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Abstract—We present a data-driven approach for probabilis-
tic wind power forecasting based on conditional normalizing
flow (CNF). In contrast with the existing, this approach is
distribution-free (as for non-parametric and quantile-based ap-
proaches) and can directly yield continuous probability densities,
hence avoiding quantile crossing. It relies on a base distribution
and a set of bijective mappings. Both the shape parameters of the
base distribution and the bijective mappings are approximated
with neural networks. Spline-based conditional normalizing flow
is considered owing to its non-affine characteristics. Over the
training phase, the model sequentially maps input examples onto
samples of base distribution, given the conditional contexts, where
parameters are estimated through maximum likelihood. To issue
probabilistic forecasts, one eventually maps samples of the base
distribution into samples of a desired distribution. Case studies
based on open datasets validate the effectiveness of the proposed
model, and allows us to discuss its advantages and caveats with
respect to the state of the art.

Index Terms—Conditional normalizing flow, deep learning,
density estimation, probabilistic forecasting, wind power.

NOMENCLATURE

Functions
ϕ(·) The function that estimates the shape parameters of

base distribution
τk(·) The transformer function in the k-th transform that

maps z
(k−1)
t,i to z

(k)
t,i

ck(·) The conditioner function in the k-th transform that
outputs the conditionals

fYi,t(·) Probability density function of Yi,t

q(α)(·) Quantile function with level α
Tk(·) The function that maps z

(k−1)
t to z

(k)
t

Models
G The model for base distribution
M The whole model
Random variables
Y t The random variable for wind power generation values

in general form at time t
Zt The intermediate random variable at time t
Yi,t The random variable for wind power generation value

at wind farm i at time t
Variables
xt The input features at time t
yt The realization of Y t

zt The realization of Zt
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I. INTRODUCTION

A. Motivation

As an essential tool to assess and accommodate wind power
generation uncertainty, short-term probabilistic wind power
forecasting (PWPF) has gained increasing interest in recent
decades. It generally takes numerical weather prediction and
historical values as input features, in order to model and
communicate the probability density of wind power generation
at some time in the future. Such densities may be for a unique
lead time and location (hence, univariate), or jointly for several
lead times and/or locations (referred to as multivariate) [1]. It
has become common now to decouple the estimation of the
marginal probability density function of each variable and of
the interdependence structure in the multivariate PWPF [2].
In other words, univariate case is usually recognized as the
cornerstone of PWPF problems.

A classical approach relies on assumptions (often referred
to as parametric approach) for the distribution of future wind
power generation, the parameters of which are estimated via
statistical and machine learning methods. For instance, the
Gaussian, Beta, Generalized Logit-Normal, etc could be used
[3]. Although it is convenient to develop models based on
such assumptions, the distribution of wind power at hand may
not match the assumptions. This is primarily due to the wind
power generation process, in other words, the nonlinear power
curve that converts energy from the wind into electric power
[4]. Concretely, the characteristics of wind power generation
distributions differ a lot depending on predicted weather con-
ditions, as illustrated by [5] for instance. This has motivated
many to look for distribution-free approaches, i.e., that do
not rely on a specific assumption for the densities to model
and communicate as forecasts. Certainly the most popular
distribution-free approach, also referred to as non-parametric,
is quantile regression (QR) [6], which allows to relax the use
of distributional assumptions for the case of univariate proba-
bilistic forecasting. It has achieved great success in the Global
Energy Forecasting Competition 2014 (GEFCom 2014) for
instance, and has become a mainstream solution owing to its
state-of-the-art performance and simplicity of use. However, it
requires parallel models to be fitted for each quantile, which
raises the cost of computation when the whole distribution
is needed. In addition, it only provides discrete quantiles,
which may lead to quantile crossing – quantiles of the whole
distribution are inconsistent.

Till now, parametric models with distributional assumption
and QR are still the most effective methods [1] with prominent
characteristics. That is, parametric models characterize the
whole distribution efficiently, whereas QR models are free
of distributional assumptions. For multivariate PWPF, the
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complex interdependence structures of multivariate distribu-
tion can be modeled using copula models [7]. By estimating
the marginal probability density function (PDF) via non-
parametric methods and modeling the complex interdepen-
dence structure, the copula method is allowed to model
complicated multivariate distribution. However, the copula-
based approach relies on strong assumptions regarding the
probabilistic calibration of predicted marginals, while it often
underestimate the strength of the dependence structure among
the various variables. Eventually, it remains an open issue to
develop an efficient, continuous and distribution-free proba-
bilistic forecasting model that obtains whole distribution at
once and is comparable to the state-of-the-art.

B. Related Works

Univariate probabilistic forecasting usually translates to
communicating quantile forecasts, prediction interval (PI), and
predictive densities. The quantile forecasts and PI are specific
characteristics of predictive densities, which are most often
obtained by QR. Based on this approach, several machine
learning models such as neural network (NN) [8] and gra-
dient boost machine [9] have been adopted to estimate the
conditional quantile function. It is then simple and effective
to construct PI with two corresponding quantile functions. A
(1−β)×100% PI can be constructed by the pair of quantiles
(α, 1−β+α) where α ∈ (0, β), for instance (β/2, 1−β/2) as
typically derived in the literature [10], [11]. However, both PIs
and quantiles only provide partial information of probability
densities, the applications of which can hardly cover stochastic
power system operations where the whole distribution of future
wind power generation is often required.

As a result of this, it has been an active research topic
to communicate densities in the PWPF community. Besides
the aforementioned parametric models, resampling and ad-
vanced density estimation techniques have been adopted, as
reviewed in [1], [12]. The idea of resampling method lies
in estimating the PDF of empirical errors of point forecasts,
which makes the method naturally distribution-free. In order
to issue conditional densities for the PWPF, fuzzy inference
has been applied to classify the forecast conditions into several
modes [5]. But such finite classifications cannot continuously
adapt to all forecasting conditions. Furthermore, the quality of
the estimated densities is strongly related to the performance
of utilized point-forecast model. The non-parametric density
estimation method, namely kernel density estimation (KDE)
has been popular among the PWPF community due to its
universal approximation capability. In particular, it generally
deduces the density of a finite population selected by k-
nearest neighbors [13]. As with the resampling method, this
method is still limited in modeling conditional densities, since
the employed k-nearest neighbors operation is restricted in
dealing with heterogeneous distribution. That said, once k
is fixed, the KDE-based model cannot adaptively select the
finite population. In addition, the k-nearest neighbor operation
suffers from the curse of dimension. Recently, mixture density
network (MDN) has been applied in PWPF, as it can model
more complex distribution (compared to a Gaussian) through

the comic combination of Gaussian distribution [14]. But it
would get stuck in mode collapse issues, which translates
to saying that the ultimate distribution would collapse into
a Gaussian distribution [15].

Multivariate probabilistic forecasting often communicates
scenarios as forecasts, which are samples drawn from pre-
dictive densities. The scenario generation procedure is based
on probability integral transform (PIT) and the interdepen-
dence structure characterized by a covariance matrix [2]. Con-
cretely, one draws realizations from the estimated multivariate
standard Gaussian distribution, and converts the realizations
into scenarios of wind power generation via inverse PIT.
Besides, the emerging approach is to directly learn multivariate
densities based on advanced generative models such as the
generative adversarial network (GAN) adopted in [16]. The
GAN is composed of a generator and a discriminator, where
the generator is responsible for generating scenarios at the
operation stage. Although it is computationally more efficient
than the copula method, it suffers from notorious training
instability caused by the game between the generator and
discriminator at the training phase [17]. Moreover, it only
presents the applicability of GAN in generating scenarios,
and as such is not focused on producing various forms of
probabilistic forecasts e.g. predictive densities in univariate
and multivariate setups. Indeed, it has not even been assessed
by proper statistical scores. The most related work is [18],
which compares the performance of several generative models,
i.e., GAN, variational auto-encoder, and an integration-based
normalizing flow (NF). But their primary focus is to compare
the performance of deep-learning based generative models. It
is reported in [18] that the performance of the integration-
based NF is limited, let alone compared to state-of-the-art QR
models. Besides, they are unaware of the differences between
affine NF (which is indeed is equivalent to parametric models
with Gaussian distribution assumption) and integration-based
NF models. Therefore it leaves issues such as applicability
of NF and the relationship between NF with existing models
uncovered.

C. Proposed Method and Main Contributions

As a basis for this work, we get inspiration from [5] and
[19], which relied on the idea of transforming samples of
bounded stochastic process at hand to make them more suit-
able to be modeled by a Gaussian (or multivariate Gaussian)
variable. Besides, parametric models always serve as good
candidates for estimating the underlying distributions of wind
power generation [20]. Thus, it is appealing to set a parametric
model to learn a base distribution, and transform the base
distribution to the desired distribution (in the view of the
underlying distribution of wind power generation) with an
affordable cost. Indeed, it is allowed by the conservation of
probability measure [21], which translates into saying that
one can transform a variable that follows an arbitrary kind
of distribution into a variable that follows a desired distri-
bution with the assistance of bijective mapping (transform).
Here, instead of using a manually designed transform, we
implement such transforms via the NF [22], [23]. An NF
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Fig. 1: Illustration of transform.

framework is composed of a base distribution and a sequence
of trainable bijective mappings. Both the shape parameters
of base distribution and bijective mappings are modeled by
neural networks (NNs). Besides, such transforms ought to be
non-affine so that the model can flexibly characterize the wind
power distribution under different conditions.

Concretely, we establish a distribution-free PWPF model
based on a combination of a parametric model with Gaus-
sian distribution assumption and a conditional auto-regressive
NF [24], which is applicable to both univariate PWPF and
multivariate PWPF applications. Unlike copula models where
the marginal PDF and interdependence structure are modeled
separately, here the joint probability density is derived through
the chain rule of probability, i.e., the product of conditional
probability densities. In particular, such conditional probability
densities are also dependent on input features. The shape
parameters of base Gaussian distribution are learned by the
parametric model, whose realizations are then mapped into
those of the desired distribution via a spline-based NF [25].
By using the non-affine characteristics of spline-based NF, the
model is allowed to characterize the predicted distribution of
wind power generation more flexibly. The spline operates in
an elementwise manner, i.e., the mapping for each dimension
is specified by the outputs of an NN that takes contextual
features and the values of previous dimension as inputs. All
the parameters are estimated simultaneously based on the
maximum likelihood. Case studies validate the effectiveness
of the proposed model, which achieves state-of-the-art.

The main contributions of the paper are: (i) The proposal of
a distribution-free PWPF model, which suffices to handle the
bounded characteristics of wind power by using the power of
a parametric model with Gaussian distribution assumption and
non-affine transforms. (ii) The demonstration of its applicabil-
ity to model the whole predictive distribution, which avoids
the quantile crossing issue in the univariate PWPF and still
presents competitive performance that is comparable to state-
of-the-art QR models. (iii) A new perspective for conditional
PDF estimation for PWPF based on the function theory, which
offers complimentary understanding to merits and caveats of
distribution-free approaches versus parametric approaches.

The remainder of this paper is organized as follows. In
section II, the problem formulation and methodological com-
ponents of normalizing flows are introduced. Our approach
to their application to univariate and multivariate wind power
probabilistic forecasting is described in section III. Section
IV summarizes data sources and experiment implementation.
The results obtained are presented in Section V, where the
performance comparison with existing models is discussed.
Section VI concludes this paper.

II. METHODOLOGICAL COMPONENTS

A. Preliminaries

The most important base property to consider for nor-
malizing flows is the concept of conservation of probability
measure.

Definition 1 (Conservation of Probability Measure) :
Denote the PDF defined on Z ⊆ Rd as fZ(z) : Z → [0,+∞),
the PDF defined on Y ⊆ Rd as fY (y) : Y → [0,+∞), and
an invertible transform as T : Z → Y . For any subset ω ⊆ Z ,
we have ∫

z∈ω

fZ(z)dz =

∫
y∈γ

fY (y)dy. (1)

where γ = {T (z)|z ∈ ω}, as illustrated in Fig. 1. By utilizing
the change of variable, z = T−1(y), we convert the formula
into∫

y∈γ

fZ(T
−1(y))|det JT−1(y)|dy =

∫
y∈γ

fY (y)dy,

where JT−1(y) denotes the Jacobian matrix s.t.

JT−1(y)i.j =
∂yi
∂zj

.

As it holds for any subset γ ⊆ Y , we have

fY (y) = fZ(T
−1(y))|det JT−1(y)|. (2)

B. Problem Formulation

Consider we have p wind farms whose generation is driven
by a multivariate stochastic process. For wind farm i, let yi,t
denote the generation value at time t, which is a realization
of the corresponding random variable Yi,t. Then, let fYi,t(y)
and FYi,t(y) respectively denote the PDF and cumulative
distribution function (CDF) of Yi,t. The univariate PWPF boils
down to estimating the PDF of Yi,t+H , i.e., f̂Yi,t+H |t, given
information Ωi,t up to t via a model M, i.e.,

f̂Yi,t+H |t = fYi,t+H |t(y|Ωi,t;M, Θ̂), (3)

where H is the forecasting horizon, and Θ̂ represents the
estimation of real parameters Θ. Certainly, information from
nearby wind farms could be used to improve the forecasts, if
available [26]. The information may contain previous wind
power generation values, i.e., {yi,t−l, · · · , yi,t−1, yi,t}, and
some exogenous features such as numerical weather predic-
tions (NWPs). Accordingly, one can also obtain the CDF of
Yi,t+H by integrating f̂Yi,t+H |t, namely F̂Yi,t+H |t, the inverse
function of which specifies quantiles. For instance, the pre-
dicted α-th quantile q̂

(α)
t+H|t is given by

q̂
(α)
t+H|t = F̂−1

Yi,t+H |t(α). (4)

A PI with nominal level (1 − β) × 100% can be formed by
two quantiles, q̂(β/2)t+H|t and q̂

(1−β/2)
t+H|t , i.e.,

[q̂
(β/2)
t+H|t, q̂

(1−β/2)
t+H|t ]. (5)

Indeed, multivariate PWPF aims at communicating the joint
probability distribution of a collection of future random vari-
ables. For instance, the multivariate PWPF may communicate
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Fig. 2: Illustration of model estimation stage.

the joint probability distribution of random variables at several
future time, i.e., Yi,t+1, · · · , Yi,t+H , which is expressed as

f̂Yi,t+1,··· ,Yi,t+H |t = fYi,t+1,··· ,Yi,t+H |t(y|Ωi,t;M, Θ̂), (6)

and that at several sites, i.e.,

f̂Y1,t+H ,··· ,Yp,t+H |t =

fY1,t+H ,··· ,Yp,t+H |t(y|Ω1,t, · · · ,Ωp,t;M, Θ̂).
(7)

In multivariate PWPF, one often draws several realizations
from the distribution as scenarios. For instance, one can draw
realizations from f̂Y1,t+H ,··· ,Yp,t+H |t, which are denoted as
ỹi,t+1, · · · , ỹi,t+H , i.e.,

ỹi,t+1, · · · , ỹi,t+H ∼ f̂Y1,t+H ,··· ,Yp,t+H |t. (8)

Without loss of generality, we write the future random variable
as Y t (which may be univariate or multivariate), and its
realization as yt. The information is denoted as Ωt, whose
realization is xt. In this paper, we refer to xt as contextual
features, to make them distinguished from the inputs of NF.
Hence, the cornerstone of PWPF can be written in a compact
form, i.e.,

f̂Y t|t(y|xt) = fY t|t(y|xt;M, Θ̂). (9)

In this paper, we assume that Θ does not change with
time, which therefore can be estimated from training datasets
Xtrain and Y train. It can be also considered in an online
setting, where parameters vary with time. With the estimated
model at hand, to issue a forecast at time t, it is only required
to feed xt into the model and yield results as described in (9).

The classic parametric approach usually sets M as a model
with distributional assumption, such as Gaussian and Logit-
normal, whereas Θ̂ denotes the parameters of a function
that maps contextual features to the shape parameters of
distribution. With the conservation of probability measure, we
consider a intermediate random variable Zt that follows a
specific distribution fZt(z), whose realization is denoted as
zt. Let T map zt into yt, i.e.,

yt = T (zt; Θ̂T ), (10)

where Θ̂T denotes the estimation of parameters of transform T
(whose real parameters are denoted as ΘT ). Now we consider
to model the distribution of Zt via a parametric model G,
whose parameters are denoted as ΘG . The estimation of ΘG
is denoted as Θ̂G . Then, the model M consists of G and T ,
i.e., M = {G, T}, whose parameters are Θ = {ΘG ,ΘT }. The
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Fig. 3: Illustration of operational forecasting stage.

conceptual framework of training stage is shown in Fig. 2. In
other words, by learning G and T , we can estimate the model
M.

C. Flow Model for Forecasting

Here we implement the conceptual model T via normalizing
flows. Generally, the transform T in an NF consists of a series
of invertible functions T1, T2, . . . , TK [23], i.e.,

T = T1 ◦ T2 ◦ · · · ◦ TK , (11)

where ◦ denotes the symbol of composition. For each Tk,
we denote its input as z

(k−1)
t , which is the realization of the

random variable Z
(k−1)
t . Accordingly, its output is denoted

as z
(k)
t , which is the realization of the random variable Z

(k)
t .

Particularly, Z
(0)
t follows the base distribution specified by

G, whereas Z
(K)
t is Y t. For simplicity of notations, we drop

subscript of density function in what follows.
Two significant calculation passes in NF models are forward

and inverse passes. Such computation between z
(k)
t and z

(k−1)
t

for instance is respectively described as

z
(k)
t = Tk(z

(k−1)
t ; Θ̂Tk

), z
(k−1)
t = T−1

k (z
(k)
t ; Θ̂Tk

),

where Θ̂Tk
represents the estimated parameters of Tk. In

particular, we obtain f(z
(k)
t |xt) through f(z

(k−1)
t |xt) and the

mapping Tk, which is bijective in z
(k−1)
t as well as z

(k)
t and

parameterized by xt [27]. We have

f(z
(k)
t |xt) = f(z

(k−1)
t |xt)|

∂z
(k−1)
t

∂z
(k)
t

|

= f(T−1
k (z

(k)
t ; Θ̂Tk

,xt)|xt)|det JTk
(z

(k−1)
t )|.

(12)

Consequently, the forward and inverse passes in CNF are
expressed as

z
(k)
t = Tk(z

(k−1)
t ; Θ̂Tk

,xt), z
(k−1)
t = T−1

k (z
(k)
t ; Θ̂Tk

,xt).
(13)

With the sequential transforms, we have

yt = T (z
(0)
t ; Θ̂T ,xt), z

(0)
t = T−1(yt; Θ̂T ,xt).

where Θ̂T denotes the parameters of T , which is a collection
of Θ̂Tk

, i.e., Θ̂T = {Θ̂T1
, · · · , Θ̂TK

}.
The Jacobian determinant is computed by

log |det JT (z(0)
t )| = log |

K∏
k=1

det JTk
(z

(k−1)
t )|

=

K∑
k=1

log |det JTk
(z

(k−1)
t )|.
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Ultimately, we build the connection between the PDF of z(0)
t

and that of yt, i.e.,

log f(yt) = log f(z
(0)
t ) +

K∑
k=1

log |det JTk
(z

(k−1)
t )|.

Such Tk in the NF model is implemented via NNs, and
is required to be invertible and have a tractable Jacobian
determinant.

The introduced CNF model is trained based on max-
imum likelihood. As we assume that parameters Θ will
not change with time, we can estimate them from train-
ing dataset Y train = [y1,y2, · · · ,yN ]⊤ and Xtrain =
[x1,x2, · · · ,xN ]⊤. The loss function is defined as

L = − 1

N

N∑
n=1

log f(yn|xn)

= − 1

N

N∑
n=1

[log f(T−1(yn,xn)) + log |det JT (T−1(yn,xn))|].

(14)

At the training stage, we estimate Θ̂ by minimizing loss
function L. To issue forecasts at time t, we feed xt into the
base model and all transforms, which is illustrated in Fig. 3.
Then, we derive the density of z(0)

t , i.e.,

f̂(z
(0)
t |xt;G, Θ̂G).

Based on it, we could draw L realizations:

z̃
(0),1
t , · · · , z̃(0),L

t ∼ f̂(z
(0)
t |xt;G, Θ̂G). (15)

By transforming each realization z̃
(0),i
t via T , i.e.,

ỹi
t = T (z̃

(0),i
t ;xt, Θ̂T ), (16)

we can obtain L realizations of f̂(yt|xt;M, Θ̂), namely
ỹ1
t , · · · , ỹL

t . In particular, we can obtain the α-th quantile
of f̂(z

(0)
t |xt;G, Θ̂G), which is denoted as q̂

(α)
G , and then

transform it via T to obtain the quantile of f̂(yt|xt;M, Θ̂),
i.e.,

q̂
(α)
M = T (q̂

(α)
G ;xt, Θ̂T ) (17)

D. Relationship with Classic Methods
Here we discuss the relationship between this method

with classic methods. In what follows, we assume the base
distribution as normal distribution, i.e., z(0)

t ∼ N (0, I).
1) Gaussian Distribution: Models with the Gaussian dis-

tributional assumption [28], [29] can be translated into setting
the transform of NF models as an affine transform. That is,

yt = T (z
(0)
t ) = Atz

(0)
t + bt,

where At and bt are the corresponding matrix and vector
specified by xt. Then the problem boils down to estimating At

and bt from data. However, as affine transforms cannot change
the family of distribution, yt still obeys Gaussian distribution,
i.e.,

yt ∼ N (µt,Σt),

where µt and Σt are the corresponding shape parameters.
Classic methods usually directly estimate µt and Σt via
statistical learning, instead of At and bt.

2) Logit-Normal Distribution: Let yt,i and z
(k)
t,i respectively

represent the i-th element of yt and z
(k)
t . Besides, yt,i is

normalized into the interval [0, 1]. The logit-normal distribu-
tion [19] can be interpreted as setting the transform T as a
combination of affine transforms and a sigmoid transform.
Using the affine transforms, we derive

z
(K−1)
t ∼ N (µt,Σt),

where µt and Σt are specified by xt. Then the logit-normal
transform operates element-wise on z

(K−1)
t , i.e.,

yt,i =
exp(z

(K−1)
t,i )

1 + exp(z
(K−1)
t,i )

.

3) Mixture Density Network: The model based on mixture
density network [14] can be considered as setting T as
the conic combination of affine transforms. That is, each
component transform Ti operates as

Ti(z
(0)
t ) = Ai

tz
(0)
t + bit,

where Ai
t and bit are parameters, specified by xt. The trans-

form defined by this model operates as

yt = T (z
(0)
t ) =

∑
i

ωiTi(z
(0)
t ),

where ωi represents the weight of Ti.
4) Gaussian Copula: The model based on Gaussian Copula

[2] is an instance of NF, which is specified by an element-wise
monotone function g and a correlation matrix Σt specified by
xt. That is,

z
(K−1)
t = Atz

(0)
t ∼ N (0,Σt),

yt,i = g(z
(K−1)
t,i ).

Indeed, any desired distribution can be obtained by trans-
forming a Gaussian distribution through a specific mapping.
Such mapping proceeds each value in the domain in the same
manner, such as the aforementioned Logit-Normal transform.
It implies that characteristics of the derived wind power
distributions remain the same for different wind conditions.
Although the conic combination enables deriving more com-
plex distributions compared to Gaussian distributions, it still
handles each condition indifferently. With regard to the Gaus-
sian copula model, it is developed for multivariate modeling.
By modeling the well-calibrated marginal PDF and correlation
structure, one can yield the the ultimate joint probability
density in a distribution-free way. However, as mentioned
above, it highly relies on the estimation of marginals and tends
to underestimate the covariance structure, which often impedes
its performance.

III. FORECASTING APPLICATIONS

The basic approach for conditional normalizing flows de-
scribed in the above can readily be used for forecasting
applications, in both univariate and multivariate settings. We
choose the Gaussian distribution as base distribution whose
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Fig. 4: Illustration of inverse path in the k-th transform.
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Fig. 5: Illustration of forward path in the k-th transform.

shape parameters are learned by an NN and adopt a non-
affine flow to obtain a piece-wise non-Gaussian distribution.
Let µ̂t, Σ̂t denote the estimated shape parameters of base
distribution, which are determined by a function of xt, namely
ϕ(xt; Θ̂G). In other words, with the Gaussian distributional
assumption, the model G described in Section II-B reduces to
the function ϕ(xt; Θ̂G). It is described as

µ̂t, Σ̂t = ϕ(xt; Θ̂G). (18)

A. Probabilistic Forecasting Applications

1) Univariate Probabilistic Forecasting: In the univariate
case, each intermediary variable and shape parameters of the
Gaussian distribution are scalars, which are rewritten as z

(k)
t ,

µt, and σt. The estimated shape parameters of base distribution
µ̂t, σ̂t are derived via

µ̂t, σ̂t = ϕ(xt; Θ̂G). (19)

Tk is a univariate function that operates as

z
(k)
t = Tk(z

(k−1)
t ;xt, Θ̂T ). (20)

2) Multivariate Probabilistic Forecasting: The most rele-
vant computation to consider for multivariate forecasting is the
transform described in (13). Here, let us consider a function
τk in the transform Tk that operates elementwise and relies
on previous dimensions and contextual information. Take the
computation of i-th dimension as an example, i.e., the forward
path and inverse path between z

(k−1)
t,i and z

(k)
t,i . In the inverse

path, τ−1
k maps z

(k)
t,i into z

(k−1)
t,i via

z
(k−1)
t,i = τ−1

k (z
(k)
t,i ; ck(z

(k)
t,1:i−1,xt; θ̂ck), θ̂τk), (21)

where z
(k)
t,1:i−1 represents [z

(k)
t,1 , · · · , z

(k)
t,i−1]

⊤, θ̂τk represents
the parameters of τk, and c(z

(k)
t,1:i−1,xt; θ̂ck) is a function that

outputs conditionals. In other words, Θ̂Tk
contains θ̂τk and

θ̂ck . The forward path is described as

z
(k)
t,i = τk(z

(k−1)
t,i ; ck(z

(k)
t,1:i−1,xt; θ̂ck), θ̂τk). (22)

Using the terminology of [30], ck(·) and τk(·) are respectively
referred to as the conditioner and transformer. Illustration of
such calculation procedure is shown in Fig. 4 and Fig. 5.

Remark 1: With the chain rule of probability, we decompose
the joint probability density f(z

(k)
t |xt) into a product of

conditional probability densities, i.e.,

f(z
(k)
t |xt) =

d∏
i=1

f(z
(k)
t,i |z

(k)
t,1:i−1,xt).

As shown in Section II-C, the training stage is relied on
the inverse path and the computation of likelihood. In-
deed, the inverse path described in (21) is associated with
f(z

(k)
t,i |z

(k)
t,1:i−1,xt), which translates into saying that the com-

putation of likelihood will preserve the conditional structure
of multivariate distribution. The forward path can be translated
into sampling z

(k−1)
t from f(z

(k−1)
t |xt) and computing via

(22), which can be also regarded as sampling z
(k)
t,i from

f(z
(k)
t,i |z

(k)
t,1:i−1,xt).

Remark 2: The univariate probabilistic forecasting can be
interpreted as a special case of multivariate probabilistic
forecasting. As with (22), we rewrite (20) as

z
(k)
t = τk(z

(k−1)
t ; ck(xt; θ̂ck), θ̂τk).

B. Base Distribution

The function ϕ(·) described in (18) and (19) is implemented
by an NN of Nϕ layers. Denote the outputs, weights, and bias
of the l-th layer respectively as hϕ,l

t , W ϕ,l, and bϕ,l. The l-th
layer operates as

hϕ,l
t = W ϕ,lhϕ,l−1

t + bϕ,l. (23)

Specially, hϕ,0
t = xt. After each layer, a non-linear element-

wise operator ReLu(·) is followed, i.e.

ReLu(hϕ,l
t,i ) = max(hϕ,l

t,i , 0). (24)

The output layer will yield µ̂t and Σ̂t.

C. Non-affine Transform

In this section, we describe the conditioner and transformer
of the adopted transform.

1) Conditioner: The function ck(·) is set as an addictive
model and implemented by an NN. Concretely, it contains two
parts: the function of z

(k)
t,1:i−1 and the function of xt. Then,

ck(·) is described as

ck(z
(k)
t,1:i−1,xt; θ̂ck) = ck,1(z

(k)
t,1:i−1) + ck,2(xt), (25)

where ck,1(·) and ck,2(·) are the two component functions.
ck,2(·) is implemented by an NN, similar to that of ϕ(·).
Specially, as the length of z(k)

t,1:i−1 changes for each dimension,
it is implemented via a model named as MADE [31].
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TABLE I: Case study settings.

Type of variable Input feature Forecasting
horizon Type of interdependence Dataset

Case 1 univariate NWP 24 none GEFCom 2014
Case 2 univariate previous values of length 6 1 none NREL, France wind farm
Case 3 multivariate previous values of length 6 6 temporal interdependence France wind farm
Case 4 multivariate previous values of length 6 1 spatial interdependence NREL

TABLE II: Dataset description.

Dataset Description Resolution Samples

GEFCom 2014 NWP that contains wind speed and direction at two altitudes respec-
tively, as well as corresponding wind power values 1-h 16800

France wind farm Time series of wind power 10-min 52355
NREL Time series of wind power 15-min 35040

2) Transformer: The main idea of spline-based NF is
to implement the transform as monotonic spline [25]. Each
τk is represented as a piece-wise function which contains
M segments specified by M + 1 coordinates (knots). The
knots are obtained from the conditioner ck(·) and denoted as
{(αk,m, βk,m)|m = 0, · · · ,M}. Accordingly, the transformer
τk(·) is split into M segments, each of which is a simple
monotonic function. Every two nearby segments will meet at
internal knots {(αk,m, βk,m)|m = 1, · · · ,M − 1}. Specifi-
cally, we use monotonic rational-quadratic splines, which are
defined by derivatives at internal knots besides the knots. They
are also derived from the conditioner ck(·) and denoted as
{δk,m|m = 1, · · · ,M − 1}. We define

sk,m =
βk,m − βk,m−1

αk,m − αk,m−1
,

ξ(z
(k−1)
t,i ) =

z
(k−1)
t,i − αk,m−1

αk,m − αk,m−1
.

The rational-quadratic function in the m-th bin is expressed
as

rk,m(ξ) =βk,m−1+

(βk,m − βk,m−1)[sk,mξ2 + δk,m−1ξ(1− ξ)]

sk,m + [δk,m + δk,m−1 − 2sk,m]ξ(1− ξ)
,

where ξ represents ξ(z
(k−1)
t,i ). That is,

τk(z
(k−1)
t,i ) = rk,m(ξ), if z

(k−1)
t,i ∈ [αk,m−1, αk,m]. (26)

Specifically, when z
(k−1)
t,i < αk,0 or z

(k−1)
t,i > αk,M , we set

τk(·) as equivalent transform, i.e.,

τk(z
(k−1)
t,i ) = z

(k−1)
t,i , if z

(k−1)
t,i ∈ (−∞, αk,0] ∪ [αk,M ,∞).

(27)
As τk(·) is monotonic, the inverse path can be computed

analytically by solving a quadratic equation, i.e.,

ξ(z
(k−1)
t,i ) =

2C

−B −
√
B2 − 4AC

, (28)

where
A =(βk,m − βk,m−1)(sk,m − δk,m−1)

+ (z
(k)
t,i − βk,m−1)(δk,m + δk,m−1 − 2sk,m),

B =(βk,m − βk,m−1)δk,m−1

− (z
(k)
t,i − βk,m−1)(δk,m + δk,m−1 − 2sk,m),

C = −sk,m(z
(k)
t,i − βk,m−1).

It implicitly defines the inverse function τ−1
k (·).

IV. CASE STUDY

In this paper, we validate the proposed approach in both
univariate cases (Case 1, Case 2) and multivariate cases (Case
3, Case 4). Their settings are described as follows and sum-
marized in Table I.

1) Case 1: It is a day-ahead PWPF case based on the
GEFCom 2014 data1, where numerical weather predic-
tions (NWPs) are taken as inputs and predictive PDF of
wind power at each time step is issued as forecast.

2) Case 2: It is a very-short-term PWPF case where previ-
ous values of wind power generation are taken as inputs,
and predictive PDF of wind power at future time is
issued as forecast. Horizon is set as 1 here for validation
based on the NREL2 and France wind farm data3.

3) Case 3: It is a scenario generation case based on
the France wind farm data, which considers temporal
interdependence. Specifically, we generate scenarios of
future 6 time steps, which can be used in electricity
market.

4) Case 4: It is a scenario generation case based on the
NREL data, which considers spatial interdependence
of multiple sites. Horizon is set as 1. Specifically, we
choose data from 5 nearby wind farms for validation.

As feature selection is not the focus of this paper, in Case 2,
Case 3, and Case 4, the length of input features is determined
by a preliminary test, which is varied from 4 to 24 and em-
pirically set as 6. Certainly, models may be further improved
by finely selecting the features. But it is fair for all models as
they use the same input features.

1Available at http://blog.drhongtao.com/2017/03/gefcom2014-load-
forecasting-data.html

2Available at https://www.nrel.gov/grid/wind-toolkit.html
3Available at https://opendata-renewables.engie.com/explore/index
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A. Dataset Description

Three open datasets are used for validation, i.e., data
from GEFCom 2014, NREL, and France wind farm. The
GEFCom 2014 dataset provides NWPs that contain wind
speeds and directions at 10-m and 100-m, and corresponding
normalized wind power generation values. It is an hourly data
set collected in 2012 and 2013, and contains a total of 16,800
samples. We randomly select data from 5 wind farms for
experiments. The France wind farm data and the NREL data
are time series. Data from the France wind farm are collected
from four wind turbines, whereas NREL data are generated by
simulation at various sites. The resolution of the France wind
farm data is 10-min, whereas that of the NREL data is 15-
min. Specifically, we select France wind farm data collected in
2013 which contain 52355 samples, and NREL data collected
in 2012 which contain 35040 samples for validation. In each
case, we split 70% of the data as a training set, 10% as a
validation set, and 20% as a test set according to [32]. The
information about datasets is summarized in Table II.

B. Assessment Metrics

In this paper, reliability diagrams and PI width are used
to assess the reliability and sharpness of univariate predictive
densities. The comprehensive quality of predictive probability
density in univariate cases is assessed by continuous ranked
probability score (CRPS) as suggested by [33]. And the
quality of predictive probability density in multivariate cases
is assessed by scenarios in terms of energy score (ES) and
variogram score (VS) as suggested by [34], [35]. All of them
are averaged over the whole test data.

1) CRPS: Let Ft(y) denote the CDF of Yt and yt denote
the observation at time t. The CRPS is defined as:

CRPS(Ft, yt) =

∫
y

(Ft(y)− 1(y − yt))
2dy, (29)

where 1(·) is unit step function, which represents the empirical
CDF of observation.

2) ES: Given a set of scenarios {ỹ(i)
t |i = 1, · · · , S} and

observations yt, the ES is defined as

ES =
1

S

S∑
i=1

∥yt− ỹ
(i)
t ∥2−

1

2S2

S∑
i=1

S∑
j=1

∥ỹ(i)
t − ỹ

(j)
t ∥2, (30)

where ∥ · ∥2 is the d-dimensional Euclidean norm.
3) VS: Let yt,i and ỹt,i respectively denote the i-th dimen-

sion of the observation yt and a scenario ỹt. The VS is defined
as

VS =

d∑
i,j=1

(|yt,i − yt,j |p − E(|ỹt,i − ỹt,j |p))2, (31)

where

E(|ỹt,i − ỹt,j |p) ≈
1

S

S∑
s=1

|ỹ(s)t,i − ỹ
(s)
t,j |

p.

Here we set p as 0.5 as suggested by [35].

C. Benchmarks

1) Univariate Cases: We set both parametric models and
non-parametric models as benchmarks. For the parametric
approaches, we choose NN models that rely on assumptions of
Gaussian and logit-normal distributions, and refer to them as
NN-G and NN-L respectively. They share the same basic NN
structure with the proposed model. An MDN is established,
as it is allowed to model more complicated distributions
compared to Gaussian distribution. As for the non-parametric
approaches, we include two popular distribution-free models
KDE [13] and quantile regression gradient boosting machine
(QRGBM) [9] as benchmarks since they are proved effective
in the GEFCom 2014. The QRGBM is an ensemble model
that iteratively fits new tree model to minimize the quantile
loss. Concretely, in the KDE, we determine the nearest 100
neighbors of each test sample and use their corresponding
wind power values to estimate the predictive PDF. In addition,
the climatology model is adopted as a naive benchmark model,
which estimates the predictive probability density using all
training data.

2) Multivariate Cases: For multivariate cases, we mainly
use NN-G, and NN-L as benchmark models, since they are
the most popular ones. Besides, multivariate probabilistic
ensemble (MuPEn) [36] is adopted as a naive benchmark. It
is a generalized model of the complete-history persistence,
which conducts random sampling without replacement from
historical scenarios for each test data.

D. Implementation Details

1) Univariate Cases: The base distributions of NN-G, NN-
L, and the proposed model are set as Gaussian distribution. We
carry out preliminary tests to determine the hyperparameters of
the proposed model. The NN that determines shape parameters
of the Gaussian distributions contains 2 hidden fully connected
layers (each has 512 units). For fairness, we use the same
amount of transforms (concretely, 5 transforms here) for NN-
G, NN-L, and the proposed model. All the transforms are
implemented by NNs with 2 hidden fully connected layers,
each of which contains 256 units. Such transforms in the
proposed model are specified as neural spline transforms4,
whereas they are are designed as affine transforms in the NN-G
and NN-L. particularly, for NN-L, we use a sigmoid transform
behind the 5 affine transforms. The MDN for use contains 5
Gaussian components, both the weights and shape parameters
of which are estimated by an NN.

2) Multivariate Cases: For multivariate cases, NN-G, NN-
L and the proposed model use the same NN architecture used
for univariate cases. The only difference is that we adopt the
auto-regressive structure here to model the joint probability
density. It is implemented based on masked auto-encoder [31]
that forces each variable to only rely on the previous variables
in a given order via masks. Besides, we permute variable
orders after each transform, as PDF is permutation-invariant.

NN-G, NN-L, and the proposed model are established via
Pytorch and trained by the Adam optimizer [37]. The learning

4Code will be released upon publication.
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TABLE III: CRPS on GEFCom 2014 (percentage of nominal
capacity).

1 3 5 7 9
Climatology 19.30 18.38 21.36 18.10 18.79
NN-G 9.45 8.98 8.51 7.43 8.48
NN-L 9.33 8.62 8.88 7.40 8.88
QRGBM 9.72 8.57 8.32 7.62 8.27
KDE 10.07 8.76 8.64 7.76 8.56
MDN 9.98 8.77 8.32 7.28 9.37
Proposed
model 9.08 8.35 8.14 7.09 8.28
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Fig. 6: Illustration of probability density of 100-th sample in
test set.

rate is determined through a grid search and ultimately set
as 1e-4. It decays 1/3 per 300 epochs. The QRGBM is
implemented based on lightGBM5, the hyperparameters of
which are set according to the winner of GEFCom 2014 [9].
KDE is implemented by using scikit-learn6.

V. RESULTS AND DISCUSSION

A. Case 1

1) CRPS: Values of CRPS are presented in Table III. It
is seen that all the benchmark models and the proposed
model outperform climatology model. Amongst the bench-
mark models, KDE has slightly lower performance than others,
which suggests that it is overly simplified to approximate the
conditional PDF by the density of neighborhood population.
Concretely, the distribution of samples is not homogeneous,
which means more samples could be taken to better estimate
the conditional PDF if the neighborhood distribution is dense.
However, once the criterion to select neighborhood samples is
fixed, e.g. value of k in k-nearest neighbors here, it cannot
adaptively adjust the population, on which the conditional
PDF estimation is based. On the contrary, NN-G, NN-L,
QRGBM, MDN, and the proposed model can adaptively esti-
mate the conditional PDF/quantile by excavating the similarity

5https://lightgbm.readthedocs.io/en/latest/
6https://scikit-learn.org/stable/
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Fig. 7: Reliability diagram of forecasts at wind farm 1.
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Fig. 8: Width of PI at wind farm 1.

of input features via parameterization or entropy measure. It
also suggests that the performance of KDE can be further
improved by carefully designing such population selection
criterion and making use of the similarity of neighborhood
samples. The QRGBM outperforms the NN-G and NN-L in
3/5 of cases as it is distribution-free. However, the other two
cases suggest that the independent fitting in QRGBM may
accumulate errors. MDN is comparable with NN-G and NN-L,
which may be explained as that it is harder to estimate weights
and component distributions jointly in the MDN compared to
NN-G and NN-L (where only shape parameters are required
to be estimated). Furthermore, once the weights are fixed, they
cannot specifically adapt to each wind condition. Obviously,
the proposed model exceeds benchmarks in all cases.

The comparison between NN-L and NN-G shows that logit-
normal transform may degenerate performance at times. It
reveals that the logit-normal distribution assumption may not
match the real distribution sometimes, although the variable
is forced to fall into the physical constraints. We present
the predictive probability density of the proposed model at
a selected timestamps in Fig. 6. As illustrated, the PDF
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Fig. 9: 90% PI of the proposed model of 10 days at wind farm 1, top: NN-G, middle: proposed, bottom: NN-L.

TABLE IV: CRPS for both France wind farm and NREL dataset (percentage of nominal capacity).

Climatology NN-G NN-L QRGBM KDE MDN Proposed
model

France
wind farm 13.40 1.85 1.82 1.92 3.17 2.06 1.83

NREL 21.96 0.25 0.25 0.34 2.58 0.46 0.28

TABLE V: ES for Case 3 and Case 4 (percentage of nominal
capacity).

MuPEn NN-G NN-L Proposed
model

Case 3 33.73 9.32 9.20 9.20
Case 4 51.95 2.68 2.64 2.44

TABLE VI: VS in Case 3 and Case 4.

MuPEn NN-G NN-L Proposed
model

Case 3 0.3842 0.2711 0.2377 0.2424
Case 4 0.6303 0.0634 0.0524 0.0446

formats of the proposed model are more flexible than specific
families of distributions because the proposed model does
not rely on any distributional assumptions. In addition, the
proposed model has 1.7 million trainable parameters, which
are comparable to those of NN-G and NN-L, i.e., 1.6 million
trainable parameters. This means that the proposed model can
flexibly model different wind power distribution characteristics
on condition of predicted wind speeds, with increased but
affordable complexity.

2) Reliability and Sharpness: The reliability diagram and
PI width for wind farm 1 are illustrated in Fig. 7 and Fig. 8.
It turns out that QRGBM and the proposed model achieve the

best performance in reliability, which are close to the ideal
case. Strictly speaking, it is unfair to compare a bunch of
independently trained QR models with a single model that
derives the whole distribution, as the computational cost of
QR for a single quantile is much larger. Nevertheless, the
proposed model still achieves comparable reliability, which
confirms its performance. By contrast, the reliability diagrams
of NN-G, NN-L, MDN, and KDE deviate from the ideal to a
certain degree. The deviation of NN-G and NN-L cannot be
totally mitigated, since the families of distribution they define
mismatch the real underlying distribution. Results suggest
that the superiority of the proposed model goes beyond the
distribution-free property compared to the QR and KDE-based
methods, by offering an efficient and continuous conditional
modeling approach.

Fig. 8 demonstrates that the proposed model provides the
shortest PI in all nominal levels. However, the performance of
NN-G in width of PI is comparable to that of the proposed
model, whereas the PI width of NN-L is much wider. For
illustration, we present 90% PI of the NN-G, proposed model,
and NN-L in 10 days in the top, middle, and bottom subplots
of Fig. 9. As shown, the PI of NN-G violate the bounds of
wind power to a large extent, revealing probability leakage
issue, while PIs of the proposed model and NN-L are more
realistic. Besides, it is demonstrated that PIs of NN-L are
sometimes unnecessarily wide. For example, between 200-
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h and 250-h, the upper bound of NN-L is larger than that
of NN-G and the proposed model. Indeed, both the NN-L
and the proposed model can be considered as models derived
from the NN-G by applying transforms. Indeed, the logit-
normal transform in the NN-L applies to the whole domain
indifferently, whereas the spline transform of the proposed
model is piece-wise. This explains the sacrifice of NN-L in
PI width, which is a side-effect when forcing the variable into
the boundary.

B. Case 2

We present the CRPS of Case 2 in Table IV. As with
Case 1, all models are superior to climatology. The perfor-
mance of NN-G, NN-L, QRGBM and the proposed model
are demonstrated to be comparable. The gap of performance
between the KDE and others is enlarged compared to Case 1,
because of higher dimension of input features which raises
issues for k-nearest neighbors. Comparing results of KDE,
QRGBM, MDN, and the proposed model with results of NN-
G and NN-L, we can infer that the assumptions of Gaussian
and logit-normal distribution are fairly adequate in very-short
term PWPF. This may be due to the fact that the structure
of temporal interdependence over a short period of time is
simpler than the interdependence spanning several hours.

C. Case 3 and Case 4

The ES and VS are presented in Table V and Table VI. All
of NN-G, NN-L, and the proposed model outperform MuPEn,
since the MuPEn draws samples from the empirical uncondi-
tional distribution whereas other models draws samples from
the estimated conditional distribution. Except for the MuPEn,
the ES and VS in Case 3 are larger than those in Case 4,
which indicates larger uncertainty in Case 3. This is is caused
by the fact that wind power generation uncertainty increases
as forecasting horizon increase. In both cases, NN-L and the
proposed model exceed NN-G, which suggests the limited
capability of the Gaussian assumption in complex and high
dimensional cases. Besides, the performance of NN-L and the
proposed model are comparable in Case 3, but they differ in
Case 4, which suggests that spatial interdependence is more
complex.

D. Distribution-free vs Distributional Assumption

In the case study, QRGBM, KDE, and the proposed model
are distribution-free, whereas NN-G and NN-L rely on as-
sumptions about specific distributions. Compared to NN-G and
NN-L, the proposed model has increased but affordable com-
plexity due to its spline operation. Meanwhile, the increased
complexity enables the proposed model to adapt to different
wind power distribution characteristics at different predicted
wind speeds. Compared to QRGBM and KDE, the proposed
model is superior in efficiently modeling whole conditional
PDFs. In addition, case studies show that distribution-free
methods are not overwhelmingly superior to models with
distribution assumptions. Concretely, NN-G and NN-L rival
QRGBM and KDE in several cases. And in Case 2, the

performance of NN-L is comparable to that of the proposed
model, which means these assumptions are adequate in very-
short-term PWPF. But when it comes to scenarios with more
uncertainty and more complex interdependence, the proposed
approach always achieves a satisfactory performance with an
acceptable computational cost. Indeed, it has been reported in
[18] that the distribution-free integration-based NF model is
comparable to an affine NF model that is equivalent to NN-
G. We infer that it is resulted from the difficulty in training
the integration-based NF. Intuitively, it will take more effort
to find the desired transform in a larger function space. This
also reveals the trade-off between efficiency and flexibility in
modeling distributions.

E. Discussion on Base Distribution

Theoretically, the base distribution modeled by G can be
set as any distribution. By learning the transforms, one can
still obtain the estimation of desired distribution. But it means
that one needs to estimate the transforms in a relatively large
space, if the base distribution is considerably different from
the underlying distribution. For illustration, we consider the
wind farm 1 in Case 1 and set the base distribution as a
standard Normal distribution N (0, 1). In theory, this will not
make a lot differences in estimated distributions, since the
standard Normal can be transformed to any Gaussian by using
an affine transform. But compared to the proposed model, this
setting implies more complicated task, i.e., the flow model
requires to estimate such affine transform besides the non-
affine transform. In the experiments, the CRPS under the
condition of standard Normal base distribution turns out as
14.9, which is much larger than that of the proposed model,
i.e., 9.22. In other words, the estimation of base distribution
reveals significance in a practical sense.

F. Training Time

Training time of all models in Case 1 is presented in Table
VII, we report the training time of 1000 epochs of NN-based
models and 199 independent quantiles of QRGBM. It shows
that the training time of the proposed model is comparable
to that of commonly used NN-G, which is affordable. In
general, the training time of the proposed model is governed
by the number of transforms and the number of hidden units.
With more transforms and hidden units, the training time will
increase. However, it still costs time to generate scenarios for
high-dimensional multivariate forecasting.

VI. CONCLUSIONS

The approach for probabilistic wind power forecasting de-
scribed in this paper, based on conditional spline normalizing
flow, offers a number of advantages with respect to the exist-
ing. It directly estimates the conditional probability density
and does not require any assumption on the distributions
involved. In addition, it is applicable to both univariate PWPF
and multivariate PWPF, with high efficiency in terms of both
modeling and computing. Our case-study applications based
on open datasets confirmed the interest of the approach and
its wide applicability for wind power applications.
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TABLE VII: Training time of all models in Case 1 (seconds).

Models NN-G NN-L QRGBM KDE MDN Proposed
Time 56 56 44 14 63 78

TABLE VIII: CRPS under different steps of transforms (per-
centage of nominal capacity).

Number of
Transforms 1 2 3 4 5

CRPS 9.93 9.51 9.23 9.25 9.22

TABLE IX: CRPS under different sizes of hidden units (per-
centage of nominal capacity).

Number of
Units 64 256 512

CRPS 9.22 9.08 9.37

TABLE X: CRPS under different number of knots (percentage
of nominal capacity).

Knots 5 10 20 50
CRPS 9.25 9.08 9.19 9.20

Parameters are assumed fixed in this paper; therefore it
still needs to explore how to estimate the model in an online
learning fashion. Besides, the time for scenario generation is
costly when dimension increases, so we will find more efficient
methods in the future.

APPENDIX

A. Selection on Hyperparameters

To empirically determine the hyperparameters, we conduct
a preliminary test to validate the influence of number of
transforms, number of units, and number of knots by studying
variants of Case 1. Specifically, we take wind farm 1 as an
example, and present results of several case settings.

1) Number of Transforms: In this case, we set the number
of hidden units in transform as 64, the number of knots as
10, and vary the number of transforms from 1 to 5. The
corresponding results are shown in Table VIII. It can be seen
that the CRPS is relatively larger when we use only few
transforms. Consequently, the model is small, which results
in limited capability of fitting ultimate transform and shape
parameter function of base distribution. After reaching at 3
transforms, the gain of increasing transforms is relatively low,
which suggest the capability is enough. Besides, increasing
transforms means increasing layers of deep neural network,
whose training procedure might become difficult when the
model is considerably deep.

2) Number of Hidden Units: Here we fix the number of
transforms as 5, the number of knots as 10, and adjust the
number of hidden units as 64, 256, and 512. Results are
presented in Table IX. It shows that the fitting capability of
NN in each transform is influenced by the number of hidden
units. The capability is limited when the number of hidden
units is few. But it might overfit the data if the number of
hidden units is considerable.

3) Number of Knots: In this case, we fix the number of
layers as 5 and the number of hidden units as 256, and look
into the influence of knots by varying the number. We set it
as 5, 10, 20, and 50 respectively, whose results are shown in
Table X. As we increase the number of knots, the CRPS first
decreases and then increases.
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“Evaluation of wind power forecasts—an up-to-date view,” Wind Energy,
vol. 23, no. 6, pp. 1461–1481, 2020.

[34] P. Pinson and R. Girard, “Evaluating the quality of scenarios of short-
term wind power generation,” Applied Energy, vol. 96, pp. 12–20, 2012.

[35] M. Scheuerer and T. M. Hamill, “Variogram-based proper scoring rules
for probabilistic forecasts of multivariate quantities,” Monthly Weather
Review, vol. 143, no. 4, pp. 1321–1334, 2015.

[36] D. van der Meer, “A benchmark for multivariate probabilistic solar
irradiance forecasts,” Solar Energy, vol. 225, pp. 286–296, 2021.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.


