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Abstracit— In this work, we introduce a novel calibration technique
based on a hanging chain curve replacing the checkerboard-based
methods. It is a known physical phenomenon that a hanging chain
or a flexible rope under gravity can be modeled by a special curve
called catenary. Therefore, instead of the commonly-used planar
calibrator, we propose using multiple shots of a catenary-shaped
chain for calibration. This approach can solve the out-of-focus prob-
lem which is faced in checkerboard calibration methods when the
size of the board is not large enough. Although enlarging a planar
calibrator increases the manufacturing time and cost, a simple label
chain can create large planar areas as precise as a rigid checker-
board, is easily foldable and transportable. We compare the results
of our proposed approach against the widely used checkerboard-
based calibration as well as the state-of-the-art calibration methods
and show that catenary-based calibration is much more accurate
than checkerboard-based calibration by a very large margin and is
also very competitive among the other approaches.

Index Terms— Camera Calibration, Computational Photography,

Photogrammetry

[. INTRODUCTION

IMPLY, a camera is a device which maps the 3D space of

the real world onto the 2D plane of the image sensor. This
mapping is mathematically explained via the camera model
which contains hidden parameters such as focal length and
principal point. Estimation of these hidden parameters is called
camera calibration; and camera calibration is used in many
applications of machine vision to detect and measure objects,
for scene reconstruction and for sensor fusion [1].

Although modern digital cameras are assembled by robotic
arms, and even if they are produced on the same fabrication
line, each camera has a unique parameter set and should be
calibrated separately. Despite the fact that several alternative
methods exist, cameras are commonly calibrated by a method
proposed by Sturm and Maybank [2] and popularized by
Zhang [3] two decades ago. This method is based on capturing
a checkerboard image multiple times in arbitrary orientations
with respect to the camera. Although these arbitrary orienta-
tions are unknown, owing to the common camera parameters
of all the shots, orientations can be estimated and internal
camera parameters can be computed. Thanks to its conve-
nience, this pioneering method has become so popular that it
dominated all of the applications containing photogrammetry
unless extreme precision is needed. Nevertheless, in the last
two decades, camera and sensor technology have developed
and became more convenient. At the time of the article
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published by Zhang, cameras with analog output were popular;
hence their resolution was around 0.3 MP. The article implied
printing out a standard A4-sized paper for a planar calibrator.
Standard inkjet printers had a resolution of 300 dpi which
means around 8 million dots on paper. Therefore the reference
object was precise enough to measure a low-resolution camera.
Moreover, for such a low resolution, blurring due to out-
of-focus for an A4-sized calibrator was not a problem. Yet,
imaging of the calibrator with modern cameras has a sig-
nificant problem caused by depth of field. When the focus
is set to infinity, the minimum distance to capture a sharp
image is called hyperfocal distance which is proportional with
the resolution and the aperture. Modern camera lenses can
be auto-focused on any target. Nevertheless, this motion on
the lens also shifts the focal length. If the calibration is
needed for photogrammetric purposes far from the hyperfocal
distance, calibration should also be performed when the focus
is set to infinity. In this case, the calibrator should be also
placed far from the hyperfocal distance. Otherwise, blur on
the calibrator causes uncertainty on the location of the markers
and consequently error on the calibration parameters.
Nevertheless, if the calibrator does not roughly occupy the
whole field of view, calibration also fails because estimation of
perspective parameters would be ill-conditioned if the inputs
are taken from a local window instead of the whole picture.
Naturally, this problem could be overcome by enlarging the
calibrator. Considering the resolution and the aperture of
modern cameras, the calibrator should be placed one meter
away and have roughly 1m? area for a satisfactory calibration.
Sticking an A4-sized printout on a rigid planar surface was not
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Fig. 1: Label chains. a) Label chains with tiny mobile links.
b) Detail from a hanging chain as a planar calibrator.

a hard goal, but in the case of a larger calibrator, the precision
of planarity of the coated rigid surface is another problem as
it is not easy to carry around a 1m? rigid board. Inevitably, in
order to solve the defocus problem, the calibrator should be
enlarged; which means higher production time, cost, and also
storage and mobility problems.

With the aim of overcoming the disadvantages of the larger
calibrator, we propose to use a chain that would easily fit
into one’s pocket, but would also cover a large area when it is
hanging. It is a physical phenomenon that a hanging chain or a
flexible rope under gravity fits a special curve called catenary,
and forms a planar curve whose parametric equation is known.
From this point of view, we propose a novel calibration method
with a hanging chain as shown in Fig. 1, which can be used
to construct a large planar structure without the hassles listed
above.

The contributions of this paper can be summarized as
follows: (i) We propose a new calibrator that is shaped by
a physical phenomenon, is naturally planar due to the laws
of physics, and is easily foldable and transportable. (ii) Our
proposed approach provides a solution to the out-of-focus
problem, that is seen in lenses that are focused at a large
distance and have a reduced depth of focus. As such, modern
cameras in mobile devices have larger resolution and aperture
which forces the calibrator to be manufactured in larger
dimensions. The proposed calibrator is practical and can be
bought off-the-shelf which reduces the manufacturing time and
cost. (iii) We experiment with a camera having a fixed-focus
lens; and compare the proposed calibrator with checkerboards
of two distinct sizes: A4-sized and 1m?. By taking the larger
checkerboard as ground truth we show that the proposed
calibrator gives more accurate values than the smaller checker-
board. (iv) We also compare the catenary approach to several
state-of-the-art models and show its competitiveness.

Il. LITERATURE REVIEW

Camera calibration methods are separated into two
archetypical approaches [4]: photogrammetric [5] and self-
calibration [6]. The first approach is based on a simple
principle: a model, whose parameters are hidden, maps the
3D points of the world into the 2D points of the image. If
a sufficient number of point pairs are collected, estimation
of these hidden parameters is possible. For that purpose, a
special tool called a calibrator, whose dimensions are well-
known has to be manufactured. Via markers on the calibrator,
selected points on the image can be detected. On the contrary,

the self-calibration approach does not need a calibrator. In
this approach, arbitrary shots are taken from a constant scene.
Between shots, there exist random angles which cause warping
because of perspective transformation. Although random rota-
tion angles of the camera are unknown, estimation of hidden
parameters is possible due to the fact that these parameters are
common in all shots. The pros and cons of these approaches
are palpable: while photogrammetric methods are accurate and
scene independent, self-calibration is imprecise and highly
scene dependent. On the other hand, while the photogram-
metric method needs a specially manufactured calibrator, self-
calibration needs nothing except for the captured scene. The
recent approaches on deep learning such as [7] and [8] also
fall into this category. In this work, we focus our attention
only on the photogrammetric methods.

More than two decades ago, a renowned paper by Zhang
[3] blended the two approaches by saving the advantages
and discarding the disadvantages of these aforementioned
methods. Manufacturing a 3D calibrator with high accuracy
is fairly costly and time-consuming. Instead of a 3D object
with markers on certain points, Zhang proposed using a 2D
calibrator which can be easily produced by printing on paper,
and estimated the parameters from the several shots taken with
arbitrary directions with respect to the calibrator plane.

Nevertheless, with the development in camera technology,
increments in resolutions, defocus aberration in capturing the
calibrator has become a current issue. Within the span of the
last five years among the two new-release iPhone models (7
vs. 13), hyperfocal distance has increased by twice roughly
due to larger pixels on the sensor and larger aperture on
the lens [9], [10]. Recent studies which follow the planar
calibrator approach have challenged the focus problem. Ha
et al. [11] and Bell er al. [12] proposed a method using a
smartphone that displays special patterns to overcome defocus.
Later, in an inspiring paper, Chen et al. [13] proposed a novel
calibration method which utilizes Zhang’s algorithm but gets
rid of the printed planar calibrator. Instead of this, the parabolic
trajectory of a bouncing ball is used. A bouncing ball follows
a planar trajectory on space whose time function is well-
known. Therefore, the markers on a planar calibrator as given
in Zhang’s method were replaced by the tracking of a bouncing
ball on a video sequence. Sturm and Quan [14] also proposed a
similar calibration method by following a geometric approach.
In the last decade, novel camera calibration methods are also
proposed. Wong et al. [15] used the fact that the projection of
a sphere is an ellipse to calibrate camera with balls. Su ef al.
[16] used a special calibrator consisting of a grid of spheres
and model the projection of each sphere as an ellipse. Chen
[17] used 4 planar points and an additive non-planar point
which are available in sports arenas. Shen and Hornsey [18]
used a special calibrator having spheres with distinct colors
to calibrate a multi-camera system. Liu et al. [19] used a
minimal planar graph and followed a geometric approach to
estimate calibration parameters. Wang and Wan [20] used a
simple planar graph consisting of only two vertical lines as a
calibrator. Fu et al. [21] used a linear wand with three LEDs
as a calibrator. Kong ef al. [22] used vertical plumb lines to
calibrate a multi-camera system. Lu and Chuang [23] used a
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flat monitor and plot lines on the monitor and estimated the
projection between the image and monitor planes for multiple
shots to calibrate the camera.

In this work, we propose a novel calibration method which
is based on a physical phenomenon. It is known that a hanging
chain or a flexible rope under gravity fits a special curve called
catenary. Therefore, instead of a planar calibrator, multiple
shots of the catenary-shaped chain can be used for calibration.
This method can solve the “out-of-focus” problem which is
faced with the checkerboard unless the size of the board is
large enough. Hence, we propose an inexpensive and practical
solution that enables precise calibration.

[1l. METHOD

In this section, we first describe the catenary curve model
and how to estimate the camera parameters using the catenary
as the calibrator. Then we discuss what would happen if the
two ends of the calibrator were not aligned properly and offer
a solution to handle it.

A. Catenary Curve

Under constant gravity, a chain having infinitesimally small
links or an ideally flexible rope takes shape of a catenary curve.
Algebraically the curve is formulated via the hyperbolic cosine
function on the Cartesian plane. This function is a solution of
the differential equation which is derived from the free body
diagram of an infinitesimally small link of the chain [24], given
as:

y(z) = acosh((x + c1)/a) + co; (D

where « and y correspond to the horizontal and vertical
components of the curve, c; and ¢y are constants which shift
the solution horizontally and vertically so they can be equated
to 0. The shape of the curve is only determined by a. A wider
catenary curve has a larger a parameter, and vice versa. We
note that the equation is independent of the mass of the link,
therefore, the material of the chain.

Initially, the chain is marked with equal intervals in order
to take the role of markers on the checkerboard. To formulate
the locations of the markers, integration of differential lengths
over the curve formulated in Eq. 1 is sufficient [24]. Therefore
horizontal and vertical components = and y of the curve can
be parameterized in terms of length u from the bottom point
as in Eq. 2 and 3:

z(u) = asinh ™ (u/a) ()

y(u) = ay/1+ (u/a)? 3)

Then, we need to compute the locations of the marked links
using Egs. 2 and 3. For that purpose, we compute the unknown
parameter a in the formula using two constraints: length of
the chain and aperture, i.e. distance between two ends of the
chain, under the assumption that the two ends are on the same
level horizontally. This assumption will be also discussed in
Sec. III-C. These inputs can be measured with a tape line on
the experiment setup. Let 2] and 2w be the total length of the
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Fig. 2: Warping between the calibrator and the image plane

chain and aperture respectively. We can substitute w for x and
substitute [ for v in Eq. 2, and finally obtain Eq. 4 which must
be satisfied by the unknown parameter a:

a | asinh™*(I/a) = w, a € RT 4

The positive root of Eq. 4 can be computed using Newton’s
method. After obtaining parameter a, coordinates of marked
links can be computed using Eqgs. 2 and 3 by substituting
evenly spaced numbers over the interval of [—[,!] for u.
Pixel coordinates of projections of the same points on the
image plane can also be selected manually. Therefore we
obtain two sets of coordinates that belong to the real-world
and image plane as seen in Fig. 2. We expect these markers
to take the place of crosses on the checkerboard to follow
Zhang’s method algebraically. Just as these crosses help to
estimate the warp matrix H between the checkerboard and
the image planes, markers on the chain could have the same
role. Warping transformation can be formulated as in Eq. 5:

U x
slv|=H"|y (5)
1 1

where (u,v) pairs are pixel coordinates, (x,y) pairs are real-
world coordinates. s represents the scale factor for projection.
At least 4 points are enough to estimate warp matrix H using
least squares estimation (LSE). The importance of the warp
matrix for calibration will be explained in the next subsection.

B. Internal Parameter Estimation

After estimation of a series of warp matrices for each shot,
we could perform internal parameter estimation as explained
in [2], [3]. To compute the internal camera parameters, the
pin-hole camera model could be formulated as a projection
transformation of the 3D real world into 2D image plane as:

Ju v wo "
sm= |0 f, w| -[Rt]-X (6)
0 0 1
A

where = [u v 1] and X = [z y z 1]7 are homogeneous
coordinates that belong to the image plane and the real world,
respectively. Internal parameters that are contained in matrix
A, namely f,, f.,,» 7, and [ug wvo]T are the vertical and
horizontal focal lengths, skewness, and the principal point
respectively. External parameters are the rotation matrix R
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and the translation vector t. Finally, s represents the scale
factor for projection.

Warping between the calibrator plane and the image plane
can also be formulated as in Eq. 7 by assuming the calibrator
plane as the z = 0 plane.

i x
slvj=A -[rirat]-|y @)
1 It

where rq and r; are the two columns of the rotation matrix R.
Hence, each estimated warp matrix H can be shown explicitly
in terms of a common matrix A which carries the internal
parameters and the distinct external parameters as in Eq. 7.

The two properties of the columns of the rotation matrix r;
and ry, perpendicularity and normality lead to two equations
which constrain the columns of the warp matrix H.

rfrg=rl 1] -1l 1r3=0 (8)

Hence, for each calibrator capture, two constraints are ob-
tained. That means, at least three image captures are sufficient
to calculate the internal parameters.

The brief information up to now on the algebraic deriva-
tion of internal parameter estimation is widely known as
Zhang’s method [3] although Sturm and Maybank presented
a conference paper having the same approach before [2].
To obtain minimum projection error, nonlinear optimization
is needed using maximum likelihood estimation which also
enables estimation of the radial distortion parameters which
belong to the nonlinear part of the camera model [3].

C. Leveling Problem

As mentioned in Sec. III-A, we assume that the two ends
of the catenary-formed chain are on the same level horizon-
tally. Nevertheless providing this condition can be impractical.
Hence a new method that overcomes this condition should be
sought. At this point, a perspective transformation between
the image and the calibrator planes plays a key role. If a level
difference exists, a shift in the locations of the markers occurs
as seen in Fig. 3. By neglecting the level difference computed
locations would be erroneous. Hence, perspective estimation
between image coordinates of the markers and erroneous loca-
tions of the markers on the calibrator plane would also produce
greater estimation error due to the fact that the mathematical
model does not fit the physical setup. In order to overcome
this problem, a hypothetical level difference can be assumed.
If the hypothetical level difference is close to the true value,
a smaller estimation error should be expected. Therefore, we
should search for the hypothetical level difference that gives
the smallest estimation error.

Marker locations X;(p) can be expressed as a function of
hypothetical shift p. Hence the projective transformation be-
tween image coordinates of the markers x; and corresponding
locations on the calibrator plane X; can be expressed as:

s X, = Hpsp - Xi(p) + ei(p) ©))

and the optimal hypothetical shift p* can be computed as:

Fig. 3: Level difference between the ends (Ah) and the shift
of the markers (p)

TRV TN [oAERe

Fig. 4: Hanging chain in catenary shape, 1m? checkerboard,
and A4-sized checkerboard on the same scale.

p* :argminZ|HLSE-Xi(p) — 5 %2 (10)
p i
Here X; and 5(, express homogeneous coordinates where
¢ indicates the marker index. Estimated projection matrix
fILSE produces estimation errors e;. Our proposed method
aims to minimize the total magnitude of errors by searching
for the optimal hypothetical shift p as in Eq. 10. Then the
optimal level difference is substituted from optimal shift with
Eq. 3. To solve this cost function, we use successive parabolic

interpolation. The experiments regarding the leveling problem
will be discussed in Sec. IV-D.

V. EXPERIMENTS

In this section, we describe the setup, perform our experi-
ments on three calibrators and discuss the factors that affect
the accuracy.

A. Experimental Setup

For the experiments, we used the Waveshare RPi (B) 2.0
module camera with 5 MP resolution, which is compatible
with Raspberry Pi. It has a manually adjustable focus hence
we ensured that the internal parameters of the camera are fixed.
For the chain, we preferred to use a two-meter-long label chain
(Fig. 1a) as it has tiny links and free motion between the links.
We painted 13 links on the chain black with equal intervals
to detect marker points easily on the images (Fig. 1b). The
aperture of the two ends of the chain is set as 90 centimeters
hence roughly 1m? area is created as seen in Fig. 4.

By the two sets of coordinates that belong to the chain
plane and the image plane, a warp matrix can be estimated
using LSE. Although a basic calibration by following Zhang’s
algebraic derivation as briefed above is possible, in order to
realize more sophisticated calibration which consists of radial
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Fig. 5: Comparison of sharpness between the markers of the
1m? checkerboard captured from a distance of 1.5 meters (lef?)
and A4 sized checkerboard from 40 cm (right).

distortion also, we need a nonlinear optimization process that
minimizes projection error. In other words, the parameter set
is searched to minimize the error between detected image
locations of the marked points and calculated locations of
projections of the same points by using locations on the
calibrator plane.

B. Comparison of Calibrators

As mentioned above, standard Zhang’s method using A4-
sized printout causes the out-of-focus problem in modern
cameras with high resolution and wide aperture. A simple
solution is enlarging the checkerboard and placing it further
away from the camera. Nevertheless, end-users, who instantly
need camera calibration, seldom attempt to construct such a
large object. For that purpose, we propose a new calibrator that
can take place of the larger checkerboard. Just a two-meter-
long chain can roughly create a 1m? surface. Hence, in our
experiments, we examined three calibrators as shown in Fig.
4: A4-sized checkerboard, 1m? checkerboard, and two-meter-
long chain.

We surveyed the novel calibration methods in the literature
of the last decade [15], [17]-[19], [21], [22]. In these studies,
Zhang’s method [3] and Bouguet’s implementation [25] were
taken as ground truth. Hence, we also took the same method
[3] and implementation [25] as a ground truth but using a
1m? checkerboard. Consequently, using this ground truth, we
compared the widely used A4-sized calibrator and our chain
calibrator. Comparative results are given in Sec. IV-C. We also
observe the out-of-focus problem on the images of the A4-
sized calibrator which is 30 or 40 centimeters far away from
the camera. In Fig. 5 comparison of sharpness between the
markers of these two checkerboards can be seen.

C. Calibration Results

We captured 20 shots for each of the three calibrators. We
took special care to take captures of calibrators with distinct
orientations with respect to camera coordinates as diverse as
possible (Fig. 6) [26]. Because manipulating the orientations
of the 1m? checkerboard and the catenary with respect to
the Earth are unpractical, we just manipulate the orientations
of the camera by rotating it around optical axis roughly. We
also used a tripod and a remote shutter release to avoid shaky
images. Consequently, we obtained the results listed for each
of the three calibrators in Table I.

b I- i
A | N

Fig. 6: Arbitrary shots for each of the three calibrators:
1m? checkerboard (top), A4 sized checkerboard (center), and
catenary (bottom)

TABLE [: Estimated parameters and error rates which belongs
to distinct methods

Focal length Principal point

method horizontal vertical horizontal vertical
31"6?1:2:{)&;;?“” value (px) 432004 432328 1261.65  890.53
Ad-sized value (px)  4364.14 4335770  1225.30  909.59
checkerboard error (%) 1.02 0.29 -2.88 2.14
Catenary value (px) 433585 4333.68 1250.44  888.13
error (%) 0.37 0.24 -0.89 -0.27

As mentioned above in subsection IV-B, we took the results
of the 1m? checkerboard as ground truth. Then we mea-
sured the performances of the proposed method and A4-sized
checkerboard by computing their relative errors with respect to
ground truth results for each internal parameter: horizontal and
vertical components of focal length and the principal point.
Our proposed method surpasses the A4-sized checkerboard
for estimation of each inner camera parameter. The reason
for the failure of the checkerboard method is the out-of-focus
problem. Especially larger error of A4-sized checkerboard on
the principal point is caused by blur on the markers as seen
in Fig. 5.

The results are also compared with other novel calibration
methods of the last decade [15] [17] [18] [19] [21] [22], de-
scribed briefly in Sec.Il, in Table II. The performances of these
methods are also measured with respect to Zhang’s method.
Nevertheless, in these works, dimensions of the checkerboard
using for ground truth are not expressed. We observed that
among the novel calibration methods given above, only the
wand calibrator [21] is assured of precise calibration. The
result of the catenary is as fine as the wand and sometimes
even better.

In the methods named Spheres [15], Non-planar [18], Wand
[21] and also our method Catenary, proposed calibrators have
spherical shaped markers. Performance of the Wand and
Catenary can be explained by the fact that smaller spherical
markers produce smaller errors in the location of centers. The
weakness of line-based methods, named Quadratic [19] and
Plumb [22], is caused by the sparse distribution of the lines on
the image while markers of previous methods cover the whole
image. Lastly, the 5-Points [17] method uses arbitrary objects
on the scene instead of a manufactured calibrator whose
dimensions are known. Hence it shows the worst performance.

We also examined the estimation of radial distortion pa-
rameters. Radial distortion is modeled as a polynomial so it is
parameterized by coefficients of a polynomial. Nevertheless,
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TABLE Il: Comparison of estimation error rates (%) of other
methods in the literature of the last decade

Focal length Principal point

method horizontal vertical horizontal vertical
Catenary 04 0.2 0.9 0.3

Spheres [15] 1.9 1.1 0.1 1.7

Wand [21] 0.5 0.5 0.5 0.4
Non-planar [18] 3.2 3.0 3.6 7.0
Quadratic [19] 14 3.1 8.7 3.0

Plumb [22] 2.9 2.9 - -

5-Points [17] 5.6 5.6 - -

TABLE Ill: Projection error corresponding to the estimated

parameters of distinct calibration methods

Method Mean Error (pixels) Maximum Error (pixels)
Catenary 18.1 28.2
A4 sized checkerboard 38.2 41.0

for a fair comparison, instead of the estimated coefficients, we
focused on projection error of the camera models including
radial distortion corresponding to the estimated parameters
which belong to distinct calibration methods (Table III). Here,
the mean projection error of the A4-sized checkerboard is two
times larger than the Catenary.

D. Experiments on leveling

In experiments, the same setup is used except for the fact
that one end of the catenary is lifted to 2.5 centimeters. Other
parameters remained the same. 20 images are captured from
several camera angles by rotating the camera as mentioned
above and also by positioning the tripod at the same locations
as in the previous experiments. In order to observe the con-
vexity of the optimization problem, the mean perspective error
functions of each image are also plotted as shown in Fig. 7.
As shown in the figure, although error functions vary around
distinct intervals, each of them has a parabolic shape.

After the optimization process has been done, the computed
optimum level difference between the ends as Ah = —2.45
which is so close to the true distance of 2.5 centimeters.
Minus sign of the optimum shift is also coherent with the
end of the catenary which is lifted up. Finally, the camera
calibration algorithm is also operated after computing marker
locations with respect to the optimum shift computed before.

Perspective Error

-6 -4 -2 0 2 4 6
Hypothetical Shift (cm)

Fig. 7: Mean perspective error functions with respect to
hypothetical shift (p) for each 20 image

TABLE IV: Relative errors of the results for the catenary whose
ends are not on the same level horizontally with respect to
results for the checkerboard as ground truth.

Focal length
horizontal vertical

-0.43

Principal point
horizontal vertical

0.97

error (%) -0.03 0.51

(b (©

Fig. 8: Sharpness of the marker images for the checkerboard
and catenary in the same scale in (a-b); a marker on the
catenary with zoom-in detail in (c)

This process is the same as the previous calibration with the no
shift assumption. Then new camera parameters are estimated
and compared with the results obtained with the checkerboard
as seen in Table IV. In comparison with the results in Table
I, a similar performance has been obtained.

E. Effect of the noise on calibration

Detecting the exact location of the markers can be a
problem for precise camera calibration. Mostly uncertainty of
marker locations on the image is caused by blur. Although the
uncertainty is not on the same scale as seen in Fig. 8, noise
having the same amplitude is added on the marker locations
for both of the two calibrators. Then noisy locations are used
in camera calibration for the two calibrators. This process is
repeated 100 times. Hence the amount of bias (mean error
w.r.t. the ground truth results) and variance (spread through
iterations) caused by noise are observed for the checkerboard
and catenary (Table V). Although the catenary gives better
results in average considering bias, this method is also more
sensitive to noise considering the variance. This weakness is
caused by the number of markers, i.e. while the checkerboard
has 100 markers, the catenary has just 13.

F. Effect of number of markers on calibration

To investigate the effect of the number of markers used on
the catenary, we reduced the number of markers by skipping 2,
3, and 4 at a time, and executed the same calibration procedure.

TABLE V: Comparison of bias and variance at the calibration
results for noisy points of the checkerboard and catenary

Raw points Noisy points
Method bias bias variance
Catenary 22.12 26.42 43.41
A4 sized checkerboard 61.51 62.53 14.86
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TABLE VI: Euclidean distances between the results from the
ground truth for several number of markers on catenary

Number of markers 13 7 5 4

Error (pixels) 22.12 24.31 62.77 178.54

Euclidean distances between the results from the ground truth
are given in Table VI. The performance of the calibration
seems saturated at around 13 markers.

V. CONCLUSION

In this work, we introduce a novel calibration technique
based on a hanging chain curve, called a catenary, replacing
the checkerboard-based methods. The catenary is an easily
foldable and transportable object; it is easy to fabricate in
large sizes, and is naturally planar. Calibrating lenses that are
focused at a large distance and have a reduced depth of focus
(such as a zoom lens) can be challenging using a checkerboard,
and would require to build large calibrators which incur higher
manufacturing time, cost, and storage problems. The catenary
makes it a lot simpler, while providing accurate internal
parameters with error rates less than 1%. Further, the catenary
always points in the direction of gravity, so it enables camera-
accelerometer calibration as well. We show that the proposed
method brings a fresh solution to the out-of-focus problem and
outperforms the state-of-the-art approaches of the last decade.

Since our calibrator is shaped by gravity, its another poten-
tial benefit is to enable camera-accelerometer. Nowadays, IMU
(inertial measurement unit) sensors are frequently integrated
into mobile devices. The acceleration vector also indicates the
direction of the gravity when the sensor remains immobile.
Any change in camera orientation will be reflected in the mea-
sured gravity vector by the accelerometer. This fact enables to
estimate the parameters which relate IMU sensor coordinates
to the camera coordinates. By utilizing both camera and IMU
sensors, several applications that require a mutual coordinate
system that combines photogrammetric and kinematic data,
such as image rectification and deblurring of shaky images
can be performed on mobile devices.
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