 
LabVIEW environment through a data acquisition card 
(Texas Instruments, PCI-6225). The sampling rate for all 
data was set at 1000 Hz.  
 
The EMG-based decoder was developed and performed 
utilizing Matlab Deep Learning Toolbox™ (MathWorks, 
Matlab 2018b). EMG features calculated in the LabVIEW 
program were exchanged with estimated angle and torque 
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produced in Matlab through UDP (User datagram 
protocol) communication.   
 

C. Signal Processing 

Raw EMG signals were differenced prior to feature 
extraction, since differencing enables EMG signals to be 
more stationary than original signals [43]. We extracted 
the features of EMG signals using root mean square 
(RMS) values and the coefficients of 6th-order 
autoregressive (AR) models [44,45]. 

 

D. Decoder Development 

1) Decoder Architecture 
The architecture of the proposed decoder was formed 

with the sequence input layer, LSTM neural network, 
fully connected layer, dropout layer, again fully 
connected layer, and regression layer in turn. The 
sequence input layer transferred the sequence data (EMG 
features) to the LSTM network. A delay of 48 ms (due to 
the inherent delay of the EMG sensors we employed) was 
incorporated with the EMG signals to account for the 
electromechanical delay from muscle activation to the 
resulting force production. The two fully connected layers 
linked every output element in the previous step with 
every input element in the next step. The output size of 
the first fully connected layer was set as 150, while the 
output size of the second one was set as 2. The dropout 
layer set input elements to zero randomly, with a 
probability of 0.5. The regression layer dealt with the 
regression problem between the actual and predicted 
values of angle and torque. The architecture of the 
proposed decoding strategy is presented in Fig. 2. 
 

During the training phase, the decoder was trained with 
the EMG features as the input and the profiles of joint 
angle and torque as the output. These features (2 RMS 
values+12 coefficients of AR models) were extracted 
from EMG signals with a time window, while the profiles 
of joint angle and torque were averaged over the time 
window. We confirmed that the best performance was 
made when the number of the coefficients of AR models 
was 12 in a preliminary study. During evaluation, the 
trained decoder estimated the profiles of joint angle and 
torque according to the EMG features that were extracted 
from EMG signals with the time window.  
 
In this study, the time window was set as 100 ms. In a 
preliminary study we found that the time window of 100 
ms provided the best performance of the proposed method 
for prediction accuracy. The number of hidden units in the 
LSTM neural network was set to be 200. The number of 
the learnable parameters in the LSTM neural network was 
estimated as 136. No further notable improvement in 
estimation accuracy was seen beyond the number. 
 
2) LSTM Neural Network 
    A unidirectional LSTM neural network consisted of an 
input layer, LSTM layer (hidden layer) and output layer 

 
 

Fig. 1.  Experimental setup: A participant sits on a chair with a specific arm 
configuration on the right side: 45 degree abduction and 45 degree flexion at
the shoulder, 50 degree flexion at the elbow. Two wireless surface EMG 
electrodes are placed on the FCR and ECR muscles. A monitor displays the 
wrist flexion trajectories for the participant to follow.   

Fig. 3.  A schematic of an (unidirectional) LSTM network.  A relationship 
between the input vector x and output layer y is formed by activation vectors 
produced by the cell, and the input, output and forget gates. The input gate (i) 
modulates the input to the cell (c), the forget gate (f) allows the LSTM block 
to forget the previous memory, and the output gate (o) determines the output 
of the hidden layer. 
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Fig. 2.  The architecture of the proposed decoding strategy. The proposed 
decoder consists of multiple steps between the input (EMG features) and 
output (joint angle and torque); EMG features go through the sequence of
input layer, LSTM neural network, fully connected layer, dropout layer, fully 
connected layer again, and regression layer. The angle and torque estimations 
are achieved through this procedure. 
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(see Fig. 3). The LSTM layer was filled with multiple 
LSTM blocks that included a cell with self-connections 
for storing temporal states and a pair of adaptive, 
multiplicative gating units. The cell (c) was responsible 
for tracking the dependencies between the elements in the 
input sequence. The forget gate (f) was responsible for 
removing information from the cell state once the 
information was out of date. The input and output 
activations were controlled by the input gate (i) and output 
gate (o). The input gate governed a new value that flows 
into the cell, while the output gate governed the value in 
the cell that was used to compute the output activation. 
 
While unidirectional LSTM neural networks learn the 
time dependencies of the input data that are 
chronologically ordered in a positive direction from time 
step k−1 to time step k, bidirectional LSTM neural 
networks additionally learn the dependencies of the 
reverse-chronological ordered input data to exploit more 
information. Fig. 4 depicts a bidirectional LSTM network 
that consists of a backward layer as well as a forward layer 

to learn the backward and forward dependencies of the 
input data. 
 
Through the sequence input layer, EMG features (vector 
x ∈ 𝐑ఈ) were admitted by the LSTM neural network and 
outputs (vector y ∈ 𝐑ఉ)  were processed that led to the 
corresponding angle and torque through the fully 
connected layer, dropout layer, and regression layer. The 
dimensions 𝛼 and 𝛽 denoted the number of input features 
(14: 2 RMS values and 12 coefficients of AR models) and 
number of hidden units (200), respectively. A relationship 
between vector x and vector y at time point k of the LSTM 
neural network was identified using the following 
equations: 
 
𝒊௞ = 𝜎(𝑾௜𝒙௞ + 𝑼௜𝒉௞ିଵ + 𝒃௜),                                                  (1) 
𝒇௞ = 𝜎൫𝑾௙𝒙௞ + 𝑼௙𝒉௞ିଵ + 𝒃௙൯,                                                (2) 
𝒐௞ = 𝜎(𝑾௢𝒙௞ + 𝑼௢𝒉௞ିଵ + 𝒃௢),                                           (3) 
𝒄௞ = 𝒇௞ ⊚ 𝒄௞ିଵ + 𝒊௞ ⊚ tanh(𝑾௖𝒙௞ + 𝑼௖𝒉௞ିଵ + 𝒃௖),       (4) 

𝒉௞ = 𝒐௞ ⊚ tanh(𝒄௞),                                                                (5) 
𝒚௞ = 𝑼௬𝒉௞ + 𝒃௬ ,                                                                           (6) 
 
where σ(∙) is the sigmoid function and the operator ⊚ is 
the scalar product of two vectors.  i, f, o,  and c ∈

𝐑ఉ denote the activation vectors of the input, forget, 
output, and cell gates, respectively. h ∈ 𝐑ఉ denotes the 
hidden state of the hidden layer. The input weight 
matrices W ∈ 𝐑ఉ×ఈ quantifies the connection of the input 
vector x with the input state i, forget state f, output state 
o, cell state c, or output y. The recurrent weight matrices 
U ∈ 𝐑ఉ×ఉ  quantifies the connection of the hidden state h 
with the input gate i, forget gate f, output gate o, cell state 
c, or output vector y. The vector b ∈ 𝐑ఉ denotes the biases 
of these connections.   
 
For neural network training, a total of 180 epochs within 
which a satisfactory performance could be achieved were 
used. The loss function between the measured values 𝒚 
and the predictions 𝒚ෝ was employed as  
 

𝐿 =
ଵ

ே
∑ ቀ

ଵ

ோ
∑ |𝒚𝒏𝒊 − 𝒚ෝ𝒏𝒊|ோ

௜ୀଵ ቁே
௡ୀଵ ,                                   (7) 

 
where N is the number of observations and R is the 
number of responses. 
 
E. Experiment procedure 
  The experiment was composed of 3 stages in each of 
which different magnitudes of resistance were imposed 
on the wrist joint by the wrist robot. In the first stage, the 
robot was designed to produce minimized resistance 
(Soft), using an impedance control technique derived 
from the one (rigid mode) presented in [32], while 
resistance with a stiffness of 0.005 Nm/deg (Less Hard) 
and 0.03 Nm/deg (Hard) was imposed for the second and 
third stages, respectively, using proportional control (P 
control, see Fig. 5). The resistive torque was 0 at the 
neutral position of the wrist joint. To overcome the 
resistance by the robot, the participants need to generate a 
sufficient magnitude of torque at the joint through 
contraction of the agonist muscles. As well, they are 
required to modulate joint stiffness to follow the given 
trajectory as accurately as possible through co-contraction 

 
Fig. 5. Schematics of wrist joint movements in the presence of (a) zero 
resistance, (b) resistance with a stiffness of 0.005 Nm/deg and (c) resistance 
of 0.02 Nm/deg. The resistive torque is 0 at the neutral position (black thick 
line) of the wrist joint. 
 

 
Fig. 4.  A schematic of a bidirectional LSTM network.  A bidirectional LSTM 
network consists of a backward layer and a forward layer to learn the backward 
and forward dependencies of the input data. 

⋯

Forward LSTM layer

𝒉(𝑘 − 1)𝒉(𝑘 − 2)𝒉(𝑘 − 3)

𝒙(𝑘)𝒙(𝑘 − 1)𝒙(𝑘 − 2)

⋯

⋯

𝒉(𝑘)

Output layer 𝒚(𝑘)

Input layer

LTSM block LTSM block LTSM block

𝒉(𝑘 − 1)𝒉(𝑘 − 2)𝒉(𝑘 − 3)⋯
𝒉(𝑘)

LTSM block LTSM block LTSM block

Backward LSTM layer

𝜎

𝒚(𝑘 − 1)

𝜎

𝒚(𝑘 − 2)

𝜎⋯ ⋯

⋯



Kim et al.  TBME-01171-2020 

 

of the agonist-antagonist muscles. By imposing different 
magnitudes of resistance, we assess the performance of 
the proposed technique to decode joint torque as well as 
joint angle, and accordingly, joint stiffness. Each stage 
consisted of a training phase and evaluation phase, and 
each phase lasted about 80 seconds. A break time of 2 
minutes was provided after each phase to mitigate the 
fatigue effect.  
 
All participants sat on a chair in a comfortable posture but 
with a specific arm configuration on the right side: 45 
degree abduction and 45 degree flexion in the shoulder, 
50 degree flexion in the elbow. We set the neutral position 
of the wrist joint as 0 degrees. Participants were asked to 

move their right wrist joint, tracking a respective given 
trajectory for each phase (Fig. 6). These trajectories were 
generated using the X signal of a chaotic system to be 
irregular, aperiodic and of wide bandwidth [33]. The 
chaotic system is equated as: 
 

𝑥̇ = a(y − x), 
                                   𝑦̇ = −xz + cy,                               (8) 

𝑧̇ = 𝑦ଶ − 𝑏𝑧, 
where the parameters were selected as a = 35, b = 3, and 
c = 25 (employed from [33]). 
 
The amplitude of the trajectories was bounded at ±50 
degrees and their back-and-forth movement frequency 
was within about 0.6 Hz. The range of the amplitude 
covers the range of motion of the wrist joint for activities 
of daily living [34], the designed motion speed, which 
varied with time, can be regarded modest in daily life, 
based on [35].  
 

F. Performance Evaluation 

  First, we analyzed the outcomes of the experiment. 
Means by each case across trial of the RMS values of the 
angle and torque calculated over each time window were 
evaluated to compare wrist joint displacements and torque 
generation according to the extent of resistance. To 
estimate changes in wrist joint stiffness according to the 
increases in resistance by the robot, the averaged 
instantaneous stiffness (partial derivative of the torque 
versus angle curve) was calculated.  
 
To assess similarity in each participant between the data 
acquired during training and the data acquired during 
evaluation, we utilized the 12 coefficients of the AR 
model of EMG signals. Different inputs meant different 
outputs (i.e. angle and torque). By comparing the values 
of the coefficients of EMG signals for each time window 
during training with those of the corresponding 
coefficients for every time window during evaluation, we 
examined whether or not the data used to train the decoder 
were used for the evaluation phase. Similarity can be 
indexed as the minimum value of the summations of the 
differences in the values of the 12 coefficients throughout 
all time windows between the training and evaluation 
phases. While the difference in the values for each 
coefficient was ranged within 0 and 1, the index of 0 
indicated that at least one same input of EMG existed in 
both the training and evaluation phases.   
 
To evaluate the performance of the proposed decoding 
method with the unidirectional LSTM and bidirectional 
LSTM, a single decoder for each individual was trained 
with EMG features as the input and with joint angle and 
torque data as the output acquired throughout the training 
phase. The performance of the decoding strategy was 
evaluated by examining how accurately the joint angle 
and torque were predicted, respectively, by the trained 
decoder based on EMG signals during the evaluation 
phase. The variance accounted for (VAF) between the 
measured and predicted joint angle and between the 
measured joint torque and predicted joint torque was 
computed, respectively. The VAF is defined as 
 

                        VAF = ቀ1 −
௩௔௥௜௔௡௖௘(௬ି௬ො)

௩௔௥௜௔௡௖௘(௬)
ቁ,                  (9) 

where 𝑦  denotes measured values, while 𝑦ො denotes 
estimated values. 
 
For a comparative study, RNN and a generalized linear 
model (GLM) [24] for the regression problem were 
selected. While the same feature extraction (explained 
above) was used, the raw EMG signals were bandpass 
filtered (20-400 Hz) for a better performance of GLM. 
The time window was set as 10 ms or 20 ms, across 

(a) 

(b)         

      
Fig. 6. Examples of trajectories given for each phase: (a) the training phase 
and (b) evaluation phase. Different trajectories are generated using a chaotic 
system by modulating its initial values. An angle of 0 degrees indicates the 
neutral position of the wrist joint. An angle of positive values is during 
extension, whereas an angle of negative values is during flexion. 
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subjects, for the RNN approach, while it was selected as 
300 ms for the GLM approach, which produced the best 
performance. The number of hidden units in the RNN 
decoder was selected as 50. No further improvement in 
estimation accuracy was observed with more hidden units 
for RNN.  
 
For the ease of data analysis, we first finished collecting 
all data and simulated the real-time circumstance to 
evaluate the online performance of the decoding 
technique. For evaluation, the acquired EMG data during 
the evaluation phase were read and processed to the EMG 
features in the LabVIEW program.  The EMG features 
were then transferred via UDP to the decoder that had 
been trained in the secondary PC with the data acquired 
during the training phase, and the decoder sent out the 
predicted values back to the LabVIEW program. A 
comparison between the actual and predicted values 
(angle and torque) was made then. 
 

G. Statistical Analysis 

A repeated-measures analysis of variance (ANOVA), 
with case (three levels: Soft, Less Hard and Hard) as a 
within-subjects variable, was used to evaluate the degrees 
of movement, contact force and stiffness across repeated 
measurements. A mixed-design ANOVA, with case as a 
within-subjects variable and decoding method as a 
between-subjects variable, was employed to compare the 
performances of decoding approaches. If the sphericity 
assumption in ANOVAs was violated, then Greenhouse-
Geisser adjusted p-values were used. Bonferroni post-hoc 
tests were conducted if pairwise comparisons were 
needed. The statistical analyses were performed with 
SPSS version 20.0 (SPSS Inc., Chicago, USA) and the 
significance level was set at 0.05. All analyses were 
preceded by Shapiro–Wilk tests of normality and their 
results were employed only when normality was not 
violated.  
 

III. RESULTS 

  First, we evaluated our experimental design that was 
aimed at eliciting different magnitudes of contact force 
and joint stiffness across cases while maintaining similar 
magnitudes of the angular displacement of the wrist joint 
(see Fig. 7). 
 
It was reported that the mean across trial of the RMS 
values of the angle calculated over each time window had 
no significant main effect of case, implying that 
participants made similar amounts of movement during 
trials in each case. 
 
ANOVA on the mean across trial of the RMS values of 
the torque calculated over each time window reported a 
significant main effect of case [F(2,14)=1272.344, p < 
0.001 ].  Pairwise comparisons revealed significant 
differences between case Soft and case Less Hard (p < 
0.001) and between case Less Hard and case Hard (p < 
0.05). These results suggested that participants generated 
greater joint torque in case Hard to overcome the 
resistance by the robot than in case Less Hard that caused 
greater torque in comparison to case Soft. 
 
ANOVA on stiffness revealed a significant main effect of 
case [F(2,14)=97.040, p < 0.001]. Pairwise comparisons 
revealed significant differences between case Soft and 
case Less Hard (p < 0.001) and between case Less Hard 
and case Hard (p < 0.001). These results suggested that 
participants employed stiffer wrist joint as the resistance 
by the robot was greater. 
 
The similarity index for each participant was identified as 
a value above 0.276.  These results indicated that none of 
the inputs used to train the decoder of each participant was 
the same as those used for evaluation.  
 
With the new inputs that were not observed in the data 
sets for decoder training, the proposed decoding method 
in general showed an agreement of greater than 0.83 in 
VAF for angle estimation and an agreement of greater 

Fig. 7. Means by each case across trial of the RMS values of (a) the angle and (b) torque calculated over each time window, and (c) means by each case of 
instantaneous stiffness during the trial. 
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than 0.93 for torque estimation, between the actual and 
estimated variables, during interactions with an 
environment (cases Less Hard and Hard).  
 
The proposed decoding technique incorporated with a 
unidirectional LSTM network produced a VAF of 
0.8307±0.0176 (mean±s.d.) and 0.9105±0.0564 in 
average during cases Less Hard and Hard, respectively, 
while it produced a VAF of 0.8083±0.0107 in average 
during case Soft, for angle estimation. For torque 
estimation, a VAF of 0.9297±0.0034 and 0.9552±0.0010 
in average was seen during cases Less Hard and Hard, 
respectively. VAFs between the measured and predicted 
joint torque for case Soft were not computed, since the 
noise component was dominant in measured joint torque 
for this case where the measured torque was assumed to 
be around zero. The noise component is difficult to be 
predicted by the proposed decoding method.  Fig. 8 shows 
the results of a representative participant with the 
unidirectional LSTM. The trajectories of the original 
angle and torque and the corresponding trajectories 
averaged over the time window of 100 ms closely 
overlapped with each other. This implies that beside the 
50ms electromechanical delay, there is no extra delay in 

estimating outputs using the EMG features that were 
computed based on the past 150 to 50 ms EMG signals 
within the time window of 100 ms. 
 
For the performance created by the bidirectional LSTM, 
a VAF of 0.8414±0.0331 and 0.8700±0.0373 in average 
for angle estimation was recorded during cases Less Hard 
and Hard, respectively. For torque estimation, a VAF of 
0.9335±0.0193 and 0.9515±0.0168 in average was seen 
during cases Less Hard and Hard, respectively. The 
decoder with the bidirectional LSTM produced a VAF of 
0.7231 in average for position estimation during case 
Soft. Fig. 9 displays the results of the representative 
participant with the bidirectional LSTM. 
 
For RNN, a VAF of 0.5914±0.0923, 0.6200±0.0359 and 
0.6508±0.0986 for angle estimation was seen during 
cases Soft, Less Hard and Hard, respectively. For torque 
estimation, a VAF of 0.8762±0.0100 and 0.8763±0.0129 
was observed during cases Less Hard and Hard, 
respectively. 
 
For GLM, a VAF of 0.2451±0.1210, 0.3435±0.0580 and 
0.4924±0.0372 for angle estimation was recorded during 
cases Soft, Less Hard and Hard, respectively. For torque 
estimation, a VAF of 0.6755±0.0381 and 0.7324±0.0076 
was seen during cases Less Hard and Hard, respectively. 
 

Fig. 8. Results by the unidirectional LSTM network of Subject 3. The 
trajectories of the measured and predicted joint angle (a) and the trajectories of 
the measured and predicted joint torque (b) for each case are displayed. The 
corresponding raw EMG signals of the ECR muscle (c) and FCR muscle (d) are 
presented. The proposed decoding method predicts the trajectory of the 
angle/torque averaged over the time window of 100 ms based on EMG signals, 
and the predicted trajectory (solid line) closely follows the trajectory (dashed 
line) of the original angle/torque (dotted line) averaged over the time window of 
100 ms. The original trajectory and averaged trajectory closely overlap. The 
technique shows a VAF of 0.8845 and 0.9427 in the cases of Less Hard and 
Hard, respectively, while it shows a VAF of 0.8351 in the Soft case, for position 
estimation. For torque estimation, a VAF of 0.9459 and 0.9614 are recorded in 
the cases of Less Hard and Hard, respectively. 
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ANOVA reported a significant main effect of decoding 
method for angle estimation [F(3,28) = 60.140, p < 0.001, 
𝜂௉

ଶ  =0.866]. Pairwise comparisons showed that there were 
no significant differences in performance between the 
unidirectional LSTM and bidirectional LSTM as the 
learning device of the proposed decoding methods, 
whereas these methods outperformed the methods with 
RNN and GLM (p < 0.001). A significant main effect of 
decoding method was observed for torque estimation 
[F(3,28) = 12.067, p < 0.001, 𝜂௉

ଶ  =0.564]. Pairwise 
comparisons showed that there were no significant 
differences in performance among the unidirectional 
LSTM, bidirectional LSTM and RNN as a learning device 
while the method with GLM marked the lowest accuracy 
(p < 0.005). Significant differences between decoding 
methods for each case are displayed in Fig. 10. 
 
ANOVA revealed a significant main effect of case for 
angle estimation [F(1.492,41.773) = 14.481, p < 0.001,  
𝜂௉

ଶ  =0.341] and torque estimation [F(1,28) = 7.550, p < 
0.05, 𝜂௉

ଶ  =0.212]. These results suggest that greater 
accuracy appears in case Hard than in case Less Hard and 
greater accuracy appears in case Less Hard than in case 
Soft for angle estimation while greater accuracy is 
exhibited in case Hard than in case Less Hard for torque 
estimation.  

IV. DISCUSSIONS 

When we pick up either a tomato or an apple, different 
magnitudes of contact force are required, relying 
primarily on somatosensory feedback. If contact force is 
excessive, the fruit can burst. If contact force is 
insufficient, it can be dropped from the hand. All the 
while, movements of the fingers are involved in holding 
the object. Though it is possible for a robot manipulator 
or a computer-controlled prosthesis to deal with this 
problem through position/force hybrid control or 
impedance control, both 'contact force' and 'position' must 
be in control of the user when the operation is driven by 
the user’s biological signals.  

In this study, an EMG-based decoding method was 
proposed that predicts the position and torque of the wrist 
joint simultaneously. Numerous attempts have been made 
in an effort to decipher the user’s intention through EMG 
interfaces [3, 10, 16, 36, 37], but the majority of these 
techniques tends to be concentrated on human movement 
decoding, despite the need of consideration in design of 
interactions with environments. Relatively few studies 
have been launched to develop decoding strategies that 
predict both kinematics and kinetics (or stiffness).  
 
In our experiments, three levels of resistance were 
imposed on the wrist joint, while participants tracked the 
given trajectories with similar amplitudes. As resistance 
increased, it was required for participants to generate 
greater torque to overcome resistance through contraction 
of the agonist muscles. Meanwhile, it was required to 
modulate joint stiffness to follow the given trajectory as 
accurately as possible through contraction of the 
antagonist muscles, balancing it with contraction of the 
agonist muscles [38-40]. Therefore, the experiment 
design is thought to provide an insight into human motor 
control in terms of joint movement as well as joint 
stiffness during a given task. Indeed, the results showed 
that torque production increased as greater resistance was 
imposed on the wrist, while the amplitudes of joint 
movement remained the similar across cases. 
Correspondingly, joint stiffness increased to counteract 
the increased resistance by the robot.  
 
Overall, the proposed decoding method produces an 
agreement of greater than 93% in torque estimation and 
an agreement of greater than 83% in angle estimation, 
between the actual and estimated values, during 
interactions with an environment. The proposed decoder 
based on (unidirectional or bidirectional) LSTM neural 
networks is superior in estimation performance to the 
decoders based on RNN and GLM, as presented in Fig. 9. 
In particular, the decoders with LSTM neural networks 

 
Fig. 9. Results by the bidirectional LSTM network of Subject 3. The trajectories 
of the measured and predicted joint angle (a) and the trajectories of the 
measured and predicted joint torque (b), and the corresponding raw EMG 
signals of the ECR muscle (c) and FCR muscle (d) are exhibited. The technique 
shows a VAF of 0.9284 and 0.9152 in the cases of Less Hard and Hard,
respectively, while it shows a VAF of 0.7416 in the Soft case, for position 
estimation. For torque estimation, a VAF of 0.9305 and 0.9683 are recorded in 
the cases of Less Hard and Hard, respectively. 
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produce significantly greater accuracy in angle 
estimation, in comparison with the decoders based on 
RNN and GLM (p < 0.05).  
 
Accuracy is greater in estimations of the angle and torque 
during case Hard, followed by cases Soft and Less Hard 
in turn (p < 0.05). It may be because stronger resistance 
causes more muscle activation while achieving 
movements of the same amplitude, which makes clear the 
difference between the phases of contraction and non-
contraction of the target muscle.  
 
The proposed decoding method employed a machine 
learning technique. Machine learning has recently 
attracted extraordinary attention as a tool highly efficient 
to relate two parties that look difficult to be related. 
Several studies demonstrated the superiority of neural 
networks in myoelectrically driven applications using 
surface EMG [10, 16-20]. In particular, LSTM neural 
networks are able to automatically determine the optimal 
time lags and learn the time series with longtime spans. 
Indeed, our proposed method estimated participants’ 
movement and force with an excellent agreement, though 
the decoder was not trained with the similar trajectories 
used for evaluation. As observed in Fig. 6, the two 
trajectories for the training and evaluation phases, 

respectively, are highly irregular, aperiodic and different 
from each other. The two trajectories lead to inputs for the 
training phase that are not shared with those for the 
evaluation phase. These results imply the strength of the 
proposed method that is based on what the decoder is 
trained using varying time lags in estimating the angle and 
torque with new inputs resulting from a series of different 
trajectories of motion [41]. In our related study, we 
demonstrated that the decoding strategy with LSTM 
neural networks is superior in coping with the data with a 
long-time span [31]. This feature is advantageous in that 
unlearned trajectories of motion can be predicted from 
learned trajectories of motion.  
 
The suitability and superiority of the proposed method 
that employs LSTM neural networks in EMG-based 
decoding tasks are pronounced from the comparisons 
with the decoders that employ RNN and GLM. RNN is 
characterized by fixed time lags in training. Lower 
accuracy of the RNN decoder implies that varying time 
lags in training is more efficient in learning biological 
signals than fixed time lags. The results of the decoder 
with GLM indicates the lack of the capability in the 
regression-based method to deal with the time 
dependency of EMG signals. This method searches the 
coefficients of the regression model through the 

Fig. 10. A comparison of the proposed decoders incorporated with the unidirectional LSTM and bidirectional LSTM with the decoders based on RNN and GLM.  
VAFs averaged across all participants for each case and the corresponding standard deviations are presented. VAFs between the measured and predicted joint torque 
for case Soft are not evaluated; the noise component that is difficult to be predicted is dominant in measured joint torque for CASE 1 where the measured torque is 
nearly zero in the ideal condition. 
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relationships of the input and output at the same time 
point.   
 
We showed no significant differences in performance 
between the decoder with the unidirectional LSTM and 
the decoder with the bidirectional LSTM. Unidirectional 
LSTM neural networks make use of only the forward 
dependency of time series data which are chronologically 
arranged. Meanwhile, bidirectional LSTM neural 
networks make use of both the forward and backward 
dependencies of data. It was reported that in the case that 
the time series data show periodicity and regularity, 
bidirectional LSTM neural networks outperform 
unidirectional LSTM neural networks [42]. The fact that 
our data are highly irregular and aperiodic primarily leads 
to no significant differences in performance between the 
two decoders. 
 

V. CONCLUSION 

We have proposed an EMG-based decoding technique for 
simultaneous estimation of the position and torque of a 
joint of the limb in interaction with environments, 
employing LSTM neural networks. The proposed method 
that admits the advantages of LSTM networks showed 
superior performance in simultaneous estimation of the 
position and torque by dealing with high time dependency 
of EMG inputs. The decoding results showed an 
agreement of greater than 93% in torque estimation and 
an agreement of greater than 83% in angle estimation, 
between the actual and estimated values, during 
interactions with an environment. Through a comparative 
study, we demonstrated the suitability and superiority of 
the proposed method based on LSTM neural networks 
with the capability of learning a long time-span data with 
varying time lags.  
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