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I. CONTENT

This supplementary material shows the detailed derivation of equations summarized in the main manuscript and figures
clarifying the results shown in Figs. 4 and 9b.

II. TRAVELTIMES IN ELLIPTICALLY ANISOTROPIC MEDIA

In a medium with elliptical anisotropy, the group velocity of longitudinal waves v(θ) in an arbitrary propagation direction
θ satisfies

v2(θ)

v21
sin2 (θ − ϕ) + v2(θ)

v22
cos2 (θ − ϕ) = 1, (1)

where v1 and v2 are the longitudinal-wave velocities along and across the anisotropy symmetry axis, respectively, and the
angle ϕ indicates the orientation of this axis with respect to our reference system [see Fig. 1(a) in the main manuscript].
Equivalently, we can rewrite this equation as

1

v2(θ)
=

1

v21
sin2 (θ − ϕ) + 1

v22
cos2 (θ − ϕ) (2)

to explicitly define v(θ).
In homogeneous media, the traveltime of longitudinal waves propagating between arbitrary locations xA and xB is generally

given by

tAB =
||xB − xA||

v(θ)
, (3)

where || · || refers to the Euclidean norm, and θ is the angular position of xB with respect our the coordinate system, with its
origin at xA [see Fig. 1(a) in the main manuscript].

After taking the square of (3) and replacing v(θ) with the definition given in (2), we obtain

t2AB =
||xB − xA||2

v21
sin2 (θ − ϕ) + ||xB − xA||2

v22
cos2 (θ − ϕ). (4)

This equation can be simplified by applying standard trigonometric identities and using the geometric relations ||xB−xA|| sin θ =
x1,B − x1,A and ||xB − xB|| cos θ = x2,B − x2,A. Finally, we can express the traveltime tAB as

t2AB =
1

v21
[(x1,B − x1,A) cosϕ− (x2,B − x2,A) sinϕ]2 +

1

v22
[(x1,B − x1,A) sinϕ+ (x2,B − x2,A) cosϕ]2 . (5)

III. REFLECTOR-BASED EXPERIMENTAL SETUP: DERIVATION OF THE REFLECTION POINT

Let us consider a reflector-based experimental setup with the reflector parallel to the ultrasound probe [see Fig. 1(b) in
the main manuscript]. We can use Fermat’s principle to analytically derive the first-arrival reflection traveltime tSR of waves
propagating from a source at xS to a receiver at xR as

min
xP∈D

tSR(xP), where tSR(xP) = tSP(xP) + tPR(xP). (6)

Here, D refers to the set of points xP at the reflector-tissue interface [see Fig. 1(b) in the main manuscript], and traveltimes
of each path are computed using (5).
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In a first step, we compute the location of the reflection point xmin
P satisfying (6). We assume that this point is shifted from

the source-receiver mid-point position by the same constant δ for every source-receiver combination, i.e., xmin
P = ((x1,S +

x1,R)/2 + δ, L). To find the value of δ, we consider, for simplicity, the zero-offset case in which xS = xR, and we solve (6)
using

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

= 2
dtSP

dδ

∣∣∣∣
xP=xmin

P

= 0. (7)

Because the derivative of tSP with respect to δ must be zero when the reflection point is xmin
P , the same must hold for the

derivative of t2SP:
dt2SP

dδ

∣∣∣∣
xP=xmin

P

= 2tSP
dtSP

dδ

∣∣∣∣
xP=xmin

P

= 0, (8)

which is easier to compute from (5). In our zero-offset case, t2SP has the form

t2SP

∣∣
xS=xR

=
1

v21
[δ cosϕ− L sinϕ]

2
+

1

v22
[δ sinϕ+ L cosϕ]

2
, (9)

and its derivative with respect to δ is

dt2SP

dδ

∣∣∣∣
xS=xR

=
2 cosϕ

v21
[δ cosϕ− L sinϕ] +

2 sinϕ

v22
[δ sinϕ+ L cosϕ] . (10)

By imposing the condition (8), we find that δ satisfies

δ =
L sinϕ cosϕ

[
1
v2
1
− 1

v2
2

]
1
v2
1
cos2 ϕ+ 1

v2
2
sin2 ϕ

=
L sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)
. (11)

Thus, the reflection point of fastest waves propagating from xS to xR is generally given by

xmin
P =

(
x1,S + x1,R

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

, L

)
. (12)

IV. REFLECTOR-BASED EXPERIMENTAL SETUP: FIRST-ARRIVAL REFLECTION TRAVELTIME

The first-arrival reflection traveltime is the sum of two terms:

tSR(x
min
P ) = tSP(x

min
P ) + tPR(x

min
P ). (13)

For simplicity, before computing these two traveltimes, we focus on deriving simplified expressions for their squared
counterparts:

1) Traveltime from the source to the reflection point:

t2SP

(
xmin

P

)
=

1

v21

[(
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
cosϕ− L sinϕ

]2
+

1

v22

[(
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
sinϕ+ L cosϕ

]2
,

(14)

where d = x1,R − x1,S is the source-receiver offset. The terms in brackets can be further simplified as(
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
cosϕ− L sinϕ =

d

2
cosϕ+ L sinϕ

[
cos2 ϕ(v22 − v21)− (v21 sin

2 ϕ+ v22 cos
2 ϕ)

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
=
d

2
cosϕ− Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
(15)

and (
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
sinϕ+ L sinϕ =

d

2
sinϕ+

Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (16)

By replacing them in (14), we obtain

t2SP

(
xmin

P

)
=

1

v21

[
d

2
cosϕ− Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
+

1

v22

[
d

2
sinϕ+

Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
, (17)
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which reduces to

t2SP

(
xmin

P

)
=

d2

4v21v
2
2

(v21 sin
2 ϕ+ v22 cos

2 ϕ) +
L2

v21 sin
2 ϕ+ v22 cos

2 ϕ
=

d2

4v2(θ = π/2)
+
L2v2(θ = π/2)

v21v
2
2

. (18)

We used (1) in the last step.
2) Traveltime from the reflection point to the receiver:

t2PR

(
xmin

P

)
=

1

v21

[(
d

2
− L sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)

)
cosϕ+ L sinϕ

]2
+

1

v22

[(
d

2
− L sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)

)
sinϕ− L cosϕ

]2
.

(19)

Following the same steps as before, we simplify the terms in brackets to obtain

t2PR

(
xmin

P

)
=

1

v21

[
d

2
cosϕ+

Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
+

1

v22

[
d

2
sinϕ− Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
, (20)

which can be further simplified as

t2PR

(
xmin

P

)
=

d2

4v21v
2
2

(v21 sin
2 ϕ+ v22 cos

2 ϕ) +
L2

v21 sin
2 ϕ+ v22 cos

2 ϕ
=

d2

4v2(θ = π/2)
+
L2v2(θ = π/2)

v21v
2
2

. (21)

By comparing (21) to (18), we observe that

tSP
(
xmin

P

)
= tPR

(
xmin

P

)
, (22)

meaning that the fastest ray path is the path with equal traveltime along each segment. Taking this into account, we finally
derive the analytical expression for first-arrival reflection traveltime:

t2SR

(
xmin

P

)
= 4t2SP

(
xmin

P

)
=

d2

v2(θ = π/2)
+

4L2v2(θ = π/2)

v21v
2
2

. (23)

Note that (22) also means that the mirror image of the receiver, namely a virtual receiver R̃ located below the reflector that
satisfies tSR̃ = tSR, is generally located at

xR̃ = 2xmin
P − xS. (24)

V. PROOF: ACCURACY OF THE REFLECTION POINT

When deriving the reflection point expression, we assumed that this point is shifted from the source-receiver mid-point by
the same constant δ for every source-receiver combination. If this assumption is accurate, the derivative of t2SR(xP) with respect
to xP (or x1,P since the reflection point is always at the reflector) will always be zero at xmin

P given by (12), i.e.,

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

=
dtSP

dx1,P

∣∣∣∣
xP=xmin

P

+
dtPR

dx1,P

∣∣∣∣
xP=xmin

P

= 0. (25)

That is, Fermat’s principle must be satisfied for any source-receiver combination. In the following, we prove that (25) always
holds for xmin

P given by (12).
As before, we transform the derivatives in (25) using squared traveltimes as

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

=

[
1

2tSP

dt2SP

dx1,P
+

1

2tPR

dt2PR

dx1,P

]∣∣∣∣
xP=xmin

P

=
1

2tSP(xmin
P )

[
dt2SP

dx1,P
+

dt2PR

dx1,P

]∣∣∣∣
xP=xmin

P

= 0. (26)

The last step uses the equality given in (22). Therefore, this equation is satisfied when

dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

= − dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

. (27)

To see if this is true, we compute both derivatives:
1) Derivative of t2SP at xmin

P :

dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

=
2 cosϕ

v21
[(x1,P − x1,S) cosϕ− L sinϕ] +

2 sinϕ

v22
[(x1,P − x1,S) sinϕ+ L cosϕ]

∣∣∣∣
xP=xmin

P

. (28)

Here, we can use (17) to simplify the terms in brackets after evaluating them at xmin
P :

dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

=
2 cosϕ

v21

[
d

2
cosϕ− Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
+

2 sinϕ

v22

[
d

2
sinϕ+

Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
, (29)
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which can be further simplified as
dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

= d

(
cos2 ϕ

v21
+

sin2 ϕ

v22

)
. (30)

2) Derivative of t2PR at xmin
P :

dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

=
−2 cosϕ

v21
[(x1,R − x1,P) cosϕ+ L sinϕ]− 2 sinϕ

v22
[(x1,R − x1,P) sinϕ− L cosϕ]

∣∣∣∣
xP=xmin

P

. (31)

As before, we can use (20) to simplify the terms in brackets after evaluating them at xmin
P :

dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

=
−2 cosϕ

v21

[
d

2
cosϕ+

Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
− 2 sinϕ

v22

[
d

2
sinϕ− Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
, (32)

which can be further simplified as

dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

= −d
(
cos2 ϕ

v21
+

sin2 ϕ

v22

)
. (33)

By comparing (30) and (33), we see that (27) is satisfied, meaning that the expression of the reflection point given in (12) is
exact and does not involve any approximation.

VI. REFLECTOR INCLINATION: DERIVATION OF THE REFLECTION POINT

In this subsection, we calculate the reflection point for an experimental setup with an inclined reflector. To take advantage
of our previous results, we use the equivalent experimental setup depicted in Fig. 1 and consider a virtual source S̃ with the
same elevation as the receiver R. The horizontal distance between S̃ and the reflection point P is then given by

x̃1,P = x1,P + x =
d cosα+ x

2
+ δ′, (34)

where

δ′ =
(L+ d sinα) sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)
. (35)

The last step uses our previous result in (12). From here, we see that the horizontal distance between the actual source S and
the reflection point P is

x1,P =
d cosα− x

2
+ δ′. (36)

Fig. 1. Schematic illustration of the experimental setup with an inclined ultrasound probe by α and a horizontal reflector in front of it. This setup is equivalent
to having an inclined reflector in front of a horizontally placed linear probe [see Fig. 3 in the main manuscript]. The vertical probe-reflector distance L is
measured from the first transducer element, where in this example we locate the source S. R denotes the receiver located at a distance d from S, P is the
reflection point, and S̃ is a virtual source with same elevation as R. The horizontal distance between S̃ and S is x. This virtual source will allow us to
compute the reflection point using (12).

We can find a second relationship between x and x1,P using the trigonometric identity

d sinα

x
=

L

x1,P
⇒ x =

x1,Pd sinα

L
. (37)
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Finally, upon inserting (37) in (36), we obtain

x1,P =
d cosα

2
− x1,P sinα

2L
+ δ′ ⇒ x1,P =

L(d cosα+ 2δ′)

2L+ d sinα
. (38)

We can generalize this expression by dropping the assumption that S is located at the origin of the coordinate system. Then,
the reflection point becomes

x1,P = dS cosα+
(L+ dS sinα)(d cosα+ 2δ′)

2(L+ dS sinα) + d sinα
, (39)

with
δ′ =

(L+ dS sinα+ d sinα) sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

, (40)

where dS is the distance between the source and the origin of the coordinate system (i.e., the first transducer element of the
probe).

VII. REFLECTOR INCLINATION: FIRST-ARRIVAL REFLECTION TRAVELTIME

For simplicity, we calculate the traveltime tSR considering the mirror image of the receiver R̃. This virtual receiver is located
below the reflector, where tSR̃ = tSR is satisfied. When the reflector is not inclined, the location of the virtual receiver is given
by (24). In our example, therefore, this location is xR̃ = (2x̃1,P − x, 2L + d sinα) = (d cosα + 2δ′, 2L + d sinα), shown in
Fig. 2. Note that we again place the origin of the coordinate system at S.

Fig. 2. Schematic illustration showing the location of the mirror image R̃ of the receiver R. The traveltime of a straight ray traveling from S to R̃ (green dashed
line) is the same as the first-arrival reflection traveltime from S to R, that is, tSR̃ = tSR. This virtual receiver is located at xR̃ = (2x̃1,P − x, 2L+ d sinα)
with the origin of the coordinate system at S. We refer the reader to Fig. 1 to understand the meaning of the rest of the symbols in the image.

Following (5), the traveltime between S and R̃ is given by

t2SR̃ =
1

v21
[(d cosα+ 2δ′) cosϕ− (2L+ d sinα) sinϕ]

2︸ ︷︷ ︸
I2

+
1

v22
[(d cosα+ 2δ′) sinϕ+ (2L+ d sinα) cosϕ]

2︸ ︷︷ ︸
II2

. (41)

To simplify this expression, we first simplify the terms in brackets separately using the definition of δ′ in (35):
1) The first term can be reduced to

I = d cos(ϕ+ α) +
d sinα sin 2ϕ cosϕ(v22 − v21)− 2Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (42)

After taking the square of this term and dividing it with v21 , we obtain

I2

v21
=
d2 cos2(ϕ+ α)

v21
+ 4d sinϕ cos(ϕ+ α)

(
d sinα cos2 ϕ

(
v2
2−v

2
1

v2
1

)
− L

)
v21 sin

2 ϕ+ v22 cos
2 ϕ

+
d2 sin2 α sin2 2ϕ cos2 ϕ

(
v2
2−v

2
1

v1

)2
− 2Ld sinα sin2 2ϕ(v22 − v21) + 4L2v21 sin

2 ϕ

(v21 sin
2 ϕ+ v22 cos

2 ϕ)2
.

(43)
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2) The second term can be reduced to

II = d sin(ϕ+ α) +
d sinα sin 2ϕ sinϕ(v22 − v21) + 2Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (44)

As before, we take the square of II and divide it with v22 to obtain

II2

v22
=
d2 sin2(ϕ+ α)

v22
+ 4d cosϕ sin(ϕ+ α)

(
d sinα sin2 ϕ

(
v2
2−v

2
1

v2
2

)
+ L

)
v21 sin

2 ϕ+ v22 cos
2 ϕ

+
d2 sin2 α sin2 2ϕ sin2 ϕ

(
v2
2−v

2
1

v2

)2
+ 2Ld sinα sin2 2ϕ(v22 − v21) + 4L2v22 cos

2 ϕ

(v21 sin
2 ϕ+ v22 cos

2 ϕ)2
.

(45)

We notice that (43) and (45) have common terms that will vanish when we sum them to calculate t2
SR̃

. Moreover, using the
symmetries between their terms, we can express the traveltime as

t2SR̃ = d2
(
sin2(ϕ+ α)

v22
+

cos2(ϕ+ α)

v21

)

+
4Ld sinα− d2 sin2 α sin2 2ϕ

(v2
1−v

2
2)

2

v2
1v

2
2

v21 sin
2 ϕ+ v22 cos

2 ϕ
+ d2 sin 2α sin 2ϕ

v22 − v21
v21v

2
2

+
4L2 + d2 sin2 α sin2 2ϕ

(v2
2−v

2
1)

2

v2
1v

2
2

v21 sin
2 ϕ+ v22 cos

2 ϕ
,

(46)

where each line in this equation refers to one term in (43) and (45), following the same order. We can futher simplify (46) as

t2SR̃ = d2
(
sin2(ϕ+ α)

v22
+

cos2(ϕ+ α)

v21

)
+

4L(L+ d sinα)

v21 sin
2 ϕ+ v22 cos

2 ϕ
+ d2 sin 2α sin 2ϕ

v22 − v21
v21v

2
2

.

(47)

Here, the sum of the first and third term equals to

d2
(
sin2(ϕ+ α)

v22
+

cos2(ϕ+ α)

v21

)
+ d2 sin 2α sin 2ϕ

v22 − v21
v21v

2
2

=
d2

v21v
2
2

(
v21 sin

2(ϕ− α) + v22 cos
2(ϕ− α)

)
. (48)

Therefore, the traveltime t2
SR̃

, which is equal to t2SR, reduces to

t2SR =
d2

v21v
2
2

(
v21 sin

2(ϕ− α) + v22 cos
2(ϕ− α)

)
+

4L(L+ d sinα)

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (49)

So far, we have considered the experimental setup depicted in Figs. 1 and 2. However, this setup is a rotated version of the
actual experimental configuration considered in the main manuscript, as shown in Fig. 3. To find an expression for the traveltime
that is valid for our original experimental setup, we need to apply the transformations L → L cosα and ϕ → ϕ + α. The
transformation for L considers the case in which the source is located at the first transducer element (origin of the coordinate
system). We can generalize the traveltimes to any source location applying the transformation L→ L cosα+ dS sinα, where
dS is the distance between S and the origin of the coordinate system. Thus, the first-arrival reflection traveltime between S
and R becomes

t2SR =
d2

v2(π/2)
+

4L′(L′ + d sinα)

v21 sin
2(ϕ+ α) + v22 cos

2(ϕ+ α)
(50)

with
L′ = L cosα+ dS sinα. (51)

VIII. CONSTRAINING ANISOTROPY PARAMETERS

In this section, we show additional figures to clarify the content of Fig. 4 in the main manuscript. This figure represents the
equivalent models in terms of the anisotropy angle and the velocity ratio. This is useful to visualize three-dimensional models
in a two-dimensional image. However, it may not be clear whether each point in this figure corresponds to a single anisotropy
model or a set of models with equal velocity ratio. In order to clarify this point, we show two additional figures of the same
result. Figure 4(a) shows the parameters ϕ and v1 of the models, whereas Figure 4(b) shows ϕ and v1. We can see that each
point in Fig. 4 of the main manuscript and the intersection point of the curves represent a single anisotropy model.
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Fig. 3. Schematic illustration showing two equivalent experimental setups. (a) Our original setup considers the reflector inclined by α with respect to the
x1-axis. The vertical distance between the first transducer element (origin of the coordinate system) and the reflector is L. The anisotropy symmetry axis of
the medium has the orientation ϕ with respect to the x2-axis. (b) We rotate the whole system by α in order to imagine an equivalent setup with no reflector
inclination. Now, the probe is inclined with respect to the x1-axis, the anisotropy of the medium has the orientation ϕ+ α, and the vertical probe-reflector
distance becomes L cosα.

Fig. 4. Figures corresponding to the result shown in Fig. 4 of the main manuscript. We show muscle models equivalent to m̂ = (1560 m/s, 1540 m/s, 0◦)
(orange) in terms of first-arrival reflection traveltimes using reflector inclination angles α = 0◦, 10◦, and 20◦. Each model is defined by three parameters:
anisotropy angle ϕ and velocities v1 and v2. For visualization, we show in (a) the parameters ϕ and v1 of the models and in (b) the parameters ϕ and v2
of the same models. We can observe that the three curves intersect in a single point that represents m̂.

IX. EXTENDED BAYESIAN FORMULATION FOR UNCERTAIN REFLECTOR INCLINATION ANGLES

In this section, we show numerical examples supporting the uniqueness of the solution shown in Fig. 9(b) (in gray) of
the main manuscript. We use the same Bayesian formulation that considers inclination angles as unknown model parameters
and perform the inversion initializing the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm with models
that deviate strongly from the true model mtrue = (1560 m/s, 1540 m/s, 0◦, 0◦, 5◦). This allows us to explore a wider
area of the model space and converge to other maxima of the posterior probability density function, if any. Figs. 5–7
show the results obtained when the MCMC is initialized with models minit = (1350 m/s, 1350 m/s, 40◦, 10◦, 15◦), minit =
(1750 m/s, 1750 m/s,−40◦, 15◦, 15◦), minit = (1750 m/s, 1750 m/s, 40◦, 15◦, 0◦), minit = (1310 m/s, 1310 m/s,−40◦, 15◦, 0◦),
minit = (1310 m/s, 1750 m/s, 40◦, 5◦, 0◦), and minit = (1750 m/s, 1310 m/s,−40◦, 5◦, 0◦). Note that parameter values chosen
for these initial models are close to the extreme limits imposed by our uniform priors, which are defined within the range
of [1300 m/s, 1800 m/s] and [−45◦, 45◦) for velocities and the anisotropy angle, respectively. Yet, all MCMC realizations
converge to the same maximum of the posterior as in Fig. 9(b) (gray), suggesting that the solution uniqueness is still given
within the model subspace defined by the priors in this extended Bayesian formulation.

X. PHASE VELOCITIES IN ELLIPTICALLY ANISOTROPIC MEDIA

The Christoffel equation relates the stiffness tensor cijkl to the phase velocities V as

det[cijklninl − ρV 2δjk] = 0, (52)

where the Einstein summation convention is implied for repeated indices. Here, ρ denotes medium density, δjk is the Kronecker
delta, and ni refers to the ith component of the wavefront normal vector. If we assume the muscle as an elliptically anisotropic
medium, the stiffness tensor will have only three relevant components, which are c1111 ≡ c11, c1122 ≡ c12, and c2222 ≡ c22 in
Voigt notation.
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Fig. 5. Marginal probability density functions obtained when we initialize the Metropolis-Hastings Markov chain Monte Carlo algorithm with models (a)
minit = (1350 m/s, 1350 m/s, 40◦, 10◦, 15◦) and (b) minit = (1750 m/s, 1750 m/s,−40◦, 15◦, 15◦).

We consider a two-dimensional problem defined in the x1x2-plane. For an arbitrary wavefront direction n = (sinφ, cosφ),
the determinant in (52) reduces to∣∣∣∣c11 sin2 φ− ρV 2 c12 sinφ cosφ

c12 sinφ cosφ c22 cos
2 φ− ρV 2

∣∣∣∣ = ρ2V 4 − ρV 2(c11 sin
2 φ+ c22 cos

2 φ) + (c11c22 − c212) sin2 φ cos2 φ. (53)

Following (52), we equate (53) to zero. This gives a second order polynomial for ρV 2 with solutions

ρV 2 =
1

2

[
(c11 sin

2 φ+ c22 cos
2 φ)±

√
(c11 sin

2 φ+ c22 cos2 φ)2 − 4(c11c22 − c212) sin
2 φ cos2 φ

]
. (54)

Here we can simplify the term inside the square root as

ρV 2 =
1

2

[
(c11 sin

2 φ+ c22 cos
2 φ)±

√
(c11 sin

2 φ− c22 cos2 φ)2 + c212 sin
2 2φ

]
. (55)

In general, only the positive sign guarantees a solution for V . Thus, the phase velocity of longitudinal waves is given by

V 2(φ) =
1

2ρ

[
c11 sin

2 φ+ c22 cos
2 φ+G(φ)

]
(56)
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Fig. 6. Marginal probability density functions obtained when we initialize the Metropolis-Hastings Markov chain Monte Carlo algorithm with models (a)
minit = (1750 m/s, 1750 m/s, 40◦, 15◦, 0◦) and (b) minit = (1310 m/s, 1310 m/s,−40◦, 15◦, 0◦).

with

G(φ) =
[(
c11 sin

2 φ− c22 cos2 φ
)2

+ c212 sin
2 2φ

] 1
2

. (57)
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Fig. 7. Marginal probability density functions obtained when we initialize the Metropolis-Hastings Markov chain Monte Carlo algorithm with models (a)
minit = (1310 m/s, 1750 m/s, 40◦, 5◦, 0◦) and (b) minit = (1750 m/s, 1310 m/s,−40◦, 5◦, 0◦).


