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Abstract—Real-time vital signs (breathing and heartbeat) mon-
itoring is essential for patient care and sleep disease prevention.
Current solutions are mostly based on wearable sensors or
cameras, the former affects the quality of sleep, while the latter
is not conducive to privacy protection, and the cost of these
methods is usually expensive. In this paper, we propose Wital,
a real-time vital signs monitoring system based on the low-
cost and widespread COTS WiFi device. Most of the existing
WiFi-based vital signs monitoring solutions utilize the line of
sight (LOS) signals to achieve good performance. However,
in real-life environments, NLOS sensing is more common. In
this article, we first model the relationship between the energy
ratio of LOS/NLOS signals and the ability to monitor vital
signs based on the Ricean-K theory and theoretically prove
that blocking LOS signals in NLOS sensing is more beneficial.
Wital also proposed a motion segmentation algorithm based on
motion regularity detection, which can accurately distinguish
breathing from other motions. We have also established a real-
time vital signs monitoring system to verify our method, and the
experimental results prove the effectiveness of our method.

Index Terms—Wi-Fi, CSI, sleep monitoring, vital signs, wire-
less sensing

I. INTRODUCTION

Real-time vital signs (breathing and heartbeat) monitoring
is essential for patient care and sleep disease prevention. For
example, Covid-19 can cause breathing difficulties or shortness
of breath in patients [1], so patients need continuous breathing
monitoring. Some people may suffer from various diseases
during their daily sleep, such as sleep apnea [2] and asthma
[3]. Some studies have also shown that breathing disorders
are the main cause of Sudden Infant Death Syndrome (SIDS)
in sleeping infants [4]. In many examples of sleep disorders,
patients only develop symptoms for a short period of time or
occasionally, and long-term continuous monitoring is required
to detect such symptoms. However, under the condition of
limited medical resources caused by Covid-19 and limited
funds, long-term hospital observation is unrealistic for most
people. Therefore, continuous, real-time and cost-effective
vital signs monitoring in the home environment is essential.

Traditional vital signs monitoring schemes mainly lever-
age attached sensors, such as Polysomnography (PSG) [5]
and Electrocardiogram (ECG) [6]. Nevertheless, these special
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devices are not suitable for the home environment, they are
expensive and impair the quality of sleep. The solutions
based on pressure or acceleration sensors also require con-
tact with the body, and lighting conditions limit solutions
based on computer vision. Recently, Radio Frequency (RF)
based methods [7], [8] has attracted considerable attention as
they provided non-invasive vital signs monitoring use SDR
(Software Defined Radio). However, the devices used in these
solutions are generally expensive and have disadvantages such
as infringement of privacy and discomfort to the wearer.

Recently, WiFi-based vital signs monitoring has received
widespread attention [9]–[11] due to the widespread and low
cost of WiFi devices. The reason why WiFi can detect vital
signs is that breathing and heartbeat can cause deformations
in the abdomen and chest, and these deformations can affect
the propagation of WiFi signals, which can be recorded by the
WiFi Channel State Information (CSI) [12].

A major challenge for Wi-Fi-based vital signs perception
is that the torso deformation caused by breathing/heartbeat
is extremely weak, and it is difficult to greatly affect the
propagation of Wi-Fi signals. Therefore, a model is needed
to guide the system implementation. Currently, state-of-the-
art schemes mostly based on the Fresnel Zone model [9], [13]
or CSI-ratio model [10], [14] to guide the WiFi-based vital
signs monitoring. For the former, the Fresnel Zone model only
considered the signal reflect path (dynamic path), this model
points out that the best performance can be achieved in the
case of LOS or close to LOS, however, it is almost impossible
to achieve in a real-life environment. For the latter, at least two
antennas placed close together are required at the receiver, this
is unfavorable for the single-antenna receiver and increases
the calculation loss. Another challenge is that motions such
as turning over can be mixed with breathing/heartbeat and
affect the accuracy of vital signs detection. Therefore, breath-
ing/heartbeat must be distinguished from other actions. How-
ever, since breathing/heartbeat and turning over are dynamic,
the current dynamic and static segmentation schemes [15] used
in WiFi-based perception are not applicable.

In this paper, we propose Wital, a real-time vital signs
monitoring system based on low-cost and widespread COTS
WiFi devices. To address the aforementioned challenges, we
first propose a Ricean-K theory-based model to analyze the
relationship between the energy ratio of LOS/NLOS signals
and the ability to monitor vital signs, and based on the model
analysis, we block the LOS signal to improve the NLOS
sensing ability. We also propose a regularity-based motion seg-
mentation algorithm to accurately separate breathing/heartbeat
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and other motions.
The main contributions of this paper are summarized as

follows:
1) We propose a NLOS sensing model to analyze the rela-

tionship between the energy ratio of LOS/NLOS signals
and the ability to monitor vital signs. We theoretically
prove that blocking LOS signals in NLOS sensing is
more conducive to motion detection. We verified this
idea through experiments. Please note that this model
can also be applied to other WiFi-based motion detection
and recognition research.

2) We propose a motion segmentation algorithm based on
regularity detection, which can accurately locate the
position of motions (such as turn over and get up)
different from vital signs.

3) We implement a real-time system using Matlab to eval-
uate our method. The experimental results indicated the
performance of our method, and the accuracy is 96.618%
and 94.708% for breathing and heart rate detection,
respectively.

We organize the remainder of this paper as follows: in
section II, we provide an overview of the related work. We
describe our NLOS sensing model in section III. And we
introduce our system design in section IV. Then, we evaluate
our method and show the experimental results in section V.
Finally, we conclude our work in section VI.

II. RELATED WORK

A. Sensing With WiFi

Due to the widespread deployment of WiFi devices and the
convenience of wireless sensing, research on passive sensing
based on WiFi has received widespread attention [19]–[21].
These researches mainly use the Received Signal Strength In-
dex (RSSI) or CSI. RSSI is easy to acquire, but the perceiving
granularity is coarse. CSI can be obtained by modifying the
underlying driver of the WiFi network card, and the perceiving
granularity is better than RSSI.

With the help of WiFi RSSI or CSI information, current
research can implement person detection [22], gesture recog-
nition [23], position [24], [25], sleep movement detection [26]
and driving activity detection [27], etc. Based on the passive
sensing characteristics of WiFi signals, some tasks can be
better carried out. In the past two years, WiFi-based perception
researches have been further expanded into new fields. [28] use
WiFi devices to image key points of the human body, enabling
human visualization without vision equipment. [29] use WiFi
devices to track finger draws in the air. [30] achieved steal
mobile phone passwords using COTS WiFi devices.

B. Breathing And Heartbeat Monitoring

Respiratory frequency and heart rate are critical physiolog-
ical indicators of the human body, and they are important
indicators for evaluating health conditions. In general, the
methods used to track such information can be categorized
into three groups: sensors-based, vision-based, and RF signal-
based.

Most of the traditional solutions use sensors for physiologi-
cal signal detection, for example, Polysomnography (PSG) [5]
and Electrocardiogram (ECG) [6] measures body functions
like breathing or heartbeat by attaching multiple sensors to
a patient. H.Aly et al. [31] utilize the accelerometer and
gyroscope on the mobile phone to detect the chest breathing
action of the person. Smart sleeping mat [32] uses pressure
sensor arrays for breathing detection. However, sensors-based
methods are usually expensive, complex to deploy, and inva-
sive.

Vision-based solutions [33] are usually subject to light
conditions and also raise privacy concerns. Recently, research
on ‘taking wireless radio signals as sensors’ has received more
and more attention. When RF signals travel from a transmitter
to a receiver, it can be influenced by the breathing-induced
chest movement on the propagation paths. RF signal-based
solutions are usually based on special equipment, such as ultra-
wideband [34] and Frequency Modulated Continuous Wave
(FMCW) radar [7], [8]. The devices used in these solutions are
expensive and not suitable for daily environments. Compared
with these solutions, WiFi-based solutions are less expensive
and simple to deploy and can be implemented using standard
equipment.

Previous WiFi-based breathing monitoring researches are
mostly based on RSSI [35]–[37]. RSSI characterizes the total
received power of all paths, which is coarse-grained and
inherently incapable of capturing the multipath effect. In
contrast, CSI can capture fine-grained channel information
and multipath information well. Therefore, the latest related
schemes are mostly based on CSI [9], [10], [12], [13], [16],
[38], [39]. In particular, Liu et al. [16] obtain respiratory rate
by using Short-Time Fourier Transform (STFT) on the CSI
amplitude, it can obtain breathing information in different
sleeping postures. Nevertheless, this solution needs to deploy
two routers and three computers. The authors of [12] use a pair
of devices to monitor the breathing rate in different sleeping
postures. However, they need the line of sight between the
WiFi device and access point crossing the person’s chest.

The authors of [17] use the CSI phase to detect breathing
rate, they use cables and splitters to connect the transmitter
and receiver, and need to process two receiver data streams
to eliminate phase errors. [9] calculates the best position
to detect respiration by deriving the Fresnel Zone model.
However, Fresnel Zone theory is limited by other factors such
as obstacles in the real environment. [10] uses the CSI-ratio
of two receive antennas to eliminate the phase offset and
utilize the complex plane projection to achieve long-distance
breathing detection. However, at least two antennas placed
close together are required at the receiver, this is unfavorable
for the single-antenna receiver and increases the calculation
loss. [18] is the first to use a mobile phone to achieve
respiratory monitoring, they propose an ambient reflection
signal model under the NLoS setting to obtain CSI amplitude
variations at the receiver which vary with the fine-grained
displacement of the human chest, and shows that blocking
the LOS signal is indeed beneficial to NLOS sense, but no
theoretical proof is provided. We compare these systems and
our work in Table I.
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TABLE I: Compare the latest research with our system.

Reference Vital signs Real-time Accuracy Requirements Model Support
[16] breathing rate(various

sleep postures)
no greater than 85% 2 transmitters and 3 receivers,

3 data streams, natural
breathing

no

[12] breathing rate(various
sleep postures) and heart

rate (only supine)

no 80% estimation errors are less than
0.5bpm for breathing rate, 90% of

estimation errors are less than 4bpm
for heart rate

pair of transceivers, one data
stream, use metronome to

control breathing

no

[17] breathing rate(various
postures)

no Over 99% pair of transceivers, cables
and splitters, two data stream,

use metronome to control
breathing

yes

[9] breathing rate(various
sleep postures)

no For the good positions, the overall
estimation accuracy is as high as

98.8%. For bad positions, the
accuracy decreases to 61.5%.

pair of transceivers, one data
stream, natural breathing

Fresnel Zone model

[10] breathing rate(various
sleep postures)

yes less than 0.3bpm for breathing rate pair of transceivers, two data
streams, natural breathing

CSI-ratio model

[18] breathing rate(various
sleep postures)

no average 0.31bpm for breathing rate pair of transceivers, one data
streams, natural breathing

Ambient-reflected
signal model

Our System breathing rate and heart
rate (all for various sleep

postures)

yes 96.887% for breathing rate and
94.708% for heart rate

pair of transceivers, one data
stream, natural breathing

NLOS sensing
model

Note that this paper is an extension of our previous work
[40]. In [40], we found that blocking the LOS signal is
beneficial to NLOS sensing, and in this paper, we use the
Ricean-K theory-based model to explain why. We also propose
a new motion segmentation algorithm based on regularity
detection, which can accurately locate the sleep motions (such
as turn over and get up) different from breathing/heartbeat. We
also improve the related work section and the experimental
section over our previous work.

III. PRELIMINARIES

In this part, we analyze the preliminary experimental phe-
nomena to explain why the WiFi sensing method based on the
Fresnel zone model is limited. Then, we propose our NLOS
sensing model based on the Ricean-K theory.

A. Channel State Information

CSI describes the signal’s attenuation on its propagation
paths, such as scattering, multi-path fading or shadowing
fading caused by motions, and power decay over distance.
In the frequency domain, it can be characterized as:

. = � · - + # (1)

Where . and - are the received and transmitted signal vectors,
respectively. # is the additive white Gaussian noise, and � is
the channel matrix representing CSI information.

For WiFi CSI, the received signal’s CFR (channel frequency
response) can be expressed simply as the superposition of
dynamic path CFR and static CFR, and it can be represented
as:

� ( 5 , C) = �B ( 5 , C) + �3 ( 5 , C) (2)

The dynamic CFR can be written as:

�3 ( 5 , C) =
∑
:∈�

ℎ: ( 5 , C)4− 92c 5 g: (C) (3)
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Fig. 1: Fresnel Zone

where 5 and g: (C) represent the carrier frequency and the
propagation delay on the : Cℎ path, respectively. � is the set
of dynamic paths. The received signal has a time-varying
amplitude in complex plane [13]:

|� ( 5 , \) |2 = |�B ( 5 ) |2+ |�3 ( 5 ) |2+2|�B ( 5 ) | |�3 ( 5 ) |2>B\ (4)

\ is the phase difference between the static vector and the
dynamic vector, the part that causes the amplitude fluctuation
of the CSI waveform is 2|�B ( 5 ) | |�3 ( 5 ) |2>B\. In the case
where the range and position of the motion are constant, \
is constant, and the factor affecting the fluctuation range is
|�B ( 5 ) | and |�3 ( 5 ) |.

B. Effectiveness And Limitation Of The Fresnel Model Based
WiFi Sensing

The CSI-ratio model requires at least two receiving antennas
close together, the ambient-reflected signal model mainly stud-
ies the ambient-reflected signals, which are inconsistent with
our system goals. Therefore, we chose the Fresnel Zone model
as a guide for the preliminary experiments. As shown in Fig. 1,
Fresnel zones are defined as a series of concentric ellipsoids,
and %1 and %2 are the positions of the transmitting antenna



4

T1 R1

R2

R3

Chest

(a)

T1

R1

R2

R3

Chest

LOS

(b)

T1

R1

R2

R3

Chest

LOS

(c)

Fig. 2: The antenna settings for the preliminary experiments. The elliptical area between the antennas is the FFZ (First Fresnel
Zone) range. The part between the solid chest line and the dotted line is the chest deformation range caused by breathing.
(a)Setting1, T1 is the transmit antenna and R1, R2, R3 are the receive antennas, the distance from T1-R3 is 80cm, T1-R1 is
120cm; (b) Setting2, the chest is on the LOS of T1-R2, the distance from T1-R3 is 20cm, T1-R2 is 120cm; (c) Setting3, the
chest is in the FFZ of T1-R2, the distance from T1-R3 is 30cm, T1-R2 is 120cm.

and receiving antenna, respectively. )G and 'G represent the
sender and receiver, respectively. For a given radio wavelength
_, we could construct Fresnel zones by the following equation
[41]:

|)G&= | + |&='G | − |)G'G | = =_/2 (5)

where &= is a point at the boundary of the =th Fresnel zone.
The Fresnel zone model only considers CSI changes caused

by dynamic path changes. When the human body motion
causes the effective displacement 3 (C) (the effective displace-
ment represents the change in the length of the signal reflection
path), the dynamic path phase shift caused by the motion can
be indicate as 4− 92c 5 g: (C) = 4− 92 ?83 () )/_, where _ represents
the wavelength of the WiFi signal. The greater the effective
displacement of the motion, the greater the phase shift caused
by the motion, and the more obvious the response to the
|�3 ( 5 ) | and the CSI.

Previous studies have shown that when the human body
deformation direction is 0 degrees, the effective displacement
caused by motion is the largest, and the sensing efficiency is
the best. As the angle increases, the effective displacement
becomes smaller, and the sensing efficiency becomes worse
[13]. Moreover, the closer a human is to the LOS of Tx/Rx,
the better sensing performance is [9]. Based on these findings,
we construct a prototype system to carry out some preliminary
experiments.
[Prototype] Our prototype system composes of two com-
modities MiniPCs, which are all equipped with an Intel
Network Interface Controller 5300 and are the transmitting and
receiving device, respectively. Antennas settings are shown in
Fig. 2.
[Participant] One 22 year-old student participated in prelim-
inaries experiments.
[Environment] We conduct the experiments in a 7 × 10<2

office room, with the furniture including chairs, couches,
computer desks, and book cabinets, as shown in Fig. 5.
[Setting] The package sending rate is set to 1000Hz, partici-
pant conducted the experiment with different sleeping postures
(prone, supine, facing left recumbent and facing right recum-

bent) with different antenna setting (as shown in Fig. 2), the
experiments results as shown in Fig. 3.

We analyze the preliminary results and obtain the following
key observations [40]:

Breathing indeed affects channel response and exper-
imental setting affects the channel response: Firstly, we
confirm that breathing in terms of signal variations has been
recorded by all settings. As shown in Figure. 3, we can observe
obvious fluctuations in CSI amplitude caused by breathing in
all settings.

Fresnel Zone model based sensing is effective: As shown
in Fig.3b and 3c, it’s hard to observe significant fluctuation
caused by breathing with some sleeping postures sometimes.
And based on the Fresnel Zone model, we can give reasonable
explanations for some of these cases. For example, the T1-R2
antenna pair has poor perception when the volunteer is facing
left/right recumbent. It owing to the deformation direction
of the torso in anteroposterior dimension (breathing mainly
cause deformation in this dimension) is almost parallel to
the LOS path of T1-R2, thus, the deformation of the trunk
can only cause very weak dynamic path changes (the length
of dynamic path does not change when moving along the
ellipse border of Fresnel Zone.). It is hard to cause obvious
effective displacement according to the Fresnel zone model
[13]. And the abdominal/thoracic deformation during respira-
tion in the mediolateral dimension is too small(when facing
left/right recumbent, deformation in mediolateral dimension is
perpendicular to T1-R2, however, such deformation area is too
small). And similar to [9], We have also observed that getting
close to the LOS can indeed get excellent sensing performance
(For supine and prone in setting2).

Fresnel Zone model based sensing is limited: However, the
Fresnel zone model cannot explain some phenomena in our ex-
periments. For setting 1, when a human is prone or supine, the
direction of abdominal/thoracic deformation in anteroposterior
dimension caused by breathing is nearly parallel to T1-R3.
According to the Fresnel model, the effective displacement of
chest/abdomen is tiny, and the performance of T1-R3 sensing
should not be excellent, at least it should be worse than T1-R1
sensing, however, T1-R3 sensing performance better than T1-
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Fig. 3: (a) Detection results of setting 1; (b) Detection results
of setting 2; (c) Detection results of setting 3.

R1. We believe that the reason for the above phenomenon
may be that the LOS path of the T1-R3 antenna pair is
blocked by the shelf. And we approve our guess with Ricean-
K-based derive and experiments. Moreover, the Fresnel Zone
model believes that the sensing performance is best when the
sensing object is close to the LOS path, however, in real-life
deployments, NLOS sensing is more common, and there are
limitations in bringing the perception object close to the LOS
path.

C. NLOS Sensing Model Based On Ricean-K

In this section, we propose our NLOS sensing model to an-
alyze the relationship between the power ratio of LOS/NLOS
signals and the NLOS sensing ability based on the Ricean-K
factor.

The Ricean K factor is defined as the ratio of the power in
the LOS path to the power in the NLOS path. The baseband

in-phase/quadrature-phase (I/Q) representation of the received
signal can be expressed as follows [42]:

G(C) =
√

 Ω

 + 1
4 9 (2Π 5�2>B (\0)C)+q0 +

√
Ω

 + 1
ℎ(C) (6)

Here  is the Ricean factor, Ω denotes the total received
power, \0 and q0 are the Angle of Arrival (AOA) and phase of
the LOS, respectively, 5� is the maximum Doppler frequency
and ℎ(C) is the diffuse component given by the sum of a
large number of multipath components, constituting a complex
Gaussian process.

Since antenna do not move in the experiments, ie 5� = 0,
we simplify Equation (6) to get:

G(C) =
√

 Ω

 + 1
4q0 +

√
Ω

 + 1
ℎ(C) (7)

In the case where the torso does not block LOS, all LOS
components and part of NLOS components belong to the
static path; part of NLOS components belong to the dynamic
path. Combined with Equation (7) and ignoring the transmitted
power, we define |�B | and |�3 | as follows:

|�B | =
 

 + 1
+ 1
 + 1

· d (8)

|�3 | =
1

 + 1
· (1 − d) (9)

d is the proportion of static paths in the NLOS components.
Combine with Equation (4) to get the following equation:

|� |2 = |�B |2 + |�3 |2 + 2|�B | |�3 |2>B\

=
( + d)2
( + 1)2

+ (1 − d)
2

( + 1)2

+2( + d) (1 − d)
( + 1)2

2>B\

(10)

Signal amplitude variation caused by motion can be quan-
tified as:

5 ( , d) = 2|�B | |�3 |2>B\ =
2( + d) (1 − d)
( + 1)2

2>B\ (11)

The value of the above formula is related to three variables,
namely \,  and d. Consider that the change in phase
difference caused by breathing is relatively stable, we omit
\ without considering. Then take the derivative of equation
11 of  to get the following formula:

5 ′( ) = 2(1 − d) (− 2 − 2d + 1 − 2d)
( + 1)4

(12)

When  > 1 − 2d, 5 ( , d) decreases as  increases, under
normal circumstances, only a small part of the signal of the
omnidirectional antenna can be reflected by the human body,
which means that d is generally bigger than 0.5. In other
words, blocking the LOS path appropriately can make CSI
more sensitive to motions.

How d influence WiFi sensing capability?
In some WiFi-based sensing research, directional antennas

can be used to help WiFi sensing, the directional antenna
transmits the signal directly towards the human body, make
as many NLOS components as possible belong to dynamic
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paths (decrease d). We can also use equation 11 to explain
why it works and provide a guide for follow-up researches.

We first use the formula to explain the influence of d on
WiFi sensing, take the derivative of equation 11 of d to get:

5 ′(d) = 2(−2d +  − 1)
( + 1)2

(13)

When K does not change, the WiFi sensing capability
increases in the interval [0, 1− 

2 ] as d increases, and decreases
in the interval [ 1− 

2 ,1] as d increases. For a more intuitive
explanation, we map the CSI signal to the complex plane for
discussion.

Follow [10], we first explain how to use the complex plane
to intuitively ”see” the motion-sensing capabilities: As shown
in Figure. 4, �B , �3 and � 5 represents the static, dynamic
and composite of �B and �3 vector, respectively. According to
the research [10], when the dynamic path length is artificially
changed in a short term, the amplitude of �3 is unchanged, but
the phase (The angle of �3 relative to the � axis) is changed.
It means the �3 vector is drawn a circle with the endpoint of
�B as the center in the complex plane, as shown in Figure. 4.
The amplitude and phase we extracted from CSI correspond
to the amplitude of � 5 and its angle with respect to the I
axis, respectively, and the capability of CSI sensing can be
expressed as:

�( = |� 5 <0G | − |� 5 <8= | (14)

�( is the ability of CSI sense, it is the maximum ampli-
tude difference of the CSI waveform caused by the motion.
|� 5 <0G | and |� 5 <8= | is the max and min absolute value of
the composite vector � 5 respectively.

Next, we discuss how d affects the sensing capability in
two cases:  > 1 and 0 <=  <= 1. When  > 1,
1− 

2 < 0, according to equation 13, sensing capability
monotonously decreases over the interval [0,1] as d increase.
In the complex plane, it indicate that |�B | > |�3 |, when
|�B | >= |�3 |, |� 5 <0G |2 = |�B |2 + |�3 |2 + 2|�B | |�3 |, and
|� 5 <8= |2 = |�B |2 + |�3 |2 − 2|�B | |�3 |. The maximum value
that �( can reach is ( |�B +�3) − (|�B−�3) = 2|�3 |, in other
words, the bigger �3 is, the better sensing capability is.

When 0 <=  <= 1, it means 0.5 >= 1− 
2 >= 0, according

to equation 13, the sensing capability increase in the interval

[0, 1− 
2 ] as d increase, and decrease in the interval [ 1− 

2 ,1] as
d increase. In the complex plane, When d is in the interval
[ 1− 

2 ,1], according to equation 8 and 9, |�B | > |�3 |, this
situation is the same as the previous paragraph, smaller d is
better. When d is in the interval [0, 1− 

2 ], which is |�B | <
|�3 |, the max value of �( is |� 5 <0G | − |� 5 <8= | = |�3 | +
�B | − (|�3 | − |�B |) = 2|�B |, in other words, the bigger �B
is, the better sensing capability is, which means bigger d is
better.

In practical applications, it is difficult to achieve |�B | <
|�3 |, unless  < 1 and most of the NLOS are belong to the
dynamic path. Therefore, decreasing d is conducive to improve
sensing capability. And the directional antenna can reduce d,
therefore, the directional antenna is beneficial to WiFi-based
sensing.

Will blocking the LOS make sensing capability worse?:
Blocking the LOS path can reduce the Ricean-K value, but
will blocking must improve the detection capability? Equation
11 have two main variables,  and d. Whether there such
a situation that block the LOS path can reduce  , but d
increased, results in poorer motion perception ability? We
think this situation is difficult to happen, unless the occlusion
makes the static signal energy (|�B |) reaching the receiver too
small. Assuming that the worst case, which is blocking the
LOS path increases the NLOS by !, but ! is not allocated to
the dynamic vector at all. The amplitudes of |�B | and |�3 |
are unchanged, their product is unchanged, and the sensing
capability equal to the original situation. In the actual indoor
environment, it is difficult to make the blocked LOS signal do
not propagate towards the human body at all. In summary,
no matter d is larger, smaller, or unchanged, the sensing
capability will not be deteriorated by block the LOS (Unless
the occlusion affects the signal received at the receiver).

IV. SYSTEM DESIGN

A. System Overview

In this section, we introduce the system design of our real-
time vital signs monitoring system, Wital. Our Wital system is
shown in Fig. 5, and the system is divided into three modules:
Data Collecting. We collect better CSI data for vital signs
monitoring based on our NLOS sensing model (block the
LOS). Since the data collection setup is different in different
scenarios, this section only describes the general data process-
ing module (data preprocessing and vital signs extracting) in
detail. And the data collection setting corresponding to this
paper is explained in the evaluation section.
Data Preprocessing. We select the best performing subcarrier
by subcarrier selecting first, then segment the vital signs and
other motions based on our motion segmentation algorithm,
finally, we denoise the CSI data to remove outliers.
Vital Signs Extracting. Data after preprocessing are di-
vided into two parts by frequency domain segmenting, one
mainly including breathing and another one mainly containing
heartbeat, then we extract the breathing rate and heart rate,
respectively.
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B. Data Preprocessing

Subcarrier Selection. Different subcarriers have different cen-
tral frequencies and may have different sensing performances.
Therefore, it is essential to choose a proper subcarrier that can
better capture vital signs. According to the previous experience
[40], we choose the subcarrier with the biggest variance for
Wital.
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Motion Segmentation. When monitoring vital signs, the
monitored subject can’t remain calm all the time. Random
motions such as turning over can affect the accuracy of vital
signs monitoring, and it is necessary to design a motion
segmentation algorithm to locate and filter these motions
which different from breathing/heartbeat.

Since breathing/heartbeat and turning over are all move-
ments, the dynamic and static segmentation method used in
previous studies is not applicable. To fill in this gap, we
propose a motion segmentation algorithm that can segment
different types of movement, our algorithm is based on the
assumption that different types of motion have different reg-
ularities. We choose an instance containing two turning over
and normal breathing to verify this hypothesis, as shown in
Fig. 6.

To calculate the regularity of the CSI data, we set a window
� with variable length and a window � with fixed length first.
� starts at the beginning of the CSI waveform, and � starts
from the end of �, both � and � have an initial length of 2000
packages. Then we calculate the minimum euclidean distance
(MED) from the CSI data contained in � and the data in �

and record it. Then, make the window � expand backward by
100 packets, and make the window � moves backward by 100

packages, calculate the MED. Iterate like this until the end of
the calculation.

The result is shown in Fig.6, when the first turning over
occurs, the MED increases sharply, and when the motion
ends, the MED begins to decrease. Since � already contains a
turning over motion, when the second turning over occurs, its
MED changes are not dramatic. From the experiment result,
we can observe that the regularity between different types of
motion is different, and the regularity between the same types
of action is similar.

The key steps of our segmentation algorithm are as follows:

1) Initialization. Set a variable-length window � and a
fixed-length window �. � starts from the beginning of
CSI, and � starts from the end of �. The initial lengths
of � and � are both 2000 packets, set up an empty
collection "�;

2) Activation point detection. Calculate the MED of CSI
as described above, if "�� > E · 0E4("�) in one
iteration(0E4() is averaging function), mark this point
as a positioning activation point (PAP), turn to the next
step, else record MED into "� (E is the threshold for
judging whether the action occurred, E = 2.5 in our
experiment);

3) Start-point positioning. In the obtained MED wave-
form ("�), we construct an auxiliary positioning wave-
form to accurately locate the start-point of the motion.
We set two points in front of the PAP as turning point
(TP) and wave endpoint WEP, respectively. The distance
from TP to WEP is 20 packages, and the constructed
waveform is shown in Fig.6. We calculate the Euclidean
distance (ED) between the constructed waveform and
the MED waveform and record it, then move the TP
forward by 10 packages, and repeat the above steps until
50 iterations are performed. Finally, set the TP at the
minimum ED as the start-point of the motion;

4) End-point positioning. Set the start-point we positioned
as the beginning of the CSI waveform, initialize the
parameters as described in the first step, and calculate the
MED as described above. Then use the previous method
for positioning the end of the motion. Set the end-point
as the beginning of the CSI waveform, and turn to step
1, until the end of the monitoring.

The performance of our motion segmentation algorithm is
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Fig. 8: Real time system’s interface.

shown in figure 7, it can segment motionaccurately.
Data Denoising. Received CSI data contains a lot of inter-
ference noise due to equipment and environmental factors.
In the preprocessing module, we choose the Hampel filter
to filter out the outliers which have significantly different
values from other neighboring CSI measurements. The goal
of the Hampel filter is to identify and replace outliers in a
given series. Specifically, we calculate the median of the set
consisting of the current CSI sample and its surrounding six
samples (three on each side), and use the median absolute
deviation to calculate the standard deviation of the set. If the
difference between the sample and the median exceeds three
times the standard deviation, replace it with the median.

C. Vital Signs Extracting

Frequency Domain Segmentation. The trunk deformation
caused by the heartbeat is very small, and the CSI change
caused by it can be overwhelmed by the change caused by
breathing [12]. Therefore, we need to segment them in the
frequency domain first, and in this paper, we segment the
CSI based on Butterworth bandpass filters and some prior
knowledge in the frequency domain (the frequency range
related to the normal heartbeat is 60bpm to 120bpm which
corresponds to 1Hz to 2Hz, the frequency range related to
normal breathing is 15bpm to 30bpm which corresponds to
0.25Hz to 0.5Hz).
Vital Signs Extracting. After segment the CSI in the fre-
quency domain, we extract the heart and respiratory rate by
Fast Fourier Transform (FFT). We also design a real-time
system to process and display vital signs in real-time use
Matlab as shown in Figure. 8.

V. PERFORMANCE EVALUATION

In this section, we first verify the effectiveness of our NLOS
sensing model, then evaluate the proposed real-time vital signs
monitoring system-Wital.

A. Evaluation of The NLOS Sensing Model

To verify the proposed NLSO sensing model in section
.III, we first calculated the Ricean-K value of each stream
in setting 1 (the setting as shown in Figure.2a) as shown
in Figure. 9, it can be found that the larger the K is, the
worse the sensing capability is. Then we placed a lead sheet
between the T1-R1 antenna pair in setting 1 (decrease K)
to perform a breathing monitoring experiment, the result as
shown in Fig.11. It can be found that the motion sensing
capability of T1-R1 has been significantly improved. We show
the average breathing detection error (BDE), the variance of
the CSI waveform (VAR), and the mean amplitude difference
(MAD) as Figure.10. We can observe that both the detection
accuracy and the sensitivity to motion have improved.
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B. Experimental Setup

In the actual setup, we build our prototype system based
on setting 1 and we choose the T1-R3 stream to monitor vital
signs. Due to the limitations of the bed, the person’s torso is
closer to R3 when lying down or face down; in other words,
the torso is far away from the mid-perpendicular of T1-R3.
When we are lying down/lying with face down, the chest
displacement caused by breath/heartbeat in anteroposterior
dimensions still has a significant effect on T1-R3 based on the
Fresnel Zone model, it ensures the monitoring performance in
different sleeping postures. If we choose and block T1-R1,
as shown in Figure.11, when the person is facing left/right
recumbent, T1-R1 is sensitive to the breath of the mediolateral
dimensions. However, when the person’s arm blocks the flank,
the monitoring effect becomes poor. It is due to when facing
left/right recumbent, the main factor that affects the CSI
received by R1 is the torso deformation of the flank. This is
why we chose T1-R3 to monitor vital signs instead of T1-R1.

In the experiments, we place a lead sheet under T1 to block
the LOS path of T1-R3 based on our NLOS sensing mode.
CSI is collected use csitool [43], and the receiver transmits
the received CSI data to the monitor computer through the
network for real-time processing.

We use off-the-shelf hardware devices to implement the
proposed system. Specifically, we use two mini PCs as the
sending and the receiving devices, and their network cards are
Intel Link 5300 WiFi NIC. The miniPCs have a 2.16GHz Intel
Celeron N2830 processor with 2GB RAM and Ubuntu OS in
version12.04. The real-time monitoring computer is a desktop
computer equipped with an Intel Core i5 3450 CPU (3.1G
HZ), 2GB storage.

Our real environment settings are shown in Fig. 12, the
distance from T1-R3 is 80cm, we place a lead sheet under T1
to enhance the performance of R3, and we only use the stream
T1-R3 to monitor vital signs in the experiments. The purpose
of setting the other two antennas is to prepare for future sleep
monitoring system expansion (sleep motion recognition such
as turning over, sit up; perceive motion direction, and disease
alert such as epilepsy).

We experimented in a lab environment as shown in Fig.
12, a total of ten volunteers participated in the experiments (6
males and 4 females) whose age ranges is 21 to 26. These ten
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Fig. 12: Prototype System

volunteers were general university students who volunteered
for the experiments. In the experiments, we did not limit the
normal activities of others in the lab.

Each participant underwent an actual test of 30 minutes
in different sleeping postures naturally (prone, supine, facing
left recumbent, and facing right recumbent). Different from
previous work [12], [17], we did not use a metronome to
control the volunteer’s respiratory rate, and we do not need
to use a directional antenna to monitor heart rate under LOS
conditions. The ground truths of breathing and heartbeat are
measured by an accelerometer attached to the abdomen and a
fingertip pulse oximeter, respectively.

C. Evaluation Results

The monitored CSI, which mainly contains the respiratory
information obtained by the bandpass filter, is compared with
the acceleration sensor data attached to the abdomen, as
shown in Fig. 13. We can observe that the CSI waveform
is highly consistent with the respiratory waveform obtained
by the acceleration sensor. Fig. 14 compares the processed
CSI waveform which contains heartbeats to an acceleration
sensor’s reading attached to the chest, we can found that
the occurrence of the heartbeat on the accelerometer is also
consistent with the detection result of CSI. These indicate that
the CSI obtained from WiFi signals can be used to extract
fine-grained heartbeat and respiration information.
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Fig. 13: Comparison of processed CSI and accelerometer
(ACC) readings for breathing.

We evaluate the overall performance of breathing and heart
rate estimation under different sleep postures, the final result
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is an average error of 0.498 bpm (beat per minute) for
detect breathing rate, 3.531 bpm for detect heart rate, and the
accuracy is 96.887% and 94.708%, respectively.

Figure. 15 illustrates the vital signs (breath and heart rate)
monitoring error of different participants; volunteers have
different body types, which results in different final results.
However, in general, our system has high accuracy in detect
respiration, and the error in detect heart rate is also within the
acceptable range in a non-clinical environment.

Figure. 16 illustrates the vital signs (breath and heart rate)
monitoring error of different sleeping postures, in supine and
facing right recumbent postures, monitoring error is relatively
small. However, for facing left recumbent posture, the error
in monitoring heart rate is largest, and for prone posture, the
error in monitoring breathing rate is largest. This is because
the effective displacement of the dynamic path caused by these
two sleeping postures is small, which is not conducive to
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Fig. 16: Performances of different sleep postures

vital signs monitoring. In general, our system can accurately
monitor vital signs for different sleeping postures.

VI. CONCLUSION

In this paper, we show that we could use WiFi signals to
track breath and heartbeat with different sleeping postures
using only one pair of WiFi devices. To achieve this, we
propose an NLOS sensing model based on the Ricean-K theory
to help monitor the minor displacements caused by breathing
and heartbeat, and we theoretically prove that blocking the
LOS signal is more beneficial for motion detection in NLOS
sensing. We also propose a motion segmentation algorithm
based on regularity detection, which can accurately position
the range of motions different from vital signs (such as turn
over and get up). We implement a real-time prototype system
to evaluate our method. The experimental results indicated the
performance of our method, and the accuracy is 96.618% and
94.708% for breath and heart rate detection, respectively.

REFERENCES

[1] T. P. Velavan and C. G. Meyer, “The covid-19 epidemic,” Tropical
medicine & international health, vol. 25, no. 3, p. 278, 2020.

[2] S. D. Min, J. K. Kim, H. S. Shin, Y. H. Yun, C. K. Lee, and M. Lee,
“Noncontact respiration rate measurement system using an ultrasonic
proximity sensor,” IEEE Sensors Journal, vol. 10, no. 11, pp. 1732–
1739, 2010.

[3] P. X. Braun, C. F. Gmachl, and R. A. Dweik, “Bridging the collaborative
gap: Realizing the clinical potential of breath analysis for disease
diagnosis and monitoring–tutorial,” IEEE Sensors Journal, vol. 12,
no. 11, pp. 3258–3270, 2012.

[4] F. L. Facco, D. W. Ouyang, P. C. Zee, and W. A. Grobman, “Sleep
disordered breathing in a high-risk cohort prevalence and severity across
pregnancy,” American journal of perinatology, vol. 31, no. 10, pp. 899–
904, 2014.

[5] C. A. Kushida, M. R. Littner, T. Morgenthaler, C. A. Alessi, D. Bailey,
J. Coleman Jr, L. Friedman, M. Hirshkowitz, S. Kapen, M. Kramer
et al., “Practice parameters for the indications for polysomnography
and related procedures: an update for 2005,” Sleep, vol. 28, no. 4, pp.
499–523, 2005.

[6] T. A. Nappholz, W. N. Hursta, A. K. Dawson, and B. M. Steinhaus,
“Implantable ambulatory electrocardiogram monitor,” May 19 1992, uS
Patent 5,113,869.

[7] M. Zhao, F. Adib, and D. Katabi, “Emotion recognition using wireless
signals,” in Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, 2016, pp. 95–108.

[8] S. Yue, H. He, H. Wang, H. Rahul, and D. Katabi, “Extracting multi-
person respiration from entangled rf signals,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2,
no. 2, pp. 1–22, 2018.

[9] F. Zhang, D. Zhang, J. Xiong, H. Wang, K. Niu, B. Jin, and Y. Wang,
“From fresnel diffraction model to fine-grained human respiration
sensing with commodity wi-fi devices,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1,
p. 53, 2018.

[10] Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang, “Farsense:
Pushing the range limit of wifi-based respiration sensing with csi ratio of
two antennas,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–26, 2019.

[11] Y. Gu, Y. Wang, Z. Liu, J. Liu, and J. Li, “Sleepguardian: An rf-based
healthcare system guarding your sleep from afar,” IEEE Network, pp.
1–8, 2020.

[12] J. Liu, Y. Chen, Y. Wang, X. Chen, J. Cheng, and J. Yang, “Monitoring
vital signs and postures during sleep using wifi signals,” IEEE Internet
of Things Journal, vol. 5, no. 3, pp. 2071–2084, 2018.

[13] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and
B. Xie, “Human respiration detection with commodity wifi devices:
do user location and body orientation matter?” in Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2016, pp. 25–36.



11

[14] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “Multisense:
Enabling multi-person respiration sensing with commodity wifi,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 4, no. 3, pp. 1–29, 2020.

[15] Y. Gu, J. Zhan, Y. Ji, J. Li, F. Ren, and S. Gao, “Mosense: An rf-based
motion detection system via off-the-shelf wifi devices,” IEEE Internet
of Things Journal, vol. 4, no. 6, pp. 2326–2341, 2017.

[16] X. Liu, J. Cao, S. Tang, J. Wen, and P. Guo, “Contactless respiration
monitoring via off-the-shelf wifi devices,” IEEE Transactions on Mobile
Computing, vol. 15, no. 10, pp. 2466–2479, 2016.

[17] D. Zhang, Y. Hu, Y. Chen, and B. Zeng, “Breathtrack: Tracking indoor
human breath status via commodity wifi,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3899–3911, 2019.

[18] J. Liu, Y. Zeng, T. Gu, L. Wang, and D. Zhang, “Wiphone: Smartphone-
based respiration monitoring using ambient reflected wifi signals,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 5, no. 1, pp. 1–19, 2021.

[19] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state
information: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 3,
pp. 1–36, 2019.

[20] Y. Gu, X. Zhang, Z. Liu, and F. Ren, “Besense: Leveraging wifi
channel data and computational intelligence for behavior analysis,” IEEE
Computational Intelligence Magazine, vol. 14, no. 4, pp. 31–41, 2019.

[21] Y. Gu, Y. Wang, T. Liu, Y. Ji, Z. Liu, P. Li, X. Wang, X. An, and
F. Ren, “Emosense: Computational intelligence driven emotion sensing
via wireless channel data,” IEEE Transactions on Emerging Topics in
Computational Intelligence, 2019.

[22] H. Huang and S. Lin, “Widet: Wi-fi based device-free passive person
detection with deep convolutional neural networks,” Computer Commu-
nications, vol. 150, pp. 357–366, 2020.

[23] H. F. T. Ahmed, H. Ahmad, and C. Aravind, “Device free human
gesture recognition using wi-fi csi: A survey,” Engineering Applications
of Artificial Intelligence, vol. 87, p. 103281, 2020.

[24] L. Zhao, H. Huang, X. Li, S. Ding, H. Zhao, and Z. Han, “An accurate
and robust approach of device-free localization with convolutional
autoencoder,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5825–
5840, 2019.

[25] M. Abbas, M. Elhamshary, H. Rizk, M. Torki, and M. Youssef, “Wideep:
Wifi-based accurate and robust indoor localization system using deep
learning,” in 2019 IEEE International Conference on Pervasive Com-
puting and Communications (PerCom. IEEE, 2019, pp. 1–10.

[26] Y. Cao, F. Wang, X. Lu, N. Lin, B. Zhang, Z. Liu, and S. Sigg,
“Contactless body movement recognition during sleep via wifi signals,”
IEEE Internet of Things Journal, 2019.

[27] Y. Bai, Z. Wang, K. Zheng, X. Wang, and J. Wang, “Widrive: Adaptive
wifi-based recognition of driver activity for real-time and safe takeover,”
in 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 901–911.

[28] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-wifi:
Fine-grained person perception using wifi,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 5452–5461.

[29] D. WU, R. GAO, Y. ZENG, J. LIU, L. WANG, T. GU, and D. ZHANG,
“Fingerdraw: Sub-wavelength level finger motion tracking with wifi
signals,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol, vol. 1,
no. 1, 2020.

[30] Y. Meng, J. Li, H. Zhu, X. Liang, Y. Liu, and N. Ruan, “Revealing your
mobile password via wifi signals: Attacks and countermeasures,” IEEE
Transactions on Mobile Computing, 2019.

[31] H. Aly and M. Youssef, “Zephyr: Ubiquitous accurate multi-sensor
fusion-based respiratory rate estimation using smartphones,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[32] J. Paalasmaa, M. Waris, H. Toivonen, L. Leppäkorpi, and M. Partinen,
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