
1

Assisted annotation in Deep LOGISMOS:
Combining deep learning and graph optimization

for simultaneous multi-compartment 3D
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Abstract—Automated segmentation of individual calf mus-
cle compartments in 3D MR images is gaining importance
in diagnosing muscle disease, monitoring its progression, and
prediction of the disease course. Although deep convolutional
neural networks have ushered in a revolution in medical image
segmentation, the availability of sufficiently large annotated
datasets still limits their applicability. In this paper, we present
a novel approach for solving general segmentation problems in
3D, 4D, and generally n-D. Deep LOGISMOS combines deep-
learning-based pre-segmentation of objects of interest provided
by our convolutional neural network, FilterNet+, and our 3D
multi-objects LOGISMOS framework (layered optimal graph
image segmentation of multiple objects and surfaces) that uses
newly designed machine-learned cost functions trained using the
paradigm of assisted annotation. We have evaluated our method
on 350 lower leg (left/right) T1-weighted MR images from 93
subjects (47 healthy, 46 patients with muscular morbidity) by 4-
fold cross-validation, demonstrating that our approach not only
dramatically reduces the expert’s annotation efforts but also
significantly improves the segmentation performance. Compared
with the fully manual annotation approach, the annotation cost
with assisted annotation is reduced by 95%, from 8 hours
to 25 minutes in this study. When assessing the segmentation
performance, our new Deep LOGISMOS approach improved
the earlier state-of-the-art results as follows. The mean Dice
similarity coefficient (DSC) was improved by 4.6% on average,
from 88.0%–91.3% to 92.9%–95.9%. The mean absolute surface
positioning error was improved by 47.5% on average, from 1.4–
2.2 pixels to 0.7–1.2 pixels for the five 3D muscle compartments
simultaneously segmented for each leg.

Index Terms—Assisted annotation, Calf muscle compartment
segmentation, Deep LOGISMOS, Deep neural convolutional
network, MRI

I. INTRODUCTION

In humans, the muscles of the lower leg between the knee
joint and the ankle support weight-bearing activities such
as walking, running and jumping. Anatomically, this group
is composed of five individual muscle compartments shown
in Fig. 1(a): Tibialis Anterior (TA), Tibialis Posterior (TP),
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Soleus (Sol), Gastrocnemius (Gas), and Peroneus Longus (PL)
[1]. Structural and volumetric changes of these compartments
provide valuable information for the diagnosis, severity, and
progression evaluation for various muscular diseases such
as myotonic dystrophy type 1 (DM1), an inherited disorder
characterized by progressive muscle weakness, myotonia, and
dystrophic changes [2]. DM1 is the most common form
of muscular dystrophy that begins in adulthood and causes
severe fatty degeneration of calf muscle in most patients [3].
Magnetic resonance (MR), which offers non-invasive imaging
of muscles with high sensitivity to dystrophic changes, has
been widely used in the clinic for muscular disease diagno-
sis and follow-up evaluation [3], [4]. Traditional structural
assessment of multiple individual muscles invariably resorts
to manual tracing [5], [6], which is arduous, time-consuming,
and limiting in large research and clinical settings. Automated
segmentation of multiple individual calf muscles is therefore
essential for developing quantitative biomarkers of muscular
disease diagnosis and progression.

Past calf muscle segmentation research is relatively sparse.
Valentinitsch et al. [7] proposed a three-stage method using
unsupervised multi-parametric k-means clustering to segment
calf muscle regions and subcutaneous fat for determining
subcutaneous adipose tissue (SAT) and inter-muscular adipose
tissue (IMAT). Yao et al. [8] combined deep learning with a
dual active contour model to accurately locate the fascia lata
and segment multiple tissue types for quantifying calf muscle
and fat volumes. Amer et al. [9] employed deep learning
to segment the whole calf muscle region where IMAT and
healthy muscle are classified afterward by deep convolutional
auto-encoders. All these entire muscle-region segmentation
methods are mainly proposed to separate muscle, SAT and
IMAT for estimating fat infiltration into muscular dystrophies.

However, the segmentation of individual muscle compart-
ments is more desirable for assessing the progression of
different neuromuscular diseases [10]. For example, it has
been shown that individual skeletal muscle may be affected
differently by DM1 [11]. It is necessary to improve the
efficiency and utility of muscle MRI as a marker of muscle
pathology [12].

Automated 3D segmentation of individual calf muscle com-
partments is challenging and attempts in this field are rare. As
shown in Fig. 1(b-e), muscular dystrophy introduces substan-
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Fig. 1. Examples of T1-weighted MR images of calf muscle cross sections
and corresponding expert segmentations of TA, TP, Sol, Gas and PL. (a)
Normal subject. (b-c) Patients with severe DM1. (d) Patient at risk for DM1
(PreDM1). (e) Patient with juvenile onset DM1 (JDM). Best viewed in color.

tial variations of shape, texture and grayscale appearance to a
part of or the entire calf region in addition to the already
existing substantial variations due to the flexible nature of
the muscles and leg’s position in the scanner. Commean et
al. [13] proposed a semi-automated method by thresholding
and edge detection to segment bones, adipose tissue, and five
individual muscle compartments. Ghosh et al. [14] fine-tuned
a pre-trained AlexNet on 700 3D MR images to predict two
parameters representing the contour of the leg muscles and
achieved an average DSC (DICE Similarity Coefficient) of
0.85± 0.09. However, the network must be trained separately
for each leg muscle and the whole method can not learn
from the features while training all kinds of muscles together.
More recently, Guo et al. [15] proposed a novel neighborhood
relationship-aware network based on 3D U-Net [16], called
FilterNet, for automated segmentation of individual calf mus-
cle compartments and reached an average DSC of 0.90±0.01
on 40 T1-weighted 3D MR images of 11 healthy and 29
diseased subjects. This approach was used in clinical research
[12].

Although the aforementioned approaches reported accept-
able segmentation performance by applying deep learning
methods, several critical issues remain to be settled. 1) Avail-
ability of sufficiently large annotated datasets represents a
bottleneck limiting their application, especially in large clinical
settings where new data accumulates continuously. Annotation
(manual tracing) of medical images is not only arduous and
time-consuming but also requires costly specialty-oriented
knowledge and skills. 2) There is still room for improvement
of deep learning-based calf segmentation approaches. 3) Un-
desirable regional inaccuracies remain in the deep learning
segmentation due to the lack of global-information-aware
optimization. Our work attempts to address all of these issues.

Compared with previously reported approaches, the contri-

butions of our work can be summarized as follows.
1) Assisted annotation with efficient adjudication substan-

tially decreased expert manual tracing effort when form-
ing annotated training sets.

2) FilterNet+ improved the performance of the underlying
FilterNet approach and offered stable training, accelerated
convergence, improved generalization, and – as a result
– improved segmentation.

3) Deep LOGISMOS substantially improved the perfor-
mance of 3D calf muscle compartment segmentation by
utilizing FilterNet+ pre-segmentation and new machine-
learned cost functions.

II. METHODS

A. Assisted Annotation

Fig. 2 shows the workflow of our assisted annotation
approach that employs the iterative loop to achieve the best
use of the existing and efficient way of adding new anno-
tated datasets. This approach a) starts with a small train-
ing set, b) uses it to create the initial version of an auto-
mated calf segmentation method, c) employs this method to
automatically segment additional unannotated images, some
of which are likely segmented inaccurately at first. These
automated segmentations are d) expert-corrected using Just-
Enough-Interaction (JEI) functionality of LOGISMOS [17]
and combined with the previous training set, thus e) forming a
new larger training set of expert-annotated images, which are
iteratively used to create next versions of the automated calf
segmentation method in step “b”. The assisted annotation steps
(“b–e”) are repeated until the desired performance is achieved
or all data are annotated.

The process of creating new versions of the automated calf
segmentation (step “b” above) relies on the following sub-
steps in each iteration of the assisted annotation loop: 1) deep-
learning based approximate pre-segmentation of calf muscle
compartments; 2) deep-learning based design of LOGISMOS
cost functions; 3) design of multi-object JEI for efficient
editing of automatically-segmented calf compartments.

B. FilterNet+: DL-Based Pre-Segmentation

Pre-processing: Bias field correction [18] is first applied
to minimize intensity non-uniformity in MR images. The z-
score normalization is applied to intensities of all images
of individual legs to reduce inter-subject variations. Optimal
thresholding and k-means clustering are used to extract the
regions of interest (ROI) corresponding to left and right legs.
All right legs are mirrored to conform to left legs to reduce
the task complexity. All pre-processing steps are completely
unsupervised and are automatically carried out without any
user intervention.

FilterNet+, its novel training strategy: Our first-attempt
FilterNet approach to calf segmentation was presented in [15],
introducing a neighborhood-relationship-enhanced convolution
neural network. Benefiting from the increased convolution
receptive field, resolution-preserving skip connections, and ex-
plicitly edge-aware regulations by a kernel-based edge gate to
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Fig. 2. Workflow of the proposed Deep LOGISMOS segmentation framework in the scheme of assisted annotation. Processing steps in blue, datasets in
orange. Best viewed in color.
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Fig. 4. Best viewed in color.

constrain voxel-level probability values inside a neighborhood,
our original FilterNet outperformed all other state-of-the-
art deep-learning approaches tested in both voxel-level label
predictions and 3D object surface positioning [15]. The newly
designed and enhanced version, FilterNet+, overcomes several
imperfect properties of the previous approach, namely the in-
sufficient training strategy and the lack of optimization in deep
learning due to underestimation of the impactful influence of
non-architectural aspects. We also considered incorporation of
rich network architecture extensions that were not incorporated
such as attention mechanisms [19] and dense connections [20],
which increased the number of network parameters and only
offered marginal improvements. FilterNet+ improvements thus
focus on two non-architectural aspects: the loss design and its
training strategy, its architecture and training are shown in
Figs. 3 and 4.

FilterNet+ training uses a new loss function L that combines
of Ldice, multi-class cross-entropy loss LCE and the edge loss

Le as

L = Ldice + (1− λ)LCE + λLe , (1)

where λ is an adjustable weight reflecting the strength of edge-
aware regularizations through training. Ldice originates from
DSC as in [21]:

Ldice = −
2

|N |
∑
n∈N

Ŷ nY n∑
i∈Y n Ŷ ni +

∑
i∈Y n Y ni

, (2)

where N = 6, Ŷ n is the predicted label for class n from the
softmax output of the network, Y is one-hot encoding of the
ground truth, i ∈ Y represents voxels of the foreground in the
segmentation map. Incorporation of dice loss is beneficial for
the model to consider the loss information both locally and
globally and as a result, improve the edge continuity between
calf muscles. LCE is a multi-class cross-entropy loss and Le
represents the differences (L1-norm) between the derived edge
maps and the true edge maps which are generated by our
2D trainable convolution kernels, edge gate FLρG. Edge gate
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Fig. 4. Training phase of FilterNet+. Learned probability maps are optimized by Ldice, cross-entropy LCE and edge constraints Le. The trainable edge gate
learns the muscle compartment boundary-related parameter σ from Ŷ and Y , used later as an image-learned component of the LOGISMOS cost function
(Section II-C and Fig. 5). Best viewed in color.

is a trainable variant of Laplacian of Gaussian filter and can
effectively extract valuable edge information from predicted
region label Ŷ and ground truth Y to derive edge maps. It is
updated while training with the trainable parameter σ, initially
set as 1. More details about the edge gate can be found in our
original FilterNet approach [15].

Benefiting from the new enhanced combined constraint,
the network output – probability maps – are optimized to
efficiently reflect both the regional and edge-based information
as likelihood [0, 1] of a voxel to be correctly classified, which
contributes to the LOGISMOS cost function design as shown
in Fig. 5.

Training of FilterNet+ was improved by introducing the
following new strategies: a) dropout layers were added to the
encoder path to prevent over-fitting and improve generalization
[22]; b) Kaiming normalization of the initial trainable network
parameters improved model fitting [23]; c) Adam optimiza-
tion was employed instead of stochastic gradient descent for
stochastic optimization [24], [25]; d) learning rate warmup
heuristic for Adam was used to stabilize training and accelerate
convergence [26]; and e) learning rate reduction was only
allowed when the metric of validation stopped improving in
two consecutive training epochs. These modifications resulted
in stabilized training, accelerated convergence, improved gen-
eralization, and thus better segmentation performance.

Post-processing: Raw 3D object segmentation produced
by the network shows local inaccuracies (small holes, coarse
boundaries), which can be easily improved by simple post-
processing refinement. Post-processing included two iterations
of recursive Gaussian image filter (σ = 2) and hole filling by
enforcing single-component connectivity of each segmented
calf compartment. The refined FilterNet+ yielded approximate
pre-segmentation of calf compartments, the performance of
which was evaluated separately and was also further used for
initialization and graph construction of the subsequent Deep
LOGISMOS steps.

C. Deep LOGISMOS

LOGISMOS (Layered Optimal Graph Image Segmentation
for Multiple Objects and Surfaces) is a general approach for
optimally segmenting multiple n-D surfaces that mutually
interact within and/or between objects [27], [28]. Columns
of interconnected graph nodes are used to cover the search
region for target surfaces. After assigning a cost to each
node, multisurface segmentation is achieved by finding the
set of nodes, one node per column, with globally optimal
total cost. Additional context-specific graph arcs can be used
to enforce geometric constraints that represent prior shape
and anatomy knowledge. The efficiency of LOGISMOS is
mainly determined by good target-object shape priors as the
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initialization and a relevant cost function that yields the desired
image segmentation. The traditional implementation relies
on interactively defined initial approximate segmentation and
the human-expert designed cost functions. In this work, we
overcame these manual-design limitations by using the above
FilterNet+ segmentation to initialize LOGISMOS while the
cost functions were jointly learned from segmentation exam-
ples in combination with utilizing the independently learned
FilterNet+ parameters, yielding the overall Deep LOGISMOS
approach (Fig. 5).
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Fig. 6. (a) Graph column orientations. (b) Probability map of TP compart-
ment.

Graph construction: FilterNet+ pre-segmentation provides
approximate segmentation of each calf muscle compartment
as 3D mesh surfaces, defines their topology, and mutual rela-
tionships. Graph columns are constructed along the directions
normal to the mesh surfaces. More detailed information about
graph construction can be found in [17], [27], [28]. To incorpo-
rate the spatial relationships between muscle compartments as
object separation constraints, the column orientations of sub-
graphs associated with individual compartments are specially
designed as shown in Fig. 6(a), where the columns are built
from inside to outside for TA and Sol, and outside to inside
for TP, Gas and PL. This special orientation scheme utilizes
anatomical prior knowledge about the muscle compartments
to avoid formation of frustrating cycles [29].

Machine learning cost design: As shown in Fig. 6(b), the
appearance of the probability map of a muscle compartment
is very similar to a clearly defined bright object. Therefore,
the gradient of the probability along the column directions
is chosen as a machine-learned feature in the trained LO-

GISMOS cost function. In Section II-B, the edge gate is
trained globally on the predicted labels Ŷ and the ground truth
Y to derive edge maps (Fig. 4). Since Ŷ and Y represent
calf muscle compartments and hold both the region and edge
information, we utilized the edge gate learned on the input
calf images to derive residual features to be combined with
the machine-learned features from the probability maps (Fig.
5). Contribution from the added residual features improve the
proipertires of the learned cost functions.

Deep LOGISMOS segmentation: The constructed graph
in the LOGISMOS system integrates shape prior from the
refined FilterNet+ pre-segmentation, object separation con-
straints, geometric smoothness constraints, and learned costs
for each node by the newly machine-learned cost function de-
sign, and the globally optimized segmentation is guaranteed by
the graph optimization. The final simultaneous segmentation of
all 5 calf-muscle compartments is obtained by optimal hyper-
surface detection in polynomial time as described in [27] .

Just-Enough Interaction – Deep LOGISMOS-JEI: The
dynamic nature of the underlying algorithm is utilized to edit
the segmentation result via interactive modification of local
costs. Since JEI modification is directly applied to the graph,
the updated result is still globally optimal (with respect to the
modified costs) and satisfies existing geometric constraints. In
practice, user interaction on one 2D slice is often enough to
correct segmentation errors in its neighboring 2D slices and
thus reduce the amount of human effort. In addition, due to
the existence of embedded inter-object constraints, in regions
where multiple compartments are close to each other, editing
is only needed on one compartment.

III. EXPERIMENTAL METHODS

A. Data

Only 40 lower leg T1-weighted MR images from 40 subjects
were initially available (11 healthy, 23 DM1, 2 pre-DM1, 4
Juvenile Onset DM1 or JDM), the same data set as reported in
[15]. Over the course of a longitudinal DM1 study, some of the
initial subjects were re-scanned and new subjects added, with
additional 135 MR images acquired with the same scanning
parameters, increasing the annotated set size to 175 images
of 350 lower legs from 93 subjects (47 healthy, 35 DM1, 6
Pre-DM1, 5 JDM). MR image size was 512×512×30, voxel
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TABLE I
EVALUATION INDICES FOR FIVE CALF MUSCLE COMPARTMENTS FROM DIFFERENT SEGMENTATION METHODS AND TRAINING DATASETS. ∗ AND ∗∗

DENOTE RESULTS OF PAIRED t-TESTS VS. FILTERNET 80, AND FILTERNET+ 350, RESPECTIVELY. SEE SECTION III-C FOR DETAILS OF THE COMPARED
METHODS. BOLDED VALUES REPRESENT STATISTICALLY SIGNIFICANT IMPROVEMENTS IN COMPARISON WITH THE COMPARED APPROACHES.

FilterNet 80 FilterNet+ 80 DeepLOGISMOS 80 FilterNet 350 DeepLOGISMOS 350

Mean±STD Mean±STD p value∗ Mean±STD p value∗ Mean±STD Mean±STD p value∗∗

TA

DSC (%) 91.29±0.10 94.45±0.04 0.014 94.58±0.03 0.005 95.97±0.03 95.94±0.03 0.896
JSC (%) 85.23±0.14 89.73±0.06 0.012 89.9±0.06 0.004 92.41±0.05 92.35±0.05 0.849
ASSD (pixel) 1.42±1.25 1.02±0.59 0.014 1.07±1.56 0.135 0.76±0.45 0.70±0.35 0.043
Max ASSD (pixel) 12.73±7.43 9.46±5.94 0.004 8.32±5.45 �0.001 6.59±3.38 6.09±2.97 0.024
ASSD score 86.81±0.10 90.01±0.05 0.017 90.19±0.09 0.029 92.42±0.04 92.97±0.03 0.033
RSSD (pixel) -0.44±1.17 0.04±0.53 0.001 0.24±1.58 0.003 0.03±0.30 0.00±0.31 0.136
RSSD score 93.17±0.09 96.85±0.04 0.002 95.97±0.09 0.054 98.12±0.02 97.88±0.02 0.157
Final score 89.12±0.10 92.76±0.04 0.005 92.66±0.06 0.007 94.73±0.03 94.79±0.03 0.818

TP

DSC (%) 89.46±0.04 91.17±0.04 0.005 91.19±0.04 0.004 93.02±0.04 93.01±0.03 0.972
JSC (%) 81.18±0.07 83.95±0.06 0.005 84.00±0.06 0.003 87.19±0.06 87.12±0.05 0.865
ASSD (pixel) 1.92±1.25 1.78±0.96 0.361 1.40±0.67 0.001 1.39±0.89 1.13±0.67 �0.001
Max ASSD (pixel) 18.78±6.45 16.80±5.88 0.022 14.23±5.25 �0.001 14.72±6.16 13.05±5.50 �0.001
ASSD score 82.33±0.10 83.32±0.08 0.428 86.53±0.06 0.001 86.69±0.06 88.94±0.05 �0.001
RSSD (pixel) 0.00±1.61 0.21±1.23 0.381 -0.01±0.93 0.942 0.06±0.80 -0.14±0.67 �0.001
RSSD score 90.62±0.10 92.09±0.08 0.273 93.67±0.06 0.029 94.51±0.05 95.19±0.05 0.059
Final score 85.90±0.07 87.63±0.06 0.060 88.85±0.05 0.002 90.35±0.05 91.06±0.04 0.034

Sol

DSC (%) 87.99±0.08 89.06±0.07 0.373 89.17±0.07 0.303 92.84±0.04 92.91±0.04 0.790
JSC (%) 79.30±0.11 80.86±0.10 0.351 81.03±0.10 0.277 86.85±0.06 86.96±0.06 0.807
ASSD (pixel) 2.24±1.57 2.28±1.37 0.895 1.87±1.02 0.063 1.48±0.74 1.23±0.56 �0.001
Max ASSD (pixel) 23.73±9.60 20.00±8.84 0.004 18.19±7.88 �0.001 16.39±8.29 14.96±7.43 0.010
ASSD score 79.95±0.12 79.48±0.11 0.788 82.55±0.08 0.087 85.82±0.06 87.97±0.05 �0.001
RSSD (pixel) 0.61±1.35 0.45±1.16 0.366 0.36±0.88 0.147 0.21±0.64 0.17±0.55 0.341
RSSD score 90.76±0.09 92.15±0.08 0.315 93.57±0.06 0.022 95.43±0.05 96.03±0.04 0.062
Final score 84.5±0.08 85.39±0.08 0.480 86.58±0.07 0.066 90.24±0.04 90.97±0.04 0.014

Gas

DSC (%) 89.5±0.08 90.50±0.08 0.448 90.66±0.08 0.356 94.43±0.05 94.64±0.05 0.532
JSC (%) 81.79±0.11 83.38±0.11 0.394 83.65±0.11 0.287 89.72±0.06 90.1±0.06 0.428
ASSD (pixel) 1.71±3.03 1.23±1.05 0.193 1.15±0.70 0.105 1.00±0.63 0.82±0.47 �0.001
Max ASSD (pixel) 29.01±18.67 22.82±17.18 0.043 17.80±14.75 �0.001 17.73±13.97 13.77±9.96 �0.001
ASSD score 86.4±0.16 88.32±0.09 0.371 88.80±0.06 0.205 90.21±0.06 91.88±0.04 �0.001
RSSD (pixel) 0.38±2.42 -0.08±0.62 0.104 -0.14±0.44 0.060 -0.03±0.45 -0.11±0.36 0.013
RSSD score 93.61±0.13 96.71±0.05 0.063 96.80±0.03 0.040 97.38±0.04 97.5±0.03 0.616
Final score 87.82±0.11 89.73±0.06 0.208 89.98±0.05 0.124 92.93±0.04 93.53±0.04 0.037

PL

DSC (%) 89.51±0.12 91.92±0.06 0.138 92.26±0.06 0.066 94.37±0.03 94.3±0.05 0.845
JSC (%) 82.44±0.13 85.53±0.08 0.090 86.11±0.08 0.024 89.47±0.05 89.56±0.07 0.832
ASSD (pixel) 1.46±1.46 1.32±0.88 0.479 1.01±0.57 0.012 0.89±0.47 0.75±0.45 �0.001
Max ASSD (pixel) 11.97±6.55 9.70±4.61 0.019 8.58±4.10 �0.001 7.74±4.13 6.86±3.84 0.003
ASSD score 86.61±0.10 87.37±0.07 0.586 90.03±0.05 0.006 91.13±0.04 92.54±0.04 �0.001
RSSD (pixel) 0.06±1.34 -0.04±0.63 0.545 -0.19±0.46 0.099 0.06±0.45 -0.12±0.46 �0.001
RSSD score 93.53±0.09 95.55±0.04 0.087 96.27±0.03 0.014 97.65±0.04 97.35±0.04 0.298
Final score 88.02±0.10 90.09±0.06 0.124 91.17±0.05 0.009 93.15±0.03 93.44±0.04 0.343

size 0.7×0.7×7 mm, acquisition used the first echo of a 3-
point Dixon gradient echo sequence, TR=150 ms, TE=3.5 ms,
FOV=36 cm, bandwidth 224 Hz/pixel, scan time 156 s.

B. Independent standard

The initial set of 40 annotated MR datasets (80 legs)
was fully manually traced by experts in 3D Slicer and each
annotation took approximately 8 hours on average [30]. This
set was used for the initial stage of training Deep LOGISMOS
to deliver decent automated segmentations of the five calf com-
partments. The remaining 135 MR datasets were sequentially
segmented, their segmentations reviewed and – if needed – in-
teractively corrected by experts using Deep-LOGISMOS+JEI
(Section II-C), and served as additional training data used in
the assisted annotation training loop (Fig. 2). The average
time of reviewing and editing each 3D MR image used in the

assisted annotation loop steps was approximately 25 minutes
– expert effort decreased by 95%.

C. Experimental Setting

Multiple experiments were designed to compare the per-
formance of our original FilterNet [15] that served as a
baseline method with the newly developed methods and to
demonstrate the contribution of our new approaches. Similarly,
to demonstrate the improvements achieved by assisted anno-
tation, we compared performance on differently sized datasets
(fully traced or assist-annotated). The following methods were
compared, the numeric index specifies the number of training
datasets used:

• FilterNet 80: The original deep-learning baseline ap-
proach reported in [15], 40 subjects, 80 legs.
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Fig. 7. Performance comparison for the segmentation of five calf muscle compartments from different experiments. Best viewed in color.

• FilterNet+ 80: The deep learning method resulting from
performance extensions of the original FilterNet ap-
proach, 40 subjects, 80 legs.

• FilterNet+ 350: FilterNet+ approach using the full
assisted-annotation datasets of 93 subjects, 350 legs.

• DeepLOGISMOS 80: Deep LOGISMOS method using
FilterNet+ 80 results as pre-segmentation.

• DeepLOGISMOS 350: Deep LOGISMOS method using
FilterNet+ 350 results as pre-segmentation.

Given a limited-size dataset, 4-fold cross-validation was
used to evaluate the performance of each tested approach with
the 4 groups created randomly at the subject level so that data
(legs) from the same subject were never simultaneously used
for both training and testing. The data were split 65%–10%–
25% to form the training, validation, and testing sets. That
means that for a dataset of 80 (350) legs, training+validation
was based on 60 (262) legs and testing was done in 20 (88)
legs, repeated 4 times.

Each image segmentation method design uses specific pa-
rameters that influence its behavior. In all tests, the same pa-
rameters were used in the corresponding steps of each method.
In FilterNet+, to increase the robustness and generalization of
the network, the input image patches were sized 120×120×28,
cropped from the localized leg-areas, overlapping with a step
size of 20 voxels along the x and y directions, yielding 9
times as many training patches as the number of available leg
images. Data augmentation was performed on each training
patch with random rotation, scaling, etc. The learning rate
was halved throughout the training process if the combination
of the loss L on the validation dataset did not decrease in 2
consecutive training epochs. FilterNet+ training loss parameter
λ was initially set as 0.001 and increased ten fold every 10
epochs, the batch size was 16. FilterNet+ was implemented
using PyTorch platform [31] and trained on Nvidia Tesla
V100 GPU with 32 GB memory. LOGISMOS graph columns
consisted of 49 nodes spaced 0.35 mm apart. LOGISMOS
smoothness constraints were set as 6 node-to-node distances,
corresponding to 2.1 mm.

D. Quantitative Analysis

To comprehensively evaluate the segmentation performance
and allow method-to-method comparisons, DSC and Jaccard
Similarity Coefficient (JSC) evaluated region-based accuracy,
absolute surface-to-surface distance (ASSD, in pixels) and
relative surface-to-surface distance (RSSD, in pixels) assessed
boundary-based accuracy. ASSD and RSSD measure the dis-
tances between the surface of the automated segmentation and
the independent standard. Because of the order-of-magnitude
difference between the XY plane in-slice resolution (0.7 mm)
and the Z plane slice distance (7 mm), the surface-to-surface
distances were calculated on the XY plane slice-by-slice. To
allow meaningful comparisons, scores for ASSD and RSSD
were calculated as

SASSD = α−ASSD × 100 , SRSSD = α−|RSSD| × 100 , (3)

where α is an application-specific parameter empirically cho-
sen as α = 1.111 to reach approximate linearity and maximum
score of 1.0 when the two surfaces match (at zero distance).
Given the four indices: DSC, JSC, SASSD, and SRSSD, the
final comprehensive score was defined as

Sfinal = 0.25× (DSC + JSC + SASSD + SRSSD) . (4)

Higher Sfinal indicates better comprehensive performance in
the combined regional and boundary-positioning respect. Ad-
ditionally, ASSDmax, was evaluated as the maximum absolute
distance between two surfaces of each compartment. Perfor-
mance indices were averaged for left and right calf muscle
compartments and reported as mean±standard deviation. For
statistical comparisons between methods, paired t-tests were
used, p value < 0.05 denoted statistical significance.

IV. RESULTS

The performance comparisons of the five tested methods are
listed in Table I and also visualized in Fig. 7. Compared with
the original FilterNet 80 [15], FilterNet+ 80 achieved signif-
icantly better results for each compartment in terms of DSC,
JSC, ASSD, RSSD, ASSDmax, as well as the comprehensive
Sfinal for at least some of the compared quantitative indices
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TA
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Fig. 8. Examples of segmentation overlaid with MR images. Each row shows a representative 2D cross-sectional slice from the image of subject with given
status (healthy/diseased). The red rectangles highlight regions with segmentation errors. In the control subject, the infiltration of Gas into SAT in FilterNet 80
is corrected in FilterNet+ 80. In the Pre-DM1 example, the disconnected TP in FilterNet 80 is significantly alleviated in FilterNet+ 80. In the severe DM1
and JDM case, FilterNet 80 performs poorly while other methods obtain satisfactory results. In the DM1 and JDM example, segmentation improvements
are noticeable in each method from the FilterNet+ 80 to DeepLOGISMOS 350, for which muscle compartments segmented are increasingly better agreeing
with the ground truth. Throughout all the examples, the errors in FilterNet 80 tend to be corrected in FilterNet+ 80 and FilterNet+ 350, and are further
topologically optimized by DeepLOGISMOS methods. Best viewed in color.

with the remaining indices showing statistically comparable
performance. The notable performance increase attests to the
effectiveness of our proposed deep learning method improve-
ments. Compared to the original FilterNet 80, DeepLOGIS-
MOS 80 offered yet additional improvement of at least some
compared indices for all muscle compartments, the other
indices were statistically comparable. In particular, ASSD and
RSSD scores were increased substantially after the LOGIS-
MOS steps resulting in improved values of Sfinal. On the
350-leg (93-subject) dataset obtained by assisted annotation,
both the FilterNet+ 350 and DeepLOGISMOS 350 outper-
formed the methods using 80-leg dataset. Similarly, compared
to FilterNet+ 350 alone, DeepLOGISMOS 350 demonstrated
overall improvements for all muscle compartments, many sta-
tistically significant differences, especially in terms of ASSD
and RSSD. Notably, the maximum ASSD values, representing
the locally most severe segmentation inaccuracies, decreases
significantly for all 5 segmented muscle compartments.

Fig. 8 displays four cross-sectional segmentation examples
from images of four subjects – healthy control, Pre-DM1,
DM1, and JDM. The comparisons show that the most ad-
vanced DeepLOGISMOS 350 avoids almost all of the seg-
mentation inaccuracies present in the results of the other
methods.

V. DISCUSSION

A. Ablation Study

Table I and Fig. 7 show the superiority of our deep learning
method in comparison with our previous FilterNet approach. In
agreement with the ablation study principles, the results are
methodically ordered from the simplest and earliest original
FilterNet 80 in increasing complexity by first introducing
improvement in the FilterNet+ 80 approach, then combining
FilterNet+ with LOGISMOS optimization, proceeding further
to employing assisted annotation to increase the training sizes
in FilterNet+ 350 and DeepLOGISMOS 350 approaches, Fig.
8 demonstrates that segmentation inaccuracies in FilterNet 80
(tunnels, mis-classifications, undesired disjoint objects) are
successfully resolved by the improvements designed for the
FilterNet+ 80 approach. DeepLOGISMOS 80 segmentations
exhibit additional increases in accuracy, surface smoothness,
and topologic superiority as shown in Fig. 8. For the DM1 sub-
ject, while the PL compartment segmented by FilterNet+ 80
spreads into the surrounding tissue, this problem is resolved
by DeepLOGISMOS 80 due to the addition of machine-
learned residual features to the cost function (Section II-C).
Similarly, benefiting from LOGISMOS graph optimization, a
region of mis-classified PL around the boundary of Sol and
mis-classified Gas in the control subject by FilterNet 80 is
corrected by FilterNet+ 80 and DeepLOGISMOS 80. At the
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same time, the importance of topologic correctness of Pre-
DM1 and DM1 pre-segmentation can be seen in FilterNet+ 80
and DeepLOGISMOS 80, where the attractive edge-costs at
falsely pre-segmented locations did not allow LOGISMOS to
properly reposition the Sol surface.

The superiority of training on a larger dataset, indicating
the effectiveness of assisted annotation, is further shown in
FilterNet+ 350 and DeepLOGISMOS 350 (Table I, Fig. 7).
LOGISMOS-JEI based assisted annotation, in the process of
providing larger training datasets, dramatically reduces the
annotation effort of human experts. In all four examples
in Fig. 8, most of the errors in the earlier segmentation
approaches are successfully resolved by FilterNet+ 350 and
DeepLOGISMOS 350.

B. Generalizability of combining Deep LOGISMOS and as-
sisted annotation

The power of our work in combining deep learning pre-
segmentation and graph-optimality seeking Deep LOGISMOS
trained on data produced by efficient assisted annotation was
demonstrated in the case of segmenting human calf muscle
compartments on MRI. Alternatively, other deep convolutional
neural network architectures can be integrated into the Deep
LOGISMOS framework to utilize information linkages be-
tween deep learning and graph optimization. Further strength-
ened by the inherently incorporated Deep-LOGISMOS+JEI
based assisted annotation (Fig. 2), its effectiveness and effi-
ciency in reducing the annotation effort and optimizing the
segmentation model are clearly visible from the achieved
segmentation improvements (Section IV). Note of course,
that the Deep-LOGISMOS+JEI method used here for assisted
annotation is not the only one applicable. The idea of training-
segmentation-annotation iterative epochs can be generically
incorporated into supervised learning methods or one can elect
to employ suggested annotation approaches [32]. Given this
inherent generalizability of Deep LOGISMOS and the assisted
annotation paradigm, these strategies can be further integrated
and the machine-learned deep segmentation features and the
machine-learned LOGISMOS cost functions applied to various
segmentation tasks to benefit both the segmentation processes
and those leading to assisted annotations.

C. Future work

Although we showed that assisted annotation helps experts
reduce the effort of manual tracing substantially (from 8 hours
to 25 minutes per 3D image), the total time and effort of
reviewing and editing a large dataset can not be neglected
either. There are two promising directions to further relieve
the annotation effort problem: active learning [33] and quality
assessment without ground truth. The approach of quality
assessment without the ground truth focuses on further re-
ducing the human effort in searching for small segmentation
errors in a large 3D image by automatically locating likely
segmentation errors on the volumetrically visualized object
surfaces. Afterward, the identified likely-erroneous locations
can be used as feedback to guide the network to prevent
similar errors. As a result, the time of reviewing and editing the

segmentations to produce new annotations can be significantly
reduced.

VI. CONCLUSION

A hybrid framework combining the main advantages of
our convolutional neural network FilterNet+ with those of
our graph-based LOGISMOS approach, further supported by
Deep-LOGISMOS+JEI assisted annotation, was reported. The
presented comparative performance assessment demonstrated
an improved performance obtained during simultaneous multi-
compartment 3D segmentation of calf muscle compartments
on 3D MRI. By maximizing the value of an original small
dataset of fully annotated MR images of 80 lower legs,
and by initially training a Deep LOGISMOS segmentation
method on this small dataset, we have designed and employed
an efficient assisted annotation strategy that decreased the
average annotation time required to 3D-annotate 5 calf-muscle
compartments on a volumetric 512×512×30 MR image from
8 hours to 25 minutes – a 95% reduction of human expert
effort. Our Deep LOGISMOS method trained on a larger
dataset of 350 assisted-annotated legs then outperformed all
other tested deep learning and graph-optimization approaches
in the region-based voxel labeling, boundary-based surface
positioning, and the final comprehensive performance score.
Compared with our previously reported FilterNet method,
mean DSC was improved by 4.6% on average, from 88.0–
91.3% to 92.9–95.9%. The mean absolute surface positioning
errors were improved by 47.5% on average, from 1.4–2.2
pixels to 0.7–1.2 pixels. The mean comprehensive final score
was improved by 6.5 on average, from 84.5–89.1 to 91.0–94.8
for the five 3D muscle compartments per leg. The reduction
of local maximum segmentation errors (Max ASSD) was even
more pronounced. The striking performance improvements
suggest the clinical-use potential of our new fully automated
simultaneous segmentation of calf muscle compartments.
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