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Cellular coverage probability is independent of base
station density under stochastic geometric models

Hamed Nassar, Gehad Taher, and El-Sayed El-Hady,

Abstract—Stochastic geometry (SG) has been extensively used
to model cellular communications, under the assumption that the
base stations (BS) are deployed as a Poisson point process in the
Euclidean plane. This has spawned a huge number of articles over
the past years for different scenarios, culminating in an equally
huge number of expressions for the coverage probability in both
the uplink (UL) and downink (DL) directions. The trouble is
that those expressions include the BS density, 𝜆, which we prove
irrelevant in this article. We start by developing a SG model
for a baseline cellular scenario, then prove that the coverage
probability is independent of 𝜆, contrary to popular belief.

Index Terms—Stochastic geometry; Cellular network; Base
station density; Coverage probability; Independence

I. INTRODUCTION

STOCHASTIC geometry (SG) has been used heavily in
the late decade as a modelling tool in the field of wireless

communications. It is particularly suited for modelling large
scale wireless communication networks, where a network is
treated as a realization (snapshot) of a spatial point process in
the Euclidean plane [1]. In particular, it is a natural approach to
describe node locations in randomly formed networks, e.g. ad
hoc and cellular networks. It provides a natural way of exam-
ining macroscopic properties, by averaging over all potential
locations of network nodes to obtain important performance
characteristics, such as coverage probability. These locations in
our context are the network elements at the time the snapshot
is taken [2].

The most common function of SG in wireless communica-
tions is to characterize the signal to interference and noise ratio
(SINR), which can then be used to calculate many cellular
performance metrics, such as outage probability, coverage
probability, spatial opportunity, spatial throughput, network
throughput, medium access probability and spectral efficiency
[3], in both downlink (DL) and uplink (UL) directions. It
should be noted, however, that in light the huge of influx of
wireless emissions in recent years, the impact of noise now
pales in comparison with interference [4]. As such, there is a
growing trend (see, for example, [5], [6], [7], [8]) to replace
SINR by SIR, and we will follow this trend in the present
article.

The most commonly made assumption when SG is used
in modelling cellular networks is that base stations (BS) are
deployed in the Euclidean plane as a Poisson Point Process
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(PPP), although many variant processes, e.g. Thomas cluster
processes or Matérn cluster processes, have been suggested
as well [9]. This model replaces the once popular hexagonal
grid model, in which base stations were placed at the centers
of the hexagonal lattices. It has been shown [10] that the
PPP approach provides much more accurate results than the
hexagonal grid model when both are used to model real world
cellular installation. It has also been shown [11] that the PPP
model gives lower bounds, whereas the hexagonal model gives
upper bounds, of the coverage probability, which means that
the former is safer to rely on.

SG cellular models that end up with coverage probability
expressions involving the BS density, 𝜆, abound. These models
are developed for different scenarios, but have in common the
consideration that the coverage probability is dependent on 𝜆.
Examples of such models for DL are [2], [4], [6], [8], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. On
the other hand, examples of such models for DL are [2], [4],
[7], [24], [25], [26], [20], [27], [18], [19], [21], [22], [23]. We
prove in this article two theorems that refute this consideration.
Specifically, we prove that under the SG model, the coverage
probability is independent of 𝜆, both in DL and UL.

To set the stage for these proofs, however, we will first
develop a SG model for a baseline cellular scenario, then
use the model to derive two expressions, including 𝜆, for
the coverage probability in DL and UL. Finally, we give two
theorems that show show that 𝜆 is superfluous.

It is worth mentioning that the notion that the coverage
probability is independent of 𝜆 has only been alluded to
sparingly previously. The authors of [12] in the context of
analyzing DL coverage probability of millimeter-wave cellular
networks noted that “coverage does not scale with BS density."
Also, the authors of [24], while analyzing UL FPC, noted
that coverage is “ invariant to the density of deployment
of BSs when the shadowing is mild and power control is
fractional." To the best of our knowledge, the present article is
the first to provide a rigorous proof that coverage probability
is independent of BS density.

The rest of the article is organized as follows. In Section II,
we develop SG models for DL and UL, and use these models
to prove that the coverage probability is independent of the
BS density 𝜆. Section III has the conclusions.

II. SYSTEM MODEL

The key aspect of the present study is that all the BSs are
located according to a PPP Φ, which effectively means they are
randomly scattered in the Euclidean plane with independent
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locations [9]. In the present article, we consider orthogonal
within each cell, meaning that in each cell there can be only
one active UE on any time/frequency resource. Accordingly,
Figure 1 is a snapshot of the UEs that are active on the same
frequency in all the cells at the same time. As for the entire
network, every BS-UE pair is operating on the same resource,
hence is the interference that we are going to characterize.

Some definitions used throughout the article are now in
order.

Definition 1 (BS-UE association): BS-UE associa-
tion is the assignment of a UE to a BS, for both to
establish a communications session.
Definition 2 (Serving BS): Once a UE is associated
with a BS, the latter is said to be the serving BS of
the UE.
Definition 3 (Typical receiver): The typical receiver
is the receiving device (UE or BS) where the SIR is
to be assessed. It is always placed at the origin of
the Euclidean plane in the model, or the origin of
the simulation window in the simulation.
Definition 4 (Tagged transmitter): The tagged
transmitter is transmitting device (UE or BS) asso-
ciated with the typical receiver.
Definition 5 (Typical circle): The typical circle is
the circle centered at the typical receiver and having
the tagged transmitter on its circumference.
Definition 8 (Interferer): An interferer is a transmit-
ter causing interference at the typical receiver. That
is, it is any transmitter in the network other than the
tagged transmitter.
Definition 9 (Signal to Interference Ratio (SIR)):
The quotient of the signal at the typical receiver and
the sum of all interferences at the typical receiver.

As per Definitions 3 and 4, in DL the typical receiver is a UE
and the tagged transmitter is a BS, whereas in UL the typical
receiver is a BS and the tagged transmitter is a UE.

A UE will associate with the BS nearest it. We will denote
the distance between the two elements of a BS-UE pair
throughout by 𝑅. It can then be shown that 𝑅 is a random
variable (RV) with the Rayleigh distribution

𝑓𝑅 (𝑟) = 2𝜆𝜋𝑟𝑒−𝜆𝜋𝑟
2
, 𝑟 ≥ 0 (1)

The notation used throughout the article is provided in Table
I.

TABLE I: Notation used in the model.

Parameter Description
BS Base station
UE User Equipment (can be a mobile phone, tablet, laptop, etc.)
Φ Poisson point process (PPP) of BSs
Ψ Point process of UEs (not Poisson)
𝜆 Density of BS (per m2), i.e. intensity of PPP Φ

𝛼 Path-loss exponent (per m)
SIR Signal to interference ratio (dB)
𝜉 SIR threshold (dB)
𝐺 Rayleigh channel gain of tagged transmitter (𝐺 ∼ 𝐸𝑥𝑝 (1))
p Transmit power (Watts)
𝑝𝑑 DL coverage probability
𝑝𝑢 UL coverage probability

Referring to Figure 1, the typical receiver resides at the
origin, and the tagged transmitter resides on the perimeter of
the typical circle. In part 1a, we see the DL model, where the
typical receiver is a UE, and the tagged transmitter is a BS at
distance 𝑅. All the BSs outside the typical circle are interferers
to the typical UE. In part 1b, we can see the UL model, where
the typical receiver is a BS, and the tagged transmitter is a UE
at distance 𝑅. All the UEs except the tagged are interferers to
the typical BS.

Random channel effects are incorporated by multiplicative
RVs, namely 𝐺 for the signal and 𝐺𝑖 for each interferer 𝑖. For
simplicity we assume small-scale Rayleigh fading, and assume
𝐺 and the 𝐺𝑖 iid RVs following an exponential distribution
with mean 1. In addition, we assume that signals attenuate
with distance according to the standard power-law path loss
propagation model, with path loss exponent 𝛼 > 2. That is,
the average received power at distance 𝑟 from a transmitter of
power 𝑝 is 𝑝𝑟−𝛼.

A. Downlink model

The key assumptions of the DL system model are:
• BSs are located according to a homogeneous PPP Φ of

intensity 𝜆 in the Euclidean plane.
• A UE wishing to start a communications session asso-

ciates with the BS that is closer to it than any other BS
in the cellular network (association rule.)

• The BS transmits at a fixed power 𝑝 to a designated UE
on a particular time-frequency resource, i.e. orthogonal
communications within the cell. The consequence of
orthogonality is that the UE sees interference from all
the BSs in the plane, except its serving BS.

• Random channel effects are incorporated by a multiplica-
tive RVs 𝐺 for the signal and 𝐺𝑧 for every interferer at
𝑧. For simplicity we assume these all to correspond to
Rayleigh fading with mean 1, so 𝐺 and the 𝐺𝑧 are iid
RVs, having exponential distribution with mean 1.

Let 𝐼𝑑 denote the interference experienced at the typical UE.
The interference is due to every BS 𝑧 in the plane, except the
tagged BS, denoted by 𝔟, at distance 𝐷𝑧 from the typical UE,
as shown in Figure 1a. That is, the interference 𝐼𝑑 is created
by a PPP with intensity 𝜆 outside the typical circle, and is
given by

𝐼𝑑 =
∑︁

𝑧∈Φ\{𝔟}
𝑝𝐺𝑧𝐷

−𝛼
𝑧 , (2)

where 𝑝 is the power of the BS at point 𝑧, and 𝐷𝑧 is a RV
representing the distance from the BS at 𝑧a and the typical
UE. The SIR at the typical UE is then given by

SIRUE =
𝑝𝐺𝑅−𝛼

𝐼𝑑
(3)

The goal now is to derive the DL coverage probability 𝑝𝑑 ,
which is exactly the complementary cumulative distribution
function (CCDF) of SIR over the entire network (Recall that
the CDF gives P[SIR≤ 𝜉]). The coverage probability can also
be visualized as the probability that a randomly chosen user
can achieve a target SIR 𝜉, the average fraction of users who
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Fig. 1: Stochastic geometric models for assessing the SIR at a
typical receiver at the origin of a cellular network. (a) The DL
model, where the typical receiver is a UE. The typical circle
defines an exclusion zone, as it cannot contain a BS inside.
The BSs outside the typical circle, which cause interference at
the typical UE, form a PPP Φ. (b) The UL model, where the
typical receiver is a BS. The typical circle does not define an
exclusion zone, as it can contain UEs inside. All the UEs form
a PP Ψ. Since the UEs are satellites to their serving BSs, as
per the association rule, Ψ is not Poisson, a major challenge
to the analysis. We mitigate this challenge by relocating each
UE, except the tagged, to the position of its serving BS. That
is, we relocate all the interferers.

at any time achieve SIR 𝜉, or the average fraction of network
area that is in “coverage” at any time.

We start by invoking the concept of total probability, using
(2) and (3), to get

𝑝𝑑 |𝑅 = P[SIRUE > 𝜉]

= P

[
𝑝𝐺𝑅−𝛼

𝐼𝑑
> 𝜉

]
= P

[
𝐺 >

𝜉

𝑝
𝑅𝛼 𝐼𝑑

]
(a)
= E𝐼𝑑

[
P

[
𝐺 >

𝜉

𝑝
𝑅𝛼 𝐼𝑑

] ]
(b)
= E𝐼𝑑

[
𝑒
− 𝜉

𝑝
𝑅𝛼 𝐼𝑑

]
(c)
= L𝐼𝑑 (

𝜉

𝑝
𝑅𝛼) (4)

where
L𝐴(𝑠) =

∫ ∞

0
𝑒−𝑠𝑡 𝑓𝐴(𝑡)𝑑𝑡 = E

[
𝑒−𝑠𝐴

]
(5)

is the Laplace transform of the RV 𝐼𝑑 conditioned on the
RV 𝑅 between the typical UE and the tagged BS. In (a) we
utilized the fact that we can write a probability P [𝐴 > 𝐵)] as
E𝐵 [P [𝐴 > 𝐵]] (or E𝐴 [P [𝐴 > 𝐵]]), in (b) we benefited from
the fact that 𝐺 ∼ exp(1), i.e. 𝑓𝐺 (𝑟) = 𝑒−𝑟 , and in (c) we used
the Laplace transform definition (5).

Clearly, the DL coverage probability 𝑝𝑑 in (4) is conditioned
on 𝑅, the distance between the typical UE and the tagged BS.
We will now embark on deconditioning 𝑝𝑑 . Since 𝑅 is the
distance between the typical UE and the closest BS (the tagged
BS), it is Rayleigh distributed, i.e. and 𝑓𝑅 (𝑟) = 2𝜆𝜋𝑟𝑒−𝜆𝜋𝑟2

from (1). Further, 𝑅 ranges from an arbitrarily small positive
real number greater than 0 (to exclude the typical UE) to ∞.
Thus, the conditional coverage probability

𝑝𝑑 |𝑅 = E𝑅
[
𝑝𝑑 |𝑅

]
= E𝑅

[
L𝐼𝑑 (

𝜉

𝑝
𝑅𝛼)

]
=

∫ ∞

0
L𝐼𝑑 (

𝜉

𝑝
𝑟𝛼) 𝑓𝑅 (𝑟)𝑑𝑟

= 2𝜆𝜋
∫ ∞

0
𝑒−𝜆𝜋𝑟

2L𝐼𝑑 (
𝜉

𝑝
𝑟𝛼)𝑟𝑑𝑟 (6)

Next, we will embark on finding the Laplace transform L𝐼𝑑

of the DL interference 𝐼𝑑 . Using (2) and (5), we get

L𝐼𝑑 (𝑠) = E
[
𝑒−𝑠𝐼𝑑

]
= EΦ,𝐺𝑧

[
𝑒−𝑠

∑
𝑧∈Φ\{𝔟} 𝑝𝐺𝑧𝐷

−𝛼
𝑧

]
= EΦ,𝐺𝑧


∏

𝑧∈Φ\{𝔟}
𝑒−𝑠𝑝𝐺𝑧𝐷

−𝛼
𝑧


(a)
= EΦ


∏

𝑧∈Φ\{𝔟}
E𝐺𝑧

[
𝑒−𝑠𝑝𝐺𝑧𝐷

−𝛼
𝑧

]
(b)
= EΦ


∏

𝑧∈Φ\{𝔟}
L𝐺𝑧

(𝑠𝑝𝐷−𝛼
𝑧 )


(c)
= exp

(
−𝜆

∫
R2\𝐷 (𝑜,𝑟)

(1−L𝐺𝑧
(𝑠𝑝𝐷−𝛼

𝑧 ))
)

(7)

where 𝐷 (𝑜,𝑟) is a disc centered at the origin and has a
radius 𝑟. In (a) we benefited from the independence of the
𝐺𝑧 , which are iid and in (b) we used the definition (5) of
the Laplace transform. In (c), to decondition on 𝐷𝑧 which is
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distributed differently for each point 𝑧 of the PPP, we invoked

the PGFL EΦ

[ ∏
𝑧∈Φ

𝑓 (𝑥)
]
, with 𝑓 (𝑥) = L𝐺𝑧

(𝑠𝑝𝑥−𝛼), of the

PPP Φ. Switching to polar coordinates, with the interferer
now at (𝑥, 𝜃) ∈ R2, then using the fact that 𝐺𝑧 ∼ exp(1), i.e.
𝑓𝐺𝑧

(𝑡) = 𝑒−𝑡 , then Using (7) yields

L𝐼𝑑 (𝑠) = exp
(
−𝜆

∫ 2𝜋

0

∫ ∞

𝑟

(1−L𝐺𝑧
(𝑠𝑝𝑥−𝛼))𝑥𝑑𝑥𝑑𝜃

)
= exp

(
−2𝜋𝜆

∫ ∞

𝑟

( 𝑠𝑝𝑥−𝛼

1+ 𝑠𝑝𝑥−𝛼 )𝑥𝑑𝑥
)

(8)

For use in (6), we write this result as

L𝐼𝑑 (
𝜉

𝑝
𝑟𝛼) = exp

(
−2𝜋𝜆

∫ ∞

𝑟

(
( 𝜉
𝑝
𝑟𝛼)𝑝𝑥−𝛼

1+ ( 𝜉
𝑝
𝑟𝛼)𝑝𝑥−𝛼

)𝑥𝑑𝑥
)

= exp
(
−𝜋𝜆𝑟2𝜉

2
𝛼

∫ ∞

𝜉−2/𝛼

1
1+𝑢𝛼/2 𝑑𝑢

)
where 𝑢 = (𝑥/𝑟)2 𝜉−

2
𝛼 . Substituting this in (6), we get

𝑝𝑑 = 2𝜆
∫ ∞

0
𝑒−𝜆𝑟

2
𝑒
−𝜆𝑟2 𝜅

√
𝜉
∫ ∞

1
𝜅√𝜉

1
1+𝑢𝜅 𝑑𝑢

𝑟𝑑𝑟 (9)

where 𝜆 = 𝜆𝜋 and 𝜅 = 𝛼/2.
From (9), it appears that the DL coverage probability 𝑝𝑑 is

dependent on the BS density 𝜆. However, this dependence is
false, as we will show in the next Theorem.

Theorem 1: Under the stochastic geometric model of
the cellular DL system, the DL coverage probability
𝑝𝑑 is independent of the BS density 𝜆.

Proof: The proof is attained through two changes of vari-
ables. Starting with (9), use the substitution 𝑥 = 𝑟2 to get

𝑝𝑑 = 2𝜆
∫ ∞

0
𝑒−𝜆𝑟

2
𝑒
−𝜆𝑟2 𝜉

2
𝛼

∫ ∞

𝜉
− 2
𝛼

1
1+𝑢𝜅 𝑑𝑢

𝑟𝑑𝑟

= 𝜆

∫ ∞

0
𝑒
−𝜆𝑥

(
1+ 𝜅

√
𝜉
∫ ∞

1
𝜅√𝜉

1
1+𝑢𝜅 𝑑𝑢

)
𝑑𝑥

Now use the substitution 𝑧 = 𝜆𝑥 to get

𝑝𝑑 =

∫ ∞

0
𝑒
−𝑧

(
1+ 𝜅

√
𝜉
∫ ∞

1
𝜅√𝜉

1
1+𝑢𝜅 𝑑𝑢

)
𝑑𝑧

=
1

1+ 𝜅
√
𝜉
∫ ∞

1
𝜅√𝜉

1
1+𝑢𝜅 𝑑𝑢

(10)

where 𝜆 has totally disappeared, proving the theorem. �

B. Uplink model

Referring to Figure 1b, the net interference at the typical
BS is the sum of the received transmissions from all the UEs
(including those inside the typical circle) except the tagged.
For each UE 𝔷 ∈ Ψ, we denote its distance to its serving BS
by 𝑅𝔷.

Here, the set of interferers are the points of Ψ, which is not
a PPP. To get around this difficutly, note that each point of Ψ

is associated to a point in the PPP Φ of BSs, which we used
above in the down link analysis. Thus, we can approximate the
"spatial" average of the former to be the latter. Consequently,
we can consider the locations Ψ of the interfering UEs by
the locations Φ of the BSs. Specifically, for calculating the
interference, we will consider that each interfering UE is
placed exactly at its serving BS’s location. Referring to Figure
1b, we will employ the distance 𝑅𝔷 between this UE and
its serving BS to calculate its emitted power. We will then
consider this as interference at the typical BS at distance 𝐷𝑧

away, not 𝑈𝔷.
We will assume fractional power control (FPC), where

each user equipment (UE) adjusts its power level in the UL
direction under the control of its serving BS [7]. FPC leads
to amplifying the transmit power 𝑝 at the UE based on its
distance to the serving BS. If the distance is 𝑅 and the FPC
factor is 𝜖 , with values in [0,1], then 𝑝 is amplified by 𝑅𝜖 𝛼

to offset the path loss, which is 𝑅−𝛼, where 𝛼 > 2 is the path
loss exponent. Combining the effects of FPC, power loss and
fading, the amount of power reaching the serving BS from a
UE is 𝑝𝐺𝑅−𝛼(1−𝜖 ) .

Referring to Figure 1b, the RV 𝑅𝔷 is upper bounded by 𝑈𝔷,
otherwise the sample UE at 𝔷 would associate with the typical
BS. Accordingly,

𝐼𝑢 =
∑︁

𝔷∈Ψ\{𝔲}
𝑝𝐺𝔷𝑅

𝛼𝜖
𝔷 𝑈−𝛼

𝔷 (11)

In the UL, the SIR of the typical BS, at distance 𝑅 from the
tagged UE, is

SIRBS =
𝑝𝐺𝑅−𝛼(1−𝜖 )

𝐼𝑢
(12)

Consequently, the probability 𝑝𝑢 of UL coverage is

𝑝𝑢 = P[SIRBS > 𝜉].

Referring to Figure 1b, both 𝑅 and 𝑅𝔷 are Rayleigh dis-
tributed, i.e. 𝑓𝑅 (𝑟) = 𝑓𝑅𝔷

(𝑟) = 2𝜆𝜋𝑟𝑒−𝜆𝜋𝑟2
. Thus, 𝑅𝔷 ranges

from 0 to 𝑅, with 𝑅 ranging from an arbitrarily small positive
real number to ∞. Now, the conditional UL coverage proba-
bility is defined as

𝑝𝑢 |𝑅 = P[SIRBS > 𝜉]

= E

[
P

[
𝑝𝐺𝑅−𝛼(1−𝜖 )

𝐼𝑢
> 𝜉

] ]
= E

[
P
[
𝐺 > 𝜉𝑝−1𝑅𝛼(1−𝜖 ) 𝐼𝑢

] ]
(a)
= E

[
𝑒−𝜉 𝑝−1𝐼𝑢𝑅

𝛼(1−𝜖 )
]

= L𝐼𝑢 (𝜉𝑝−1𝑅𝛼(1−𝜖 ) )

where L𝐼𝑢 is the Laplace transform of the distribution of the 𝐼𝑢
RV. In (a), we used the fact that 𝐺 ∼ exp(1), i.e. 𝑓𝐺 (𝑥) = 𝑒−𝑥 ,
which implies that P[𝐺 > 𝑥] = 𝑒−𝑥 . Now, we decondition on
𝑅, getting

𝑝𝑢 =

∫ ∞

0
L𝐼𝑢 (𝜉𝑝−1𝑅𝛼(1−𝜖 ) )

���
𝑅=𝑟

𝑓𝑅 (𝑟)𝑑𝑟

=

∫ ∞

0
2𝜆𝑟𝑒−𝜆𝑟

2L𝐼𝑢 (𝜉𝑝−1𝑟𝛼(1−𝜖 ) )𝑑𝑟 (13)
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where 𝜆 = 𝜋𝜆. We integrate from a point just outside the origin,
to skip the typical BS that resides there, to ∞ where the closest
UE can possibly exist.

Next, we will embark on finding L𝐼𝑢 , the Laplace transform
of the distribution of the RV 𝐼𝑢. Substituting for 𝐼𝑢 from (11),
gives

L𝐼𝑢 (𝑠) = E[𝑒−𝑠𝐼𝑢 ]

= E

exp©­«𝑠
∑︁
𝔷∈Ψ

−𝑝𝐺𝔷𝑅
𝛼𝜖
𝔷 𝑈−𝛼

𝔷

ª®¬


= E


∏
𝔷∈Ψ

exp
(
−𝑠𝑝𝐺𝔷𝑅

𝛼𝜖
𝔷 𝑈−𝛼

𝔷

) (14)

In (14), for each point 𝔷 ∈ Ψ there are three RVs: 𝐺𝔷, 𝑅𝔷,𝑈𝔷.
The 𝐺𝔷 are independent of the 𝑅𝔷 and of the 𝑈𝔷. However, 𝑈𝔷

and 𝑅𝔷 are dependant in that 𝑅𝔷 < 𝑈𝔷 (Recall that 𝑅𝑧 is the
distance between an interfering UE 𝔷 and its typical BS, and
𝑈𝔷 is the distance between the same interfering UE 𝔷 and the
typical BS at the origin). That is P[𝑅𝔷 < 𝑥 |𝑈𝔷 = 𝑥] = 1, since if
𝑈𝔷 < 𝑅𝔷 the interfering UE 𝔷 would associate with the typical
BS at the origin.

Now we will resolve (14), as follows.

L𝐼𝑢 (𝑠) = EΨ,𝑅𝔷 ,𝐺𝔷


∏
𝔷∈Ψ

𝑒−𝑠𝑝𝐺𝔷𝑅
𝛼𝜖
𝔷 𝑈−𝛼

𝔷


(a)
= EΨ,𝑅𝔷


∏
𝔷∈Ψ
E𝐺𝔷

[
𝑒−𝑠𝑝𝐺𝔷𝑅

𝛼𝜖
𝔷 𝑈−𝛼

𝔷
]

(b)
= EΨ,𝑅𝔷


∏
𝔷∈Ψ

∫ ∞

0
𝑒−(1+𝑠𝑝𝑅𝛼𝜖

𝔷 𝑈−𝛼
𝔷 )𝑥𝑑𝑥


= EΨ,𝑅𝔷


∏
𝔷∈Ψ

1
1+ 𝑠𝑝𝑅𝛼𝜖

𝔷 𝑈−𝛼
𝔷

 (15)

In (a) we used the fact that the 𝐺𝔷 are iid and in (b) we used
the fact that 𝑓𝐺𝔷

(𝑥) = 𝑒−𝑥 .
Next, we consider the expectation with respect to Ψ, to

uncondition on 𝑈𝔷, the distance between every point 𝔷 ∈ Ψ

and the origin. We will use for this expectation a PGFL, since
𝑈𝔷 is distributed differently for each point 𝔷 ∈ Ψ.

Referring to Figure 1b, and based on our approximation,
each point 𝔷 ∈Ψ will be relocated to the position of the associ-
ated point 𝑧 ∈Φ. That is, we will consider each interfering UE
at point 𝑧 ∈ Φ emitting power 𝑝𝑅𝛼𝜖

𝔷 , but causing interference
with this same power at the typical BS, at a distance 𝐷𝑧 based
on the UE relocation. This allows us to write

EΨ


∏
𝔷∈Ψ

𝑓 (𝔷)
 ≈ EΦ

[∏
𝑧∈Φ

𝑓 (𝑧)
]
= 𝑒−𝜆

∫
R2 (1− 𝑓 (𝑥)) .

Substituting for 𝑓 (𝑦) from (15), converting to polar coordi-
nates, and substituting for the angle integral by 2𝜋, then

L𝐼𝑢 (𝑠) = E𝑅𝔷

[
EΦ

[∏
𝑧∈Φ

1
1+ 𝑠𝑝𝑅𝛼𝜖

𝔷 𝐷−𝛼
𝑧

] ]

= E𝑅𝔷

[
𝑒
−2𝜋𝜆

∫ ∞
0

1
1+(𝑠𝑝)−1𝑅−𝛼𝜖

𝔷 𝑥𝛼
𝑥𝑑𝑥

]
(16)

The distance 𝑅𝔷 is lower bounded by 𝑈𝔷, for if 𝑅𝔷 <𝑈𝔷, the
UE at 𝔷 would associate with the typical BS. But note that 𝑈𝔷

has been replaced now, through PP relocation, by 𝐷𝔷.
We will now apply the last expectation, E𝑅𝔷

, noting that
the distribution of 𝑅𝔷 is Rayleigh. In light of (16), using the
Rayleigh distribution 𝑓𝑅𝔷

(𝑦) = 2𝜆𝜋𝑦𝑒−𝜆𝜋𝑦2
, we have

L𝐼𝑢 (𝑠) = 𝑒
−2𝜋𝜆

∫ ∞
0

(
E𝑅𝔷

[
1

1+(𝑠𝑝)−1𝑅−𝛼𝜖
𝔷 𝑥𝛼

] )
𝑥𝑑𝑥

= 𝑒
−2𝜋2𝜆2

∫ ∞
0 𝑥

∫ 𝑥2

0
𝑒−𝜆𝜋𝑢

1+(𝑠𝑝)−1𝑢−𝛼𝜖 /2𝑥𝛼
𝑑𝑢𝑑𝑥

(17)

where 𝑢 = 𝑦2. Recall that 𝐷−𝛼
𝑧 and 𝑅𝔷 are dependent in that

if 𝐷𝑧 = 𝑥 then 𝑅𝔷 < 𝑥. From (11) and (13), it follows that

L𝐼𝑢 (𝜉𝑝−1𝑟𝛼(1−𝜖 ) ) = 𝑒
−2𝜋2𝜆2

∫ ∞
0 𝑥

∫ 𝑥2

0
𝑒−𝜆𝜋𝑢

1+(𝑠𝑝)−1𝑢−𝛼𝜖 /2𝑥𝛼
𝑑𝑢𝑑𝑥

= 𝑒
−2𝜋2𝜆2

∫ ∞
0 𝑥

∫ 𝑥2

0
𝜉𝑟𝛼(1−𝜖 ) 𝑒−𝜆𝜋𝑢

𝜉𝑟𝛼(1−𝜖 ) +𝑢−𝛼𝜖 /2𝑥𝛼
𝑑𝑢𝑑𝑥

(18)

From (13) and (18), we get

𝑝𝑢 = 2𝜆
∫ ∞

0
𝑟𝑒−𝜆𝑟

2
𝑒
−2𝜆2 𝜉𝑟2𝜅 (1−𝜖 ) ∫ ∞

0 𝑥
∫ 𝑥2

0
𝑒−𝜆𝑢

𝜉𝑟2𝜅 (1−𝜖 ) +𝑢−𝜖 𝜅 𝑥2𝜅 𝑑𝑢𝑑𝑥𝑑𝑟

(19)
where 𝜆 = 𝜋𝜆 and 𝜅 = 𝛼/2.

From (19), it appears that the UL coverage probability 𝑝𝑢
is dependent on the BS density 𝜆. However, we will show in
Theorem 2 below that the presence of 𝜆 in (19) is superfluous.

Theorem 2: Under the stochastic geometric model of
the cellular UL system, the UL coverage probability
𝑝𝑢 is independent of the BS density 𝜆.

Proof: The proof is attained through a sequence of changes
of variables. Starting with (19), use the substitution 𝑣 = 𝑟2 to
get

𝑝𝑢 = 𝜆

∫ ∞

0
𝑒−𝜆𝑣𝑒

−2𝜆2 𝜉𝑣𝜅 (1−𝜖 )
∫ ∞
0 𝑥

∫ 𝑥2

0
𝑒−𝜆𝑢

𝜉𝑣𝜅 (1−𝜖 ) +𝑢−𝜖 𝜅 𝑥2𝜅 𝑑𝑢𝑑𝑥𝑑𝑣

Use 𝑦 = 𝑥2 to get

𝑝𝑢 = 𝜆

∫ ∞

0
𝑒−𝜆𝑣𝑒

−𝜆2 𝜉𝑣𝜅 (1−𝜖 )
∫ ∞
0

∫ 𝑦

0
𝑒−𝜆𝑢

𝜉𝑣𝜅 (1−𝜖 ) +𝑢−𝜖 𝜅 𝑦𝜅
𝑑𝑢𝑑𝑦

𝑑𝑣

Use 𝑥 = 𝜆𝑢 to get

𝑝𝑢 = 𝜆

∫ ∞

0
𝑒−𝜆𝑣𝑒

−𝜆𝜉𝑣𝜅 (1−𝜖 )
∫ ∞
0

∫ 𝜆𝑦

0
𝑒−𝑥

𝜉𝑣𝜅 (1−𝜖 ) +
(
𝑥

𝜆

)−𝜖 𝜅
𝑦𝜅

𝑑𝑥𝑑𝑦

𝑑𝑣

Use 𝑧 = 𝜆𝑣 to get

𝑝𝑢 =

∫ ∞

0
𝑒−𝑧𝑒

−𝜆𝜉 𝑧𝜅 (1−𝜖 )
∫ ∞
0

∫ 𝜆𝑦

0
𝑒−𝑥

𝜉𝑧𝜅 (1−𝜖 ) +𝑥−𝜖 𝜅 (𝜆𝑦)𝜅 𝑑𝑥𝑑𝑦𝑑𝑧

Finally, use 𝑢 = 𝜆𝑦 to get

𝑝𝑢 =

∫ ∞

0
𝑒
−𝑧

(
1+𝜉 𝑧𝜅 (1−𝜖 )−1

∫ ∞
0

∫ 𝑢

0
𝑒−𝑥

𝜉𝑧𝜅 (1−𝜖 ) +𝑥−𝜖 𝜅𝑢𝜅
𝑑𝑥𝑑𝑢

)
𝑑𝑧 (20)

where 𝜆 has totally disappeared, proving the theorem. �
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III. CONCLUSIONS

In this article we have proven two theorems that go against
established belief in the SG cellular modelling literature.
Namely, we have proved that under the stochastic geometric
model, the coverage probability in either DL and UL is
independent of the BS density. This finding calls for a revisit to
a large body of published results to rid them of a superfluous
parameter.

REFERENCES

[1] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge:
Cambridge University Press, 2012.

[2] H. ElSawy, A. Sultan, M. Alouini, and M. Win, “Modeling and anal-
ysis of cellular networks using stochastic geometry: A tutorial,” IEEE
Communications Surveys and Tutorials, vol. 19, no. 1, pp. 167–203,
2017.

[3] S. Okegbile, B. Maharaj, and A. Alfa, “Stochastic geometry approach
towards interference management and control in cognitive radio network:
A survey,” Computer Communications, vol. 166, no. 15, pp. 174–195,
2021.

[4] C. Liu, Y. Shen, and C. Lee, “Energy-efficient activation and uplink
transmission for cellular iot,” IEEE Internet of Things Journal, vol. 7,
no. 2, pp. 906–921, 2020.

[5] X. Tang, X. Xu, and M. Haenggi, “Meta distribution of the sir in
moving networks,” IEEE Transactions on Communication, vol. 68, no. 6,
pp. 3614–3626, 2020.

[6] Q. Liu and Z. Zhang, “The analysis of coverage probability,ase and
ee in heterogeneous ultra-dense networks with power control,” Digital
Communications and Networks, vol. 6, no. 4, pp. 524–533, 2020.

[7] M. Haroon, F. Muhammad, Z. Abbas, G. Abbas, N. Ahmed, and
S. Kim, “Proactive uplink interference management for nonuniform
heterogeneous cellular networks,” IEEE Access, vol. 8, pp. 55501–
555123, 2021.

[8] N. Kouzayha, H. Elsawy, H. Dahrouj, and T. Al-Naffouri, “Meta
distribution of downlink sir for binomial point processes,” IEEE Wireless
Communications Letters, vol. 10, no. 7, pp. 1557–1561, 2021.

[9] B. Blaszczyszyn, M. Haenggi, P. Keeler, and S. Mukherjee, Stochastic
Geometry Analysis of Cellular Networks. Cambridge: Cambridge
University Press, 2018.

[10] C. Lee, C. Shih, and Y. Chen, “Stochastic geometry based models for
modeling cellular networks in urban areas, wireless networks,” Wireless
networks, vol. 19, no. 6, pp. 1063–1072, 2013.

[11] J. Andrews, F. Baccelli, and R. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Transactions on Communicationsy,
vol. 59, no. 11, pp. 3122–3134, 2011.

[12] T. Bai and R. Heath, “Coverage and rate analysis for millimeter-wave
cellular networks,” IEEE Transactions on Wireless Communications,
vol. 14, no. 2, pp. 1100–1114, 2015.

[13] J. Chen and C. Yuan, “Coverage probability and average rate of downlink
user-centric wireless cellular networks with composite 𝜅-𝜇 shadowed
and lognormal shadowed fading,” IET Communication, vol. 13, no. 17,
pp. 2805–2813, 2019.

[14] . Liu, J. Baudais, and P. Mary, “A tractable coverage analysis in dynamic
downlink cellular networks,” in 2020 IEEE 21st International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC),
pp. 1–5, IEEE, 2020.
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