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Abstract— Commonly, the efficacy of new FMECA methods is 
conducted through qualitative comparisons between rankings; for 
a small number of failure modes, this approach is suitable but can 
become unpractical or lead to misleading results for more 
extensive problems. This fact motivated us to introduce an 
alternative approach to compare different FMECA methods based 
on agreement metrics that allow the statistical comparison 
between rankings generated by independent raters. Despite its 
relevance, the application of agreement coefficients is limited in 
the FMECA context. The proposed approach considers the 
agreement assessment between different methodologies used in 
FMECA analysis (Risk Priority Isosurfaces RPI, VIKOR, ITWH, 
and Type-II Fuzzy Inference System) when applied to a study case 
regarding blood transfusion widely used in the literature for 
benchmarking and consisting of eleven failure modes. We selected 
the RPI methods as a reference to compare the other forenamed 
methods. Results show that our agreement coefficient-based 
comparison approach proves effective for the statistical 
comparison of different FMECA methods instead of the rankings 
qualitative comparison. 
 

Index Terms—FMECA; Risk assessment; Type-II fuzzy 
inference systems; Agreement Coefficient; Cohen’s kappa. 
 

I.  INTRODUCTION 
AILURE Modes Effects and Criticality Analysis 
(FMECA) is a qualitative risk assessment method 
designed to identify potential failure modes, their causes, 

and systems performance effects [1]. The objective of FMECA 
is to identify the possible ways a failure can occur, how often it 
occurs, how severe the failure affects the system performance, 
and what preventive measures should be taken to avoid the 
failure. 

The classical FMECA analysis is based on three factors, 
called risk factors, to characterize each failure mode [1]: the 
Severity (SEV), which characterizes the effect of the failure 
mode qualitatively, and the Frequency of Occurrence (OCC), 
that characterize how likely it is it the failure mode to occur, 
and the Detectability (DET) that characterize how detectable is 
the failure mode before to occur. Each risk factor is classified 
into specific risk categories represented by a numerical scale, 
and it can be a 1 to 10 scale as used in [1] or a 1 to 5 scale as in 
[2]. 

Each failure mode is assessed through a risk priority number 
(RPN). The RPN results from the composition, (denoted by the 
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symbol  ), between SEV, OCC, and DET (1), being the 
product the generally adopted operator. 

 ( ) ( ) ( )RPN SEV OCC DET=    (1) 
Because the RPN calculation in the classical FMECA 

approach results from the unique product between three 
integers, there is no associated computational complexity. 
Although FMECA is a very popular qualitative method for 
failure analysis, computation of the RPN has some 
disadvantages [3,4]. The main are: 

 
1) The RPN computation does not consider any difference 

degree between the three risk factors, OCC, SEV, and 
DET (i.e., no weight averaging each risk factor); 

2) Although a higher RPN is usually associated with more 
critical failure modes, this is not always true [5,6]; 

3) The scales for the three risk factors are generally 
considered arbitrarily and may not accurately represent 
the risk characteristics in specific problems. 

 
To deal with the classical FMECA’s shortcomings, some 

approaches based on computational intelligence and decision-
making methods have been proposed in the past years.  

Bowles and Peláez [3] presented one of the first applications 
of fuzzy inference systems FIS to improve the FMECA 
analysis. Their results showed that the proposed FIS approach 
allowed overcoming some FMECA issues like imprecise 
information related to the risk factors. Recently in [5], the 
authors conducted a literature review about FMECA methods 
published between 1998 and 2018. The review shows that 
publications about FMECA improvements have increased in 
the last ten years. Methods like grey theory and fuzzy inference 
systems were used mostly to improve the FMECA analysis. In 
[6], multi-criteria decision-making (MCDM) methods and 
uncertainty theory are applied to model the vagueness related 
to FMECA processes. This book includes a broad review of 
academic works that apply MCDM methods to overcome 
FMECA issues. 

In [7], the authors present a fuzzy rules base and grey 
relation theory to improve the FMECA analysis conducted for 
an ocean-going fish vessel. The proposed methodology 
includes linguistic terms and allows to assign weights to each 
risk factor. In [8], an improved prioritization method is 
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proposed based on combining the "cloud model" and a modified 
PROMETHEE [9] method. The authors also compared 
qualitatively with other approaches like IF-TOPSIS [10], Fuzzy 
VIKOR [11], IVIF-MULTIMOORA [12], and ITL-GRA. Their 
methodology was applied to prioritize the potential failure 
modes in the emergency department’s treatment process. 
Results showed that the proposal could overcome the 
shortcomings of the traditional FMEA method, yielding more 
reasonable and credible risk ranking results. 

In [13], the authors describe a combination of the variable 
precision rough set theory to represent the vagueness associated 
with the FMEA members, using the TODIM method to improve 
the failure modes’ ranking. Their proposed approach was 
applied to a real case study of a steam valve system and 
compared qualitatively with the classical FMEA, the Fuzzy 
TODIM, the Rough TOPSIS [14], and linguistic distribution 
assessments using the LDA-based TODIM. The authors 
conclude that, for their case study, the risk priority obtained 
through their method is more robust than FMEA based on 
Rough TOPSIS and Rough Vikor. 

Recently, Wang et. All in [15] proposed a hybrid FMEA 
framework integrating the “Gained and lost dominance score” 
GLSD method, Choquet integral [16], and “cloud model” for 
risk analysis of potential failure modes. This methodology was 
used to prioritize the risk of 20 failure modes in the machine 
tools of the manufacturing industry. When comparing the 
proposed approach with others like a generalized TODIM 
method combined with Choquet integral and a cloud model-
based TOPSIS, the authors verified that their method “is more 
reasonable and reliable than other extended FMEA 
frameworks.” 
In [17], the authors propose a methodology to evaluate and 
classify failure modes into different risk classes instead of 
concentrating on a global prioritization of the failure modes. 
Their methodology is based on a combination of Hesitant 
Uncertain Linguistic Z Numbers (HULZNs) [18] used to 
represent the FMEA experts’ information and a modified 
Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) to cluster the failure modes. The authors applied 
the approach to a case study of twenty-five failure modes 
associated with a geothermal power plant and then compared it 
with the conventional FMEA based on RPN and the Fuzzy 
Vikor; they conclude that their proposed methodology is 
adequate to establish the criticality of the failure modes. A 
similar approach, also based on clustering analysis, was 
presented by Liu and Li in [19]. They use the K-means 
clustering [20] to classify the FMEA experts, a weighting 
scheme for the experts’ risk attitudes, and a prioritization 
scheme based on a combination of regret theory (RT) and the 
PROMETHEE II method. The case study in this paper contains 
eleven failure modes related to the cold chain green logistics 
risk assessment problem. It considers the criteria of fourteen 
professional experts as part of the analysis. Their proposed 
method was then compared with the classical FMEA, TOPSIS-
based FMEA, VIKOR-based FMEA, MABAC-based FMEA, 
COPRAS-based FMEA, MARCOS-based FMEA, RT-based 
FMEA, and PROMETHEE-based FMEA. The authors 

concluded that the proposed method is better than other FMEA 
methods for validity and reliability.  

In [21], the authors propose the application of an FMEA 
based on Fuzzy Rules Base (FRB) [22] and Grey Relational 
Theory (GRT) [23] to improve the failure modes prioritization. 
Each proposed method was applied to a 500 Km pipeline 
system, identifying 27 failure modes. Authors conclude that 
their FRB-based approach is useful when only the relative 
ranking between failure modes is important. Their GRT-based 
approach can be used when the contribution of each risk factor 
is necessary for the optimal decision-making regarded resource 
allocation.  

Liu et al. in [4] proposed the application of interval 2-tuple 
hybrid weighted distance (ITHWD) in an FMECA analysis 
conducted on a blood transfusion problem. In their work, eleven 
failure modes with RPN higher than 80 were selected to apply 
the ITHWD approach. The results proved to be a useful way to 
prioritize the failure modes in the presence of uncertainty and 
incomplete information. In [24], a similar approach also 
represented the uncertainty using interval type-2 fuzzy sets to 
rank failure modes, which is now in a real oil spill incident. 
Based on five experts, their criteria were aggregated 
considering a rule-based approach, with the final fuzzy set 
subsequently defuzzified to find the RPN value. 

Reference [25] shows the application of type-2 fuzzy-based 
FMECA in the risk assessment of manufacturing facilities in 
the automotive industry. The paper includes a fuzzy extension 
of the ordered weighted average (OWA) to assign an 
importance level to each fuzzy risk factor. Although the 
proposed method is limited to triangular membership functions, 
the suggested approach offers additional flexibility to the 
experts in making judgments. It provides better modeling of 
uncertainty in terms of intra and interpersonal uncertainty. 

In a more recent work [26], Qin and Pedrycz developed an 
approach that combines interval type-2 fuzzy sets and 
evidential reasoning applied to FMECA analysis of a steam 
valve system, considering eight failure modes. The 
methodology was revealed to be more precise than 
conventional methods like fuzzy VIKOR and fuzzy TOPSIS, 
reducing the probability of producing the same RPN. The 
weighting scheme applied to the three risk factors has made the 
result more comprehensive and capable of better expressing the 
uncertainty than type-1 fuzzy methods. 

Anes et al. [27] show an FMECA approach based on two 
mathematical functions: the first deals with cases where the 
order of importance of risk variables is sufficient to prioritize 
failure modes. The second set of functions is an extension of the 
first one and considers each variable's relative weight. Here 
their approach was applied to the blood transfusion problem 
analyzed in [4] and compared with other fuzzy-based methods. 
The results indicate that the proposed risk isosurface method 
has a good potential to prioritize failure modes according to 
their risk.  

Despite the strength of the above-described methods to 
improve the failure modes' prioritization in FMECA analysis, 
their efficacy is usually difficult to assess. Commonly, the 
efficacy of new FMECA methodologies is evaluated 
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qualitatively by comparing one-to-one the rankings obtained by 
each method and assessing the agreement between methods. 

When the number of failure modes is small, this qualitative 
approach is appropriate. However, a qualitative analysis 
becomes unpractical or sometimes leads to misleading results 
when one has to consider a great number of failure modes.  

The agreement coefficients appear as a suitable statistical-
based mean to determine the effectiveness of new prioritization 
methods in the FMECA context. The next section shows the 
theoretical aspects of the rank agreement problem and one of 
the most used agreement coefficients, the Cohen’s kappa. 

II.  IMPORTANCE OF MEASURING THE AGREEMENT BETWEEN 
DIFFERENT FMECA METHODS 

Agreement assessment between rankings is a well-known 
problem in biological and social sciences. However, the 
application of agreement assessment metrics in the FMECA 
context is limited and directed toward evaluating FMECA team 
members' agreement instead of different FMECA 
methodologies. For example, in [28] the authors applied 
Kendall’s coefficient to determine the agreement between 
human experts in the medical risk analysis context. In [29], the 
authors show the application of FMECA’s web-based three-
round Delphi technique in the context of risk assessment related 
to the transition from paper-based records to digital-based 
records in the radiotherapy department; the Wilcoxon matched-
pairs signed-ranks test and Kendall’s coefficient of 
concordance were used to establishing the consensus between 
the FMECA’s risk factor. In [30], instead of Kendall’s 
concordance coefficient, authors have used the Cohen’s kappa 
coefficient for the agreement assessment between raters and 
their risk factors evaluation. In that work, the authors developed 
a knowledge-based approach to improve the classical FMEA in 
the context of vehicle components. Two raters conducted the 
analysis, and the Cohen’s kappa coefficient was used to 
evidence their level of agreement  

In that context, this work is inserted when the application of 
agreement assessment metrics has been limited to evaluating 
FMECA team members instead of different FMECA 
methodologies. Our main goal is to introduce a methodology to 
conduct a statistical-based metrics comparison between 
different FMECA approaches as a superior alternative to the 
usual qualitative comparison. 

The paper is organized as follows. Section III.  explains the 
main concepts of the rank agreement problem. Section IV.  
introduces the use of the concordance coefficient in the 
FMECA context. Section V.  shows the FMECA case study, 
Section VI.  describes the implementation of fuzzy-based 
FMECA methods. Section VII.  shows the results of the 
application of the proposed approach and the results of 
agreement between FMECA methods. Section VIII.  . discusses 
the obtained results, and Section IX.  shows the paper's 
conclusion and future developments. 

III.  REVISING THE MAIN CONCEPTS FOR RANK AGREEMENT 
PROBLEMS 

A.  The measurement of rank agreement 
Consider a collection of n objects classified by a particular 

characteristic. Let m a finite number of judges or evaluators 
who made the rank of the n objects according to their 
appreciation of the objects’ characteristics. It can be important 
to know the degree of agreement between the evaluators’ 
decisions. This kind of problem has usually been known as the 
problem of m ranking, as originally stated by Kendall and Smith 
in [31]. They define it as: “If m persons rank n objects according 
to some quality of the objects, there arises the problem: does the 
set of m rankings of n show any evidence of a community of 
judgment among the m individuals?” [31]. The community of 
judgment is usually called an agreement. 

The agreement, also known as concordance, reproducibility 
[32], or interrater reliability [33], is a concept closely related to 
but fundamentally different from correlation, as well asserted 
in [32–35]. The agreement can be defined as “the degree of 
concordance between two or more sets of measurements” [36], 
but it is common for both terms to be used as synonyms.  

The existence of agreement implies correlation, but the 
reciprocal may not be true, as shown in [37]. Correlation 
statistics are usually applied to represent the association 
between two or more variables that do not necessarily measure 
the same attribute. In contrast, agreement statistically describes 
the concordance measure in individuals' opinion regarding the 
same attribute or characteristic [32]. Therefore, the 
concordance or agreement can be measured between a pair or 
several raters. To give the reader a broader perspective 
concerning the different types of coefficients of agreement, 
reference [33] was included since it contains an exhaustive 
analysis of some coefficients of agreement currently used in 
social and biological sciences: Cohen’s kappa, Scott’s Pi, 
Krippendorf’s Alpha, Gewt’s AC1, Aicking’s α, Cronbach 
Alpha, Kendall’s Tau, among others. 

The Cohen’s Kappa coefficient was selected to conduct the 
concordance analysis due to its simple formulation and it is a 
well proven indicator for sixty years. The next sections show 
details about the kappa coefficient in its unweighted and 
weighted version. 

B.  Cohen’s coefficient of agreement 
Cohen’s coefficient, usually known as Cohen’s kappa and 

denoted by κ, is a statistic useful for inter-rater or intra-rater 
reliability measures [38,39]. Cohen’s coefficient compares the 
proportion of objects the raters agreed with and the proportion 
of objects for which disagreement is expected [38]. Cohen’s 
coefficient was originally proposed to measure the agreement 
between two raters. However, it can be extended for more than 
two raters, as shown in [39]. Following, we resume how 
Cohen’s coefficient is computed to give us a quantitative 
measure of concordance between a set of raters. 

Let N objects 1, 2, ,n N=  , be classified independently into 
k categories by two separated and independent raters, observers 
or judges, called A and B, as shown in Table I. For example, 
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Object 1 was rated as Category 5 by Rater A and Category 3 by 
Rater B. The categories can represent an intrinsic characteristic 
of the classified objects or a single ordinal ranking from 1 to kk. 

Let ijp  be the proportion of objects that Rater A classified 

in the category i, 1, 2, ,i k=  , and Rater B classified in the 
category j, 1, 2, ,j k=  , respectively. Table II shows the 
proportion of classified objects between the two raters. 

 

 

 
Proportions ip +  and jp+  appear in the last column and line 

in Table II, respectively. Here, the symbol + represents 
summation over the index, and ip +  and jp+  are the frequencies 
or marginal probabilities for an object to be assigned into 
category i for Rater A and category j for rater B, as shown in 
[33,40]. The ip +  and jp+  values can be computed by (2) and 
(3), repectively: 

 

 
1

k

i ij
j

p p+
=

= ∑ , (2)

 
1

k

j ij
i

p p+
=

= ∑ , (3) 

 

where 
1

1
k

i
i

p +
=

=∑  and 
1

1
k

j
j

p+
=

=∑ . 

Let 0p  be the “observed” proportion of agreement between 
raters [38] and expressed by (4) [33,40]: 

 0
1

k

ii
i

p p
=

= ∑ . (4) 

One characteristic of 0p  is that it does not take into account the 
agreement obtained only by chance (this means not really 
“agreeing” at all) [41]. Therefore, to obtain the expected 
proportion of agreement by chance, denoted by ep , one uses 
equation (5).  It is based on the probability that Rater A assigns 
the objects in category i in general, and the probability that 
Rater B assigns the objects in the same category also in general. 
As a consequence, for all i j= , the probability ep  is computed 
as in (5) [33]: 

 ( )
1

k

e i i
i

p p p+ +
=

= ⋅∑ . (5) 

So, Cohen’s κ coefficient can be defined as (6), as it was 
originally proposed in [33,38,40]: 

 0

1
e

e

p p
p

κ
−

=
−

. (6) 

The lower and upper limits for κ are -1 and 1, respectively, but 
usually, its value falls between 0 and 1 [41]. When the observed 
agreement 0p  is greater than the agreement expected by chance 

ep , the coefficient κ  takes positive values. When the observed 
agreement 0p  is less than the agreement expected by chance 

ep , κ  takes negative values [38]. 
Cohen’s κ coefficient equals unity 1κ =  when (and only 

when) there is a perfect agreement between raters. For perfect 
agreement, there is a necessary condition where i jp p+ += [38]. 
On the other side, it becomes null 0κ =  when the observed 
agreement is no better than that expected by chance as if the 
raters had guessed every rating [41]. 

Cohen’s κ coefficient becomes negative 0κ <  when the 
agreement “measured” is worse than expected by chance. 
Because the upper limit of κ is 1, values less than 0 likely mean 
poor agreement [38]. 

It is important to point out that the Cohen’s coefficient does 
not indicate whether the disagreement is due to random or 
systematic differences between raters [41]. Hence, as shown in 
Table III, the value of κ can be interpreted using labels assigned 
for different ranges to express the strength of agreement, as 
proposed in [34] .  

In some circumstances, the original Cohen’s κ coefficient 
produces unexpected results, being in these cases referred to in 
the literature as the kappa paradoxes [33]. These paradoxes 
have related to using marginal probabilities to quantify the 
expected agreement by chance ep . As indicated in [33], two 
main sources of paradoxes can be pointed out: 

 
1) When an expected observed agreement exists, an 

unexpected larger value appears ep . The definition of κin 
(6) shows that, for a fixed value of op , the smaller the 
value of ep , the greater the value of κ. This occurs 
because ep  represents the “agreement expected by 
chance,” a higher unexpected value ep  can mean that a 

TABLE I 
EXAMPLE OF N OBJECTS RANKED BY TWO RATERS 

 

Objects Rater A Rater B 

Object 1 Category 5 Category 3 
Object 2 Category 2 Category k 

⁝ ⁝ ⁝ 
Object n Category k Category 5 

⁝ ⁝ ⁝ 
Object N Category 1 Category 1 

 
 TABLE II 

THE PROPORTION OF CLASSIFIED OBJECTS 
 

  Rater B 
 Cat 1 2 … j … k Total 

R
at

er
 A

 

1 11p  12p  … 1 jp  … 1kp  1p +  

2 21p  22p  … 2 jp  … 2kp  2p +  
⁝ ⁝ ⁝  ⁝  ⁝ ⁝ 
i 1ip  2ip  … ijp  … ikp  ip +  
⁝ ⁝ ⁝  ⁝  ⁝ ⁝ 
k 1kp  2kp  … kjp  … kkp  kp +  

Total 1p+  2p+  … jp+  … kp+  1 
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large number of objects were classified only by chance by 
raters. 

2) The second source of paradoxes occurs if the marginal 
proportions ip +  and jp+  are imbalanced. In this case, this 
can produce higher or lower values of κ according to the 
symmetry of the imbalance. 

 
As stated in [33], applying weights on the original κ 

coefficient overcomes the paradoxes. In this way, we introduce 
follow the weighted version of Cohen’s κ coefficient. 

 

 
C.  Cohen’s weighted kappa  

The development of Cohen’s weighted kappa coefficient, 
denoted by wκ , was motivated by the “appearance of some 
disagreements in assignments. That is, some off-diagonal cells 
in the k × k matrix (Table II) have greater significance than 
others” [42]. In resume, the weighted version of Cohen’s κ 
coefficient allows to avoid unexpected results or the so-called 
kappa paradoxes. 

Let ijw  be the weight for agreement assigned to the th thi j−  
cell of Table II. The weighted kappa coefficient becomes 
defined by (7) [43]: 

 
1

w w
o e

w w
e

p p
p

κ
−

=
−

, (7) 

where w
op  is the weighted version of the observed proportion 

of agreement between raters, being defined by (8), as stated in 
[43]. 

 0
1 1

k k
w

ij ij
i j

p w p
= =

= ∑∑ , (8) 

Term w
ep  in (7) is the weighted version of the expected 

proportion of agreement obtained by chance, which w
ep  is 

defined by (9). 

 
1 1

k k
w
e ij i j

i j
p w p p+ +

= =

= ∑∑ , (9) 

Considering Eq. (4), the unweighted kappa can be 
interpreted as a special case of weighted kappa when all 
disagreements are given the same weight or the value 1 [42,43]. 

Weights can be assigned using any judgment procedure. In 
many instances, they may result from a consensus of a 
committee of substantive experts [42]. In [33], the author 
proposed six weighting schemes for wκ . Nevertheless, the 

linear and quadratic weighting schemes are the most applied in 
wκ calculation [40–47]. 

The linear weighting scheme, denoted by ( )1w , considers the 
absolute value of the difference between categories i and j, 
defined by (10) [44]. 

 ( )1 1
1ij

i j
w

n
−

= −
−

, (10) 

The quadratic weighting scheme considers the squared 
difference between categories i and j, which is defined by (11) 
as proposed in [44]: 

 

 ( )
2

2 1
1ij

i jw
n
− = −  − 

, (11) 

D.  Cohen’s weighted kappa test of significance  
Let H0 be the null hypothesis stated as raters’ agreement is 

no better than the agreement expected by chance. Let H1 be the 
alternative hypothesis stated as raters’ agreement is better than 
the agreement expected by chance. The probability distribution 
of wκ  can then be approximated by a normal distribution, as 
stated in [44]. The estimated variance σ̂ , when there is no 
association between raters’ assignments, that is, when the 
agreement is no better than the agreement expected by chance 
(H0), can be calculated using Eq. (12) [48]: 

 

 
( )( )

( )

2 2

1 12
2

ˆ
1

k k

i j ij i j e
i j

e

p p w w w p

n p
σ

+ + + +
= =

 + −  
=

−

∑∑
, (12) 

where 
1

k

i ij j
j

w w p+ +
=

= ∑ represents the weighted average of the 

weights in the thi  row in Table II and 
1

k

j ij i
i

w w p+ +
=

= ∑  

represents the weighted average of the weights in the thj  
column. 

Assuming that ˆwκ σ  follows a normal distribution, it is 
possible to test the hypothesis of agreement expected by chance 
by referencing the standard normal distribution. The test 
statistics is thus defined by (13): 

 
ˆ
wz

κ
σ

= . (13) 

The null hypothesis H0 is rejected for a one-tailed test if the 
test statistic z zα≥ , where zα  is the critical value that leaves 

the alpha-level α in the upper tail of the standard normal 
distribution. In this work, the level of significance was selected 
as 0.05α =  and the critical value 1.645zα =  [49]. If the test 
statistics results in 1.645z ≥ , the null hypothesis will be 
rejected. 

IV.  THE MEASUREMENT OF RANK AGREEMENT IN THE 
FMECA CONTEXT 

Inter-rater reliability was originally aimed to measure the 

TABLE III 
LABELS FOR COHEN’S κ  COEFFICIENT  IN TERMS OF THE 

STRENGTH OF AGREEMENT  
 

κ range Strength of agreement 
κ < 0.00 Poor agreement 

0.00 < κ ≤ 0.20 Slight agreement 
0.20 < κ ≤ 0.40 Fair agreement 
0.40 < κ ≤ 0.60 Moderate agreement 
0.60 < κ ≤ 0.80 Substantial agreement 
0.80 < κ ≤ 1.00 Almost perfect agreement 
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agreement between human raters. However, in the last decade, 
inter-rater reliability methods have been applied to compare the 
efficiency of algorithms generally used for classification.  

In [50], the authors used Cohen's κ coefficient to measure the 
performance between classifiers in a wrapper feature selection. 
Their proposed a fuzzy optimization procedure considered 
Cohen’s κ maximization as a performance criterion, which 
improved the stability of the selection method by punishing any 
agreement obtained by chance. Similarly,  the authors in [51] 
used machine learning-based classifiers to identify likely 
untreated sewage spills from wastewater treatment plants. In 
their problem, the agreement between different models was also 
assessed using Cohen's κ coefficient.  

Now, in the context of Android malware detection  [52], six 
supervised machine learning classifiers were used. Again, the 
criteria considered to evaluate the classifiers performance in 
supply correct or incorrect predictions was Cohen's κ as their 
performance metric. More recently, in [53], the proposal of a 
deep learning algorithm for classifying the severe acute 
respiratory syndrome coronavirus 2 (SARS CoV-2) amongst 
coronaviruses is presented. Cohen's κ is used among another six 
metrics to measure the performance between different neural 
network-based models.  

Another recent application of Cohen's κ coefficient to 
compare algorithms is presented in [54], where the author has 
used machine learning-based classification models in a 
complex experimental physics data analysis. Cohen's κ is used 
as a performance metric to compare the crisp and fuzzy-based 
algorithms.  

The papers cited in the previous paragraph have shown the 
potential of Cohen's κ to evaluate the agreement between 
machine learning-based algorithms in different applications. 
For this reason, we consider this coefficient as having great 
suitability to compare the agreement between computational 
algorithms used now to improve the prioritization of failure 
modes in the FMECA context.  

Cohen’s κ coefficient can be applied but considering the 
following assumptions: 

 
1) The FMECA problem contains n failure modes to be 

ranked. Hence, these failure modes will represent the n 
classified objects in inter-rater reliability terms; 

2) The FMECA methods used to improve the failure modes 
prioritization can be considered as the m independent 
raters in inter-rater reliability terms; 

3) Each algorithm classifies the failure modes from the 
highest risk (priority 1) to the lowest risk (priority k=n). 
In this context, we can consider each priority 
classification as the k categories in inter-rater reliability 
terms. 

 
We identified two possible approaches to apply Cohen’s 

kappa to assess the agreement between different FMECA 
methods: 

1) Assess the agreement between all the m FMECA methods 
when applied to the same problem and without 
considering a reference one, and; 

2) Assess the one-to-one agreement between the m FMECA 
methods when applied to the same problem and an 
FMECA method selected as the reference. 

The second approach allows evaluating the effectiveness of 
the FMECA methods when a reference is available. We 
consider it very helpful to assess the efficacy of new FMECA 
methods. However, the main concern with this approach is the 
selection of an FMECA methodology as the reference. 

To illustrate the application of agreement coefficients in the 
FMECA context, we show the simple computation of Cohen’s 
kappa for two FMECA rankings reported in [27], RPI(SC4) and 
RPI(SC5), which rankings are listed in Table IV, including the 
classical RPN. In terms of interrater reliability, N =11 objects 
(failure modes), k = 11 categories (rankings) and m = 2 raters 
(FMECA methods, RPI(SC4) and RPI(SC5).  

 

 
Table V shows the proportion of failure modes rated in each 

ranking by methods RPI(SC4) and RPI(SC5), and marginal 
proportions pi+ computed using (2) and p+j computed as in (3). 
We have chosen the quadratic weighting scheme for this 
example, with the weights between rankings computed as 
shown in (8). Table VI shows the quadratic weights computed. 
For example, the quadratic weight ( )2

35w  between ranking i = 3 
and ranking j = 5 was obtained by applying (8) as:  

( ) ( )
2 2

22
35

3 5 21 1 1 0.2 0.96
11 1 10

w − −   = − = − = − − =   −   
 

That is, the weight for category 3 and category 5 is 0.96, as 
shown in Table VI (row 3 and column 5). 

The observed proportion of agreement between raters w
op  

was computed as in (5), corresponding to the sum of the 
respective multiplication between elements of Table V and 
Table VI as follows: 
 

0 0.0909 1+0.0909 0.96+0.0909 0.99+0.0909 0.99
+0.0909 0.96+0.0909 0.91+0.0909 0.96+0.0909 1
+0.0909 0.91+0.0909 1+0.0909 1 = 0.9709

wp = × × × ×
× × × ×
× × ×

 

 
 

TABLE IV 
RANKINGS FOR FMECA METHODS RPI(SC4) AND RPI(SC5) 

 

Failure mode RPN Rank RPI(SC4) RPI(SC5) 
FM1 5 4 5 
FM2 4 5 7 
FM3 1 2 4 
FM4 8 7 9 
FM5 9 11 11 
FM6 10 6 3 
FM7 10 9 6 
FM8 2 1 1 
FM9 6 8 8 

FM10 3 3 2 
FM11 6 10 10 
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The observed proportion of agreement between raters w
op  

was computed as in (5), corresponding to the sum of the 
respective multiplication between elements of Table V and 
Table VI as follows: 
 

0 0.0909 1+0.0909 0.96+0.0909 0.99+0.0909 0.99
+0.0909 0.96+0.0909 0.91+0.0909 0.96+0.0909 1
+0.0909 0.91+0.0909 1+0.0909 1 = 0.9709

wp = × × × ×
× × × ×
× × ×

 

The expected proportion of agreement obtained by chance 
w
ep  was computed by (6) considering the values and weights 

from Table VI as follows: 
 

11 1 1 12 1 2 13 1 3 14 1 4

15 1 5 1110 11 10 1111 11 11

w
ep w p p w p p w p p w p p

w p p w p p w p p
+ + + + + + + +

+ + + + + +

= + + +
+ + + +

 

The value for weighted kappa is computed as in (4): 
0.9709 0.800 0.8545

1 0.800wκ
−

= =
−

 

The agreement equals to 0.8545 between FMECA methods 
RPI(SC4) and RPI(SC5) can be interpreted qualitatively as an 
agreement “almost perfect,” as suggested in Table III. 
 

 

V.  FMECA CASE STUDY 
The selected FMECA case study corresponds to a risk 

assessment in the blood transfusion process analyzed using the 
classical FMECA in [55] and subsequently analyzed using 
fuzzy-based and MCDM-based FMECA approaches in 
[4,6,27,56]. According to [55], 19 failure modes were originally 
identified, and the 11 failure modes with RPN higher than 80 
were selected for further analysis. We considered two main 
reasons to choose this FMECA case study to apply the proposed 
agreement assessment approach: 

 

1) This study case was already used for benchmarking in 
some studies, and; 

2) Because the study case has only 11 failure modes, 
comparing the different methods used to improve the 
FMECA prioritization in terms of the influence of the risk 
factors becomes more intuitive. 

 
Table VII shows the FMECA analysis for the case study, 

including the ranking obtained using the classical RPN [55]. 
The classical FMECA shortcoming related to failure modes 
with identical risk factors and RPN is evident between failure 
modes FM9 and FM11, which have the same RPN equal to 112 
and both ranked as priority 6; the shortcoming related to failure 

TABLE V 
THE PROPORTION OF FAILURE MODES RANKED BY RPI(SC4) AND RPI(SC5). 

 
 RPI(SC5) 

RPI(SC4) 

Ranking 1 2 3 4 5 6 7 8 9 10 11 pi+ 
1 0.0909 0 0 0 0 0 0 0 0 0 0 0.0909 
2 0 0 0 0.0909 0 0 0 0 0 0 0 0.0909 
3 0 0.0909 0 0 0 0 0 0 0 0 0 0.0909 
4 0 0 0 0 0.0909 0 0 0 0 0 0 0.0909 
5 0 0 0 0 0 0 0.0909 0 0 0 0 0.0909 
6 0 0 0.0909 0 0 0 0 0 0 0 0 0.0909 
7 0 0 0 0 0 0 0 0 0.0909 0 0 0.0909 
8 0 0 0 0 0 0 0 0.0909 0 0 0 0.0909 
9 0 0 0 0 0 0.0909 0 0 0 0 0 0.0909 
10 0 0 0 0 0 0 0 0 0 0.0909 0 0.0909 
11 0 0 0 0 0 0 0 0 0 0 0.0909 0.0909 
p+j 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 1 

 

TABLE VI 
QUADRATIC WEIGHTS FOR THE EXAMPLE. 

 
Ranking 1 2 3 4 5 6 7 8 9 10 11 

1 1 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 0 
2 0.99 1 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 
3 0.96 0.99 1 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 
4 0.91 0.96 0.99 1 0.99 0.96 0.91 0.84 0.75 0.64 0.51 
5 0.84 0.91 0.96 0.99 1 0.99 0.96 0.91 0.84 0.75 0.64 
6 0.75 0.84 0.91 0.96 0.99 1 0.99 0.96 0.91 0.84 0.75 
7 0.64 0.75 0.84 0.91 0.96 0.99 1 0.99 0.96 0.91 0.84 
8 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1 0.99 0.96 0.91 
9 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1 0.99 0.96 
10 0.19 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1 0.99 
11 0 0.19 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1 
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modes with different risk factors but identical RPN is evident 
between and failure modes FM6 and FM7, having RPN 80 and 
both ranked as priority 10. 

 
This case study was analyzed in the literature using different 

methods to improve the prioritization of failure modes. Table 
VIII shows the ranking using the classical FMECA analysis 
[55], the FMECA ranking using Fuzzy VIKOR [57], the 
ranking using interval 2-tuple hybrid weighted distance 
measure [4], and the FMECA RPI(SC4) and RPI(SC5) [27]. 
Since our proposed approach requires an FMECA ranking tobe 
considered as the reference one, we selected the FMECA 
method denoted as RPI(SC4) as the reference. The reasons that 
lead us to select this method as the reference one are based on 
the authors' claims described in [27]: 

 
1) The selected FMECA, RPI(SC4), does not require 

additional previous knowledge about the problem; 
2) The method considers a weighting importance related to 

the risk factors, and;  
3) The failure modes prioritization agrees with the 

expectation made for the risk scenario. 

VI.  TYPE-II FUZZY-BASED FMECA METHODS 
In addition to the FMECA methods listed in Table VIII, this 

paper proposes the application of a Mamdani Type-II Fuzzy 
Inference System to improve the classical FMECA, and a 
comparison with the reference FMECA method RPI(SC4) by 
using the Cohen’s kappa.  

Five categories were initially attributed for each risk factor, 
as shown in Table IX, each represented by a Type-II 

membership function and a Fuzzy Inference System FIS, 
described in the following subsection.  

 

 
 

 
A.  Membership functions of Type-II Fuzzy Inference System 

We considered four types of membership functions: 
triangular, trapezoidal, g-bell, and Gaussian membership 
functions. 

The Type-II triangular membership function is represented 
by its upper limit, triU, and its lower limit, triL. The upper 
triangular membership function is defined in terms of 
parameters a+, b+, and c+ as shown in (9) [58]. The lower 
triangular membership function is defined in terms of 
parameters a-, b-, c- and an additional term called scl that 
represents the maximum membership value, as suggested in 
[58] and shown in (10), 

 

 ( ) ( ) ( )
( ) ( )

0,

,
; , ,

,

0,

x a

x a b a a x b
triU x a b c

c x c b b x c

x c

+

+ + + + +

+ + +

+ + + + +

+

 <


− − ≤ ≤
= 

− − ≤ ≤


>

, (9) 

 

TABLE VII 
CLASSICAL FMECA TABLE FOR THE CASE STUDY ABOUT RISK 

ASSESSMENT IN THE BLOOD TRANSFUSION PROCESS [46]. 
 

Failure 
mode Failure mode S O D RPN RANK 

FM1 
Insufficient and/or incorrect 
clinical information on 
request form 

7 6 3 126 5 

FM2 Blood plasma abuse 6 6 5 180 4 

FM3 
Insufficient preoperative 
assessment of the blood 
product requirement 

7 5 7 245 1 

FM4 Blood group verification 
incomplete 7 5 3 105 8 

FM5 Delivery of blood sample 
and/or request form delayed 5 3 6 90 9 

FM6 Incorrect blood components 
issued 10 1 8 80 10 

FM7 
Quality checks not 
performed on blood 
products 

8 2 5 80 10 

FM8 Preparation time before 
infusion >30 min 8 6 5 240 2 

FM9 
Transfusion cannot be 
completed within the 
appropriate time 

7 4 4 112 6 

FM10 
Blood transfusion reaction 
occurs during the 
transfusion process 

8 4 7 224 3 

FM11 
Bags of blood products are 
improperly disposed of 
bags 

7 4 4 112 6 

 

TABLE VIII 
RANKINGS FOR DIFFERENT FMECA IMPROVEMENT METHODS 

APPLIED TO THE CASE STUDY IN [46]. 
 

Failure 
mode 

RPN 
Rank 

Fuzzy 
VIKOR ITHWD RPI(SC4) RPI(SC5) 

FM1 5 4 4 4 5 
FM2 4 7 6 5 7 
FM3 1 2 1 2 4 
FM4 8 8 10 7 9 
FM5 9 11 11 11 11 
FM6 10 1 3 6 3 
FM7 10 6 9 9 6 
FM8 2 5 5 1 1 
FM9 6 10 7 8 8 
FM10 3 3 2 3 2 
FM11 6 9 8 10 10 

 

TABLE IX 
CATEGORIES FOR THE RISK FACTORS IN THE FUZZY FMECA  

 

Severity 
category 

Occurrence 
Category 

Detection 
Category 

RPN 
Category Rating 

Hazardous – 
SHA 

Frequent – 
OF 

Absolutely 
impossible – 

DAI 

Extreme – 
RE 9,10 

Very High – 
SVH 

Probable – 
OP Low – DL High – RH 7, 8 

Moderate – 
SM 

Occasional – 
OO Moderate – DM Moderate 

– RM 4, 5, 6 

Low – SL Very unlikely 
– OVU High – DH Low – RL 2, 3 

Minor – 
SMI   Remote – OR Almost certain 

– DAC 
Minor – 

RMI 1 
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 ( ) ( ) ( )
( ) ( )

0,

,
; , , ,

,

0,

x a

scl x a b a a x b
triL x scl a b c

scl c x c b b x c

x c

−

− − − − −

− − −

− − − − −

−

 <


⋅ − − ≤ ≤
= 

⋅ − − ≤ ≤


>

, (10) 

Table X lists the parameters for each triangular membership 
function representing the fuzzy categories of the three risk 
factors and those associated with the Fuzzy RPN. Fig. 1 shows 
the Type-II triangular membership functions defined in Table 
X. 

The Type-II trapezoidal membership function is represented 
by its upper limit, trapU, and its lower limit denoted by trapL. 
The upper trapezoidal membership function is defined in terms 
of parameters a+, b+, c+, and d+, as shown in (11) [58]. The 
lower trapezoidal membership function is defined in terms of 
parameters a-, b-, c-, d-, and an additional term called scl that 
represents the maximum membership value, as shown in (12) 
and suggested in [58].  

 

 ( )

( ) ( )

( ) ( )

,

1
; , , ,

,

0,

x a b a a x b

b x c
trapU x a b c d

d x d c c x d

otherwise

+ + + + +

+ +
+ + + +

+ + + + +

 − − ≤ ≤


≤ ≤
= 

− − ≤ ≤



, (11) 

 

 ( )

( ) ( )

( ) ( )

,

; , , , ,
,

0,

scl x a b a a x b

scl b x c
trapL x scl a b c d

scl d x d c c x d

otherwise

− − − − −

− −
− − − −

− − − − −

 ⋅ − − ≤ ≤


≤ ≤
= 

⋅ − − ≤ ≤



 ,(12) 

Table XI lists the parameters for the trapezoidal membership 
functions. These represent the categories of each risk factor and 
the Fuzzy RPN categories considered in this work. Fig. 2 shows 
the Type-II trapezoidal functions defined in Table XI. 

The Type-II generalized bell membership function (g-bell) 
can be represented by its upper limit denoted by gbellU and its 
lower limit denoted by gbellL. The upper g-bell membership 

function can be defined in terms of the parameters a+, b+ and c+ 
as shown in (13) [58], and the lower g-bell membership 
function can be defined in terms of the parameters a-, b-, c- and 
an additional term called scl that represents the maximum 
membership value, as shown in (14) and suggested in [58].  

 

 ( ) 2

1; , ,

1
b

gbellU x a b c
x c

a

+

+ + +

+

+

=
−

+

, (13) 

 ( ) 2

1; , ,

1
b

gbellL x a b c
x c

a

−

− − −

−

−

=
−

+

, (14) 

 
Table XII shows the parameters for the g-bell membership 

functions for the three risk factors and the Fuzzy RPN 
considered in this work. Fig. 3 shows the Type-II g-bell 
membership functions defined in Table XII. 

The Type-II gaussian membership function can be 
represented by its upper limit denoted by gaussU and its lower 
limit denoted by gaussL. The upper gaussian membership 
function can be defined using the parameters c+ and σ + as 
shown in (15) [58]. The lower gaussian membership function 
can be defined in terms of the parameters c 

-, σ - and an 
additional term called scl representing the maximum 
membership value, as shown in (16) and suggested in [58].  

 

 ( )
2

1
2; ,

x c

gaussU x c e σσ

+

+

 −
−   + +  = , (15) 

 ( )
2

1
2; , ,

x c

gaussL x scl c scl e σσ

−

−

 −
−   − −  = ⋅ , (16) 

 
Table XIII shows the parameters for the gaussian 

membership functions that represent the risk categories of the 
three risk factors and the Fuzzy RPN considered in this work. 

Fig. 4 shows the Type-II gaussian membership functions 
defined in Table XIII. 

 

TABLE X 
TRIANGULAR FUZZY MEMBERSHIP FUNCTIONS FOR THE TYPE-II FUZZY INFERENCE SYSTEM 

 
Category Severity Occurrence Detection FuzzyRPN 

9,10 triU (x;0,1.5,2.5) triU (x;0,1.5,2.5) triU (x;0,1.5,2.3) triU (x;0.4,2.5,3.2) 
9,10 triL (x;0.9,0.6,1.5,2.1) triL (x;0.9,0.6,1.5,2.1) triL (x;0.9,0.6,1.5,1.98) triL (x;0.9,1.12,2.2,2.8) 
7,8 triU (x;0.6,2.9,3.5) triU (x;0.8,2.8,4.2) triU (x;1.1,2.97,4.3) triU (x;1.2,3.5,4.9) 
7,8 triL (x;0.9,1.52,2.90,3.26) triL (x;0.9,1.6,2.8,3.64) triL (x;0.9,1.85,2.97,3.77) triL (x;0.9,2.12,3.5,4.34) 

4,5,6 triU (x;2.5,4.2,8.3) triU (x;3.2,5.4,7.4) triU (x;2.5,5,7.5) triU (x;3.1,5.5,8.1) 
4,5,6 triL (x;0.9,3.18,4.20,6.66) triL (x;0.9,4.08,5.4,6.6) triL (x;0.9,3.5,5.0,6.5) triL (x;0.9,4.06,5.5,7.06) 
2,3 triU (x;4.8,7.5,10.4) triU (x;6.36,7.5,9.6) triU (x;4.8,7.52,10.4) triU (x;5.5,8,10.4) 
2,3 triL (x;0.9,5.88,7.50,9.24) triL (x;0.9,6.82,7.5,8.76) triL (x;0.9,5.91,7.52,9.25) triL (x;0.9,6.5,8.0,9.44) 
1 triU (x;7.6,9.3,12.4) triU (x;8.7,9.3,11.4) triU (x;7.64,9.32,12.4) triU (x;7.1,9.1,13.2) 
1 triL (x;0.9,8.82,9.30,11.16) triL (x;0.9,8.94,9.3,10.56) triL (x;0.9,8.31,9.32,11.17) triL (x;0.9,7.9,9.1,11.56) 
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TABLE XI 
TRAPEZOIDAL FUZZY MEMBERSHIP FUNCTIONS FOR THE TYPE-II FUZZY INFERENCE SYSTEM 

 
Category Severity Occurrence Detection FuzzyRPN 

9,10 trapU (x;0.1,0.6,1.5,2.4) trapU (x;0.1,0.5,1.1,2.7) trapU (x;0,2,1.0,1.64,2.1) trapU (x;1.0,1.0,1.64,2.5) 
9,10 trapL (x;0.9,0.3,0.75,1.23,2.04) trapL (x;0.9,0.26,0.62,0.62,2.06) trapL (x;0.9,0.52,1.24,1.5,1.92) trapL (x;0.9,1.0,1.0,1.38,2.16) 
7,8 trapU (x;0.9,2.1,2.8,3.5) trapU (x;1.2,1.9,3.1,4.7) trapU (x;1.1,2.0,3.0,3.8) trapU (x;0.84,2.41,3.2,4.1) 
7,8 trapL (x;0.9,1.38,2.46,2.59,3.22) trapL (x;0.9,1.48,2.11,2.62,4.06) trapL (x;0.9,1.46,2.27,2.8,3.48) trapL (x;0.9,1.47,2.88,2.9,3.74) 

4,5,6 trapU (x;2.7,4.3,5.7,7.8) trapU (x;3.4,3.9,6.1,7.2) trapU (x;2.67,4.0,6.0,7.83) trapU (x;2.9,4.21,5.5,7.6) 
4,5,6 trapL (x;0.9,3.34,4.78,5.07,6.96) trapL (x;0.9,3.6,4.05,5.77,6.76) trapL (x;0.9,3.20,4.39,5.45,7.1) trapL (x;0.9,3.42,4.6,4.87,6.76) 
2,3 trapU (x;5.1,6.9,8.1,9.5) trapU (x;6.3,6.9,8.3,9.3) trapU (x;5.7,7.0,8.0,9.13) trapU (x;5.5,7.0,8.0,9.5) 
2,3 trapL (x;0.9,5.82,7.44,7.68,8.94) trapL (x;0.9,6.54,7.08,8.0,8.9) trapL (x;0.9,6.2,7.39,7.66,8.68) trapL (x;0.9,6.1,7.45,7.55,8.90) 
1 trapU (x;7.6,8.7,9.8,12.2) trapU (x;8.1,8.9,9.9,11.2) trapU (x;7.67,9.06,10.0,10.0) trapU (x;7.67,9.06,10,10) 
1 trapL (x;0.9,8.04,9.03,9.08,11.5) trapL (x;0.9,8.42,9.14,9.51,10.7) trapL (x;0.9,8.23,9.5,10.0,10.0) trapL (x;0.9,8.23,9.5,10.0,10.0) 

 
TABLE XII 

G-BELL FUZZY MEMBERSHIP FUNCTIONS FOR THE TYPE-II FUZZY INFERENCE SYSTEM 
 

Category Severity Occurrence Detection FuzzyRPN 
9,10 gbellU (x;0.86,2.61,1.42) gbellU (x;0.81,1.68,1.44) gbellU (x;0.73,3.26,1.44) gbellU (x;0.73,3.26,1.44) 
9,10 gbellL (x;0.9,0.34,2.35,4.42) gbellL (x;0.9,0.32,1.51,1.44) gbellL (x;0.9,0.29,2.93,1.44) gbellL (x;0.9,0.29,2.93,1.44) 
7,8 gbellU (x;0.96,2.41,2.84) gbellU (x;0.87,2.46,2.63) gbellU (x;0.99,2.70,2.82) gbellU (x;0.99,2.70,2.82) 
7,8 gbellL (x;0.9,0.38,2.17,2.84) gbellL (x;0.9,0.35,2.21,2.63) gbellL (x;0.9,0.39,2.43,2.82) gbellL (x;0.9,0.39,2.43,2.82) 

4,5,6 gbellU (x;0.86,2.61,4.42) gbellU (x;1.15,2.18,5.30) gbellU (x;1.06,3.91,5.01) gbellU (x;1.06,3.91,4.41) 
4,5,6 gbellL (x;0.9,0.34,2.35,4.42) gbellL (x;0.9,0.46,1.96,5.30) gbellL (x;0.9,0.42,3.52,5.01) gbellL (x;0.9,0.42,3.52,4.41) 
2,3 gbellU (x;1.17,2.05,7.36) gbellU (x;0.64,5.39,7.64) gbellU (x;1.36,3.17,7.54) gbellU (x;1.36,3.17,7.54) 
2,3 gbellL (x;0.9,0.47,1.85,7.36) gbellL (x;0.9,0.26,4.85,7.64) gbellL (x;0.9,0.54,2.85,7.54) gbellL (x;0.9,0.54,2.85,7.54) 
1 gbellU (x;1.06,2.67,9.36) gbellU (x;0.62,2.19,9.39) gbellU (x;1.04,3.62,9.37) gbellU (x;1.04,3.62,9.37) 
1 gbellL (x;0.9,0.42,2.40,9.36) gbellL (x;0.9,0.25,1.97,9.39) gbellL (x;0.9,0.42,3.26,9.37) gbellL (x;0.9,0.42,3.26,9.37) 

 
TABLE XIII 

GAUSSIAN FUZZY MEMBERSHIP FUNCTIONS FOR THE TYPE-II FUZZY INFERENCE SYSTEM 
 

Category Severity Occurrence Detection FuzzyRPN 
9,10 gaussU (x;1.44,0.62) gaussU (x;1.44,0.43) gaussU (x;1.5,0.51) gaussU (x;1.30,0.62) 
9,10 gaussL (x;0.9,1.44,0.28) gaussL (x;0.9,1.44,0.19) gaussL (x;0.9,1.50,0.23) gaussL (x;0.9,1.30,0.28) 
7,8 gaussU (x;2.84,0.82) gaussU (x;2.63,0.74) gaussU (x;3.5,0.84) gaussU (x;2.80,0.84) 
7,8 gaussL (x;0.9,2.84,0.37) gaussL (x;0.9,2.63,0.33) gaussL (x;0.9,3.5,0.38) gaussL (x;0.9,2.80,0.38) 

4,5,6 gaussU (x;4.42,0.86) gaussU (x;5.3,0.98) gaussU (x;5.10,0.90) gaussU (x;5.10,0.91) 
4,5,6 gaussL (x;0.9,4.42,0.39) gaussL (x;0.9,5.3,0.44) gaussL (x;0.9,5.10,0.41) gaussL (x;0.9,5.10,0.41) 
2,3 gaussU (x;7.54,0.85) gaussU (x;7.64,0.54) gaussU (x;7.54,0.85) gaussU (x;8.11,0.85) 
2,3 gaussL (x;0.9,7.54,0.38) gaussL (x;0.9,7.64,0.24) gaussL (x;0.9,7.54,0.38) gaussL (x;0.9,8.11,0.38) 
1 gaussU (x;9.36,0.85) gaussU (x;9.39,0.53) gaussU (x;9.5,0.85) gaussU (x;9.01,0.85) 
1 gaussL (x;0.9,9.36,0.38) gaussL (x;0.9,9.39,0.24) gaussL (x;0.9,9.5,0.38) gaussL (x;0.9,9.01,0.38) 

 

 

 
Fig. 1.  Triangular Type-II fuzzy membership functions 
considered for the fuzzy-based FMECA. 
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Fig. 2.  Trapezoidal Type-II fuzzy membership functions 
considered for the fuzzy-based FMECA. 
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B.  Rule base for the Type-II Fuzzy Inference System 

In the present approach, the fuzzy rules are defined for all 
the possible combinations between the three risk factors O, S, 
and D in the rule’s antecedent and RPN in the rule’s 
consequent; the risk priority number will be named Fuzzy Risk 
Priority Number FRPN. Because each of the three risk criteria 
has five categories, 125 possible combinations (rules) of these 
categories exist. Each rule will have associated with its 
respective FRPN category. 

The following set of rules is an example of the proposed 
fuzzy rules: 

• Fuzzy Rule 26: If (SEVERITY is SL) and 
(OCCURRENCE is OR) and (DETECTION is DAC) 
then (FRPN is MI) 

• Fuzzy Rule 59: If (SEVERITY is EM) and 
(OCCURRENCE is OO) and (DETECTION is DL) 
then (FRPN is RM) 

C.  Properties of the Type-II Fuzzy Inference System 
The fuzzy inference system was implemented considering 

the following properties: FIS type Type-II Mandani; And 
method: Min; Or method: Max; Implication Method: Min; 
Aggregation Method: Max; Type reduction method: Karnik-
Mendel; Defuzzification method: Centroid. 

D.  Type-II fuzzy FMECA cases 
We defined four Type-II fuzzy FMECA cases, combining 

the membership functions triangular and gaussian shown in 
section VII.A., and considering the fuzzy rules described in 
section VII.B., and FIS properties described in VII.C.; Table 
XIV shows the combinations of membership functions for the 
four Type-II fuzzy FMECA 

 

 

VII.  RESULTS 
Results are organized in two sections: Section VIII.  A.   

shown the results for the linear weighted kappa and Section 
VIII.  B.   contains results for the quadratic weighted kappa. 
Each section contains the results of agreement between the 
reference ranking RPI(SC4) and the following methods: 1) 
Fuzzy VIKOR, 2) ITHWD; 3) RPI(SC5); 4) Type-I Fuzzy 
Inference System, and 5) Type-II Fuzzy Inference System. 

The end of the section compares the reference ranking and 
the ranking obtained by 5 methods with the highest 
concordance coefficient. 

A.  Results considering the linear weighted kappa   
Table XV shows the linear weighted agreement coefficient 

w linκ − , the value of the test statistics z, the strength of 
agreement, and the hypothesis test result for the FMECA 
methods RPI(SC5), Fuzzy VIKOR, and ITHWD, when 
compared with the reference ranking RPI(SC4). 

The computed w linκ −  takes values from 0.55 to 0.65, and the 
scenario RPI(SC5) achieves the better agreement with w linκ −  
equal to 0.65, which can be considered a substantial agreement 
according to the strength of agreement suggested in Table III 

Regarding the hypothesis test, the critical value for the test 
statistics is 0.05 1.645z = . The null hypothesis H0 raters’ 
agreement is no better than the agreement expected by chance 
is rejected for all cases. 

 

 
Table XVI shows the rankings and agreement results 

between RPI(SC4) and the FMECA based on the six Type-II 

 

 
Fig. 3.  G-bell Type-II fuzzy membership functions considered 
for the fuzzy-based FMECA. 
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Fig. 4.  Gaussian Type-II fuzzy membership functions 
considered for the fuzzy-based FMECA. 
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TABLE XIV 
FMECA BASED ON TYPE-II FUZZY INFERENCE SYSTEM 

 
Config MFSEV MFOCC MFDET MFRPN 

T2-FIS 01 gaussian triangle triangle triangle 
T2-FIS 02 g-bell triangle trapezoidal gaussian 
T2-FIS 03 g-bell triangle trapezoidal g-bell 
T2-FIS 04 g-bell trapezoidal trapezoidal gaussian 
T2-FIS 05 trapezoidal triangle g-bell g-bell 
T2-FIS 06 trapezoidal gaussian g-bell g-bell 

 

TABLE XV 
LINEAR WEIGHTED KAPPA w linκ −  FOR RPI(SC5), VIKOR, AND ITHWD  

 
 RPI(SC5) Fuzzy VIKOR ITHWD 

w linκ −  0.65 0.55 0.6 
Strength of agreement Substantial Moderate Moderate 

z  3.346 2.832 3.226 
H0 test Reject Reject Reject 
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FIS cases detailed in Table XIV. The best agreement coefficient 
value is 0.70 and corresponds to configurations T2-FIS-01 
composed of membership functions type gaussian to represent 
severity and triangular membership functions to represent the 
occurrence, detection, and the fuzzy RPN. There is perfect 
agreement between T2-FIS and RPI(SC4) in failure modes 
FM3, FM5, FM8, and FM9. 

Cases T2-FIS-02, T2-FIS-03, and T2-FIS-04 achieve a 
agreement coefficient of 0.7, 0.65, and 0.50, respectively. 
Nevertheless, the three cases have a perfect agreement with 
respect to RPI(SC4) in the same failure modes, FM3, FM5, and 

FM8. 
Cases T2-FIS 05 and 06 achieve the same agreement 

coefficient of 0.35, which can be considered “fair,” as Table III 
suggests. When comparing T2-FIS 05 and RPI(SC4), there is a 
perfect agreement in two rankings (FM3 and FM5), and when 
comparing T2-FIS 06 and RPI(SC4), there is a perfect 
agreement in failure modes FM2 and FM3. Notably, FM3 was 
ranked as priority 3 for all the six Type-II methods, and FM8 
was ranked as priority 1 for five Type-II methods. 

 

 

 
 

B.  Results for quadratic weighted kappa  
Table XVII shows the quadratic weighted agreement 

coefficient w quadκ − , the test statistics z, the strength of 
agreement, and the hypothesis test result for the FMECA 
methods RPI(SC5), Fuzzy VIKOR, and ITHWD when 
compared with the reference ranking RPI(SC4). As shown, 
quadratic weighted kappa takes values between 0.727 and 
0.855, revealing the scenario RPI(SC5) as those one achieving 
better agreement of 0.855, which can be considered an almost 
perfect agreement. 

Using now coefficient w quadκ − , Table XVIII shows the 
results for the six Type-II FMECA configurations. Results 

show that the best agreement coefficient value equals 0.8, 
corresponding to T2-FIS-01. 

 

 
 

 

 
 

TABLE XVI 
LINEAR WEIGHTED KAPPA w linκ −  BETWEEN REFERENCE RANKING RPI(SC4) AND TYPE-II FUZZY INFERENCE SYSTEM  

 

 RPI(SC4) 
T2-FIS  

01 
T2-FIS  

02 
T2-FIS 

03 
T2-FIS 

04 
T2-FIS 

05 
T2-FIS 

06 
FM1 4 5 5 8 8 10 11 
FM2 5 4 4 4 7 4 5 
FM3 2 2 2 2 2 2 2 
FM4 7 6 6 9 9 9 10 
FM5 11 11 11 ,11 11 11 9 
FM6 6 3 3 3 3 1 1 
FM7 9 10 10 10 10 8 8 
FM8 1 1 1 1 1 3 3 
FM9 8 8 7 5 4 5 6 

FM10 3 7 8 6 6 6 4 
FM11 10 9 9 7 5 7 7 

w linκ −  Reference 0.70 0.65 0.50 0.40 0.35 0.35 
Strength of agreement - Substantial Substantial Moderate Fair Fair Fair 

z  - 3.604 3.346 2.574 2.059 1.802 1.802 
H0 test - Reject Reject Reject Reject Reject Reject 

 

TABLE XVII 
QUADRATIC WEIGHTED KAPPA w quadκ −  FOR RPI(SC5), VIKOR, AND 

ITHWD  
 

 RPI(SC5) Fuzzy VIKOR ITHWD 

w quadκ −  0.855 0.727 0.809 
Strength of agreement Perfect Substantial Substantial 

z  2.834 2.412 2.683 
H0 test Reject Reject Reject 

 

TABLE XVIII 
QUADRATIC WEIGHTED KAPPA w quadκ −  BETWEEN REFERENCE RANKING RPI(SC4) AND TYPE-II FUZZY INFERENCE SYSTEM  

 

 T2-FIS 
01 

T2-FIS 
02 

T2-FIS  
03 

T2-FIS  
04 

T2-FIS 
05 

T2-FIS 
06 

w quadκ −  0.864 0.818 0.736 0.618 0.555 0.518 
Strength of agreement Perfect Perfect Substantial Substantial Moderate Moderate 

z  2.864 2.714 2.442 2.05 1.839 1.719 
H0 test Reject Reject Reject Reject Reject Reject 
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Two Type-II FIS cases (T2-FIS 03 and T2-FIS 04) achieved 
the worst agreement value of 0.555 and 0.518, respectively. 
Unlike the result for the linear coefficient, where these two 
cases achieve the same kappa, the quadratic weighted kappa is 
slightly different for both cases.  

These results show that the weighting scheme affects the 
magnitude of the agreement coefficient concerning the linear 
weight scheme and is also sensitive to the rankings whose 
agreement it measures. 

The null hypothesis H0 was rejected in all the simulations. 
This means that the results achieved can be considered 
statistically significant.  

VIII.  DISCUSSION 
Results confirm that the quadratic weighting scheme 

produces concordance values greater than the linear weighting 
scheme, as documented in [47]. In the FMECA context, the 
relationship between categories is not always linear and 
difficult to establish; this relationship should determine the 
weighting scheme used to calculate wκ . However, we used the 
linear and quadratic weighting schemes in this paper. 

The results show that FMECA methods achieve a higher 
linear weighted kappa and a higher quadratic weighted kappa. 
In practical terms, it can be stated that the main difference 
between the obtained results of kappa using the two weighting 
schemes can be determined by the strength of agreement labels 
detailed in Table III. For example, the method T2-FIS 01 can 
be considered “substantial,” and its respective obtained using 
the same approach can be considered “almost perfect.” 

A more in-depth study is needed to quantify the influence of 
the weighting scheme on Cohen’s kappa. 

Table XIX shows the ranking for the reference FMECA 
RPI(Sc4), the T2-FIS 01, the RPI(Sc5), T2-FIS 02, and 
ITHWD, and their corresponding w linκ −  and w quadκ − ; the 
rankings were ordered from highest to lowest kappa. 

Fig. 5 shows a radar chart for the three FMECA methods 
shown in Table XIX and the reference one RPI(Sc4). This 
graphic greatly simplifies the comparison between the different 
rankings assigned to each failure mode. The blue line in Fig. 5 
represents the reference FMECA ranking RPI(SC4), and the red 
line represents the ranking for the method with the highest κ 
(T2-FIS 01). 

Because the FMECA case study has only a few failure 
modes, it is possible to identify the differences between the five 
FMECA methods. The ranking for failure modes FM1, FM2, 
FM5, FM10, and FM11 is the same for the reference RPI(SC4) 
and T2-FIS 01; both models agree 5 times and disagree 6 times. 
Comparing the base case with RPI(SC5), the rankings agree 4 
times (FM5, FM8, FM9, and FM11) and disagree 7 times. For 
T2-FIS 02, the rankings agree 3 times (FM3, FM5, and FM8) 
and disagree 8 times. For ITHWD, the rankings agree 3 times 
(FM1, FM5, and FM7) and disagree 8 times. All the methods 
listed in Table XIX agree to classify FM5 as the lowest priority 
failure mode. 

Notice that the number of agreements and disagreements can 
indicate only the level of concordance between two raters. 

However, it does not provide an effective metric to measure it; 
Cohen’s coefficient deals with this issue and gives a 
concordance level based on the coincidences between ratings 
and the agreement that can occur by chance. 

 

 

IX.  CONCLUSION AND FUTURE WORK 
This paper introduces an approach based on Cohen’s kappa 

agreement coefficient to compare different methods used in the 
FMECA context. A simple and further analyzed FMECA case 
study was selected to conduct the comparisons, including 
rankings obtained through four methods reported in the 
literature. In addition, FMECA based on Type-I Fuzzy and 
Type-II Fuzzy Inference systems were developed and 
conducted to rank the failure modes. From our results and its 
previous discussion, one pulls out four critical conclusions: 

 
1) The comparison between different FMECA methods is 

commonly based on the qualitative comparison between 
rankings and sometimes considering a balance between 
the three risk factors; nevertheless, this approach can be 
impractical for more extensive problems; 

2) The proposed approach aims to contribute to the 
quantitative comparison between methods used to 
improve the failure modes prioritization regarding a 
reference ranking; 

3) The results show that Cohen’s κ coefficient provides a 
quantitative level for the agreement between two 
different rankings in the FMECA analysis context; 

4) For this application, the ranking based on Type-II Fuzzy 
Inference System achieves the best agreement regarding 
the method selected as the reference; 

5) The selection of the weighting scheme is another 
essential aspect to take into account in the proposed 
approach; in this particular application, the quadratic 
weighting scheme allows obtaining a better strength of 
agreement; 

6) The reference FMECA’s ranking identification is a 
critical aspect of the success of the proposed approach; 
nevertheless, this approach is practical when trying to 

TABLE XIX 
DIFFERENT RANKINGS FOR FMECA IMPROVEMENT METHODS  

 

Failure 
mode 

RPI 
(SC4) 

T2-FIS 
01 

RPI 
(SC5) 

T2-FIS 
02 ITHWD 

FM1 4 4 5 5 4 
FM2 5 5 7 4 6 
FM3 2 1 4 2 1 
FM4 7 6 9 6 10 
FM5 11 11 11 11 11 
FM6 6 7 3 3 3 
FM7 9 8 6 10 9 
FM8 1 2 1 1 5 
FM9 8 9 8 7 7 
FM10 3 3 2 8 2 
FM11 10 10 10 9 8 

w linκ −  Ref. 0.70 0.650 0.65 0.60 

w quadκ −  Ref. 0.864 0.855 0.818 0.809 
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test the effectiveness of new FMECA methods. Other 
methodologies already applied to a given problem can 
be used as references.  

 
Our proposed approach's main shortcoming is the reference 
FMECA ranking selection. In practical applications 
identifying a suitable FMECA reference ranking can become 
a demanding task. An acceptable procedure to conduct this 
kind of comparison could be to apply different FMECA 
approaches to a well-known problem whose failure modes’ 
ranking can be considered optimal and then compute the 
concordance coefficient to identify the best FMECA method 
concerning this reference. Once the best FMECA method is 
identified, it can be applied to another case study with similar 

characteristics. The solution to this shortcoming is being 
addressed and included in future works. 
Additional aspects are currently in development and will be 

included in forthcoming works: 
 
1) The application of the proposed approach in the context 

of smart substations; 
2) The definition of tailor-made scales for the FMECA risk 

factors in the context of smart substations; 
3) The proposal of a new weighting scheme based on the 

risk mentioned above factors’ scales; 
4) The use of paradox-resistant concordance coefficients. 
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