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Abstract— With the advent of machine learning (ML) applica-
tions in daily life, the questions about liability, trust, and inter-
pretability of their outputs are raising, especially for healthcare
applications. The black-box nature of ML models is a roadblock
for clinical utilization. Therefore, to gain the trust of clinicians
and patients, researchers need to provide explanations of how and
why the model is making a specific decision. With the promise
of enhancing the trust and transparency of black-box models,
researchers are in the phase of maturing the field of eXplainable
ML (XML). In this paper, we provide a comprehensive review
of explainable and interpretable ML techniques implemented
for providing the reasons behind their decisions for various
healthcare applications. Along with highlighting various security,
safety, and robustness challenges that hinder the trustworthiness
of ML we also discussed the ethical issues of healthcare ML
and describe how explainable and trustworthy ML can resolve
these ethical problems. Finally, we elaborate on the limitations
of existing approaches and highlight various open research
problems that require further development.

Index Terms—Explainable Machine Learning, Interpretable
Machine Learning, Trustworthiness, Healthcare.

I. INTRODUCTION

In recent years, various machine learning (ML) techniques
have been widely applied to different healthcare applications.
In particular, deep learning (DL) based methods have pro-
vided state-of-the-art performance for various healthcare tasks
including medical image reconstruction [1], management of
electronic health records [2], cancer segmentation [3], disease
prediction [4], clinical imaging [5], image retrieval [6], and
computational biology [7]. DL models have a complex ar-
chitecture that consists of multiple layers of neurons. These
neuronal layers are connected through non-linear activation
functions. These complex and dense DL models produce more
accurate results than conventional ML techniques. However,
these models have black-box nature and lack underlying
theoretical foundation behind their decisions [8], therefore,
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Fig. 1: Illustration of essential traits of ML models for clinical
implementation.

despite the significant performance of DL-based healthcare
ML systems, building trust of clinicians and patients is quite
difficult because entrusting the decisions of black-box systems
that are not explainable can be life-threatening [9]. To get the
real benefit of ML/DL empowered predictive or diagnostic
healthcare, it is highly desirable that ML/DL decisions should
be interpretable and explainable in human understandable way.
Figure 1 is the illustration of essential traits of ML models
required for clinical implementation.

Over the last few years, considerable research attention has
been devoted to interpretability, explainability, and trustwor-
thiness of ML/DL models. Among others, two eminent groups
of researchers working in this area are: (1) Fairness, Ac-
countability, and Transparency in Machine Learning (FAT-ML)
[10] and (2) the Defense Advanced Research Projects Agency



(DARPA), explainable Al program [11]. FAT-ML comprises
of a group of academic researchers with a prime focus on
equipping machine algorithms used for social and commercial
decision-making with fairness and explainability. This group is
holding conferences annually for bringing together interested
researchers and participants from all over the world. DARPA!
organized a group of civilians and military researchers in
2017 intending to develop new methodologies for making ML
models explainable [11].

Industries with AI/ML products are also taking an interest
in developing XML methods. Microsoft having Azure ML
services, H2O.ai having driverless intelligent products [17],
Kyndi serving to government, financial, and healthcare sectors
with its Al platform are a few of the famous industries working
on explainable ML. Fair Isaac Corporation (FICO), a data
analytics company, held a challenge in 2018 on explainable
ML2. The challenge was a collaboration between Google,
FICO, and academics of different universities. The challenge
aimed to open future directions in the area of explainable
algorithms.

ML/DL techniques are transforming the healthcare research,
however, we must build safety and trust in ML-based appli-
cations by explaining a few important questions, i.e., what
patterns of features the ML/DL model has learned? Why the
selected model is producing better results than other models
(for a particular problem at hand)? These explanations are
required to convince the clinicians that a particular ML/DL-
based algorithm is the best and most powerful tool for disease
prediction and diagnosis, which can facilitate their routine
practice without causing harm to patients. The explained
results will also help patients to understand ML/DL predictions
and will help in gaining their trust and satisfaction (being
efficiently diagnosed by these algorithms). Thus, for clinical
implementation of the ML/DL models, we need transparency,
interpretability, and risk understanding.?

In addition, mapping of complexly distributed heteroge-
neous medical data into arbitrary high dimensional space is a
major challenge for researchers. With the explainable machine
decisions, it would be easier to manage the diverse data for
relevant results. Explainable ML (XML) is a solution to these
problems for moving towards more transparent ML decisions.
Note that the terms explainable and interpretable are some-
times used interchangeably in the literature. However, these
two terms are distinct and have domain-specific definitions.
Montavon et al. [18] defined interpretation as a mapping of
abstract ideas into the human-understandable domain. They
discriminate the term interpretation from the explanation by
defining the explanation as features of the interpretable domain
that contributed to produce the decisions of ML algorithms.

Contributions of this paper: Due to the immense importance
of explainable, trustworthy ML decisions, and ethical use of
ML for healthcare, there are multiple surveys that cover these
topic. However, our review is unique from previous reviews
in the following aspects:

Thttps://www.darpa.mil/attachments/X AIProgramPortfolio.pdf
Zhttps://community.fico.com/s/explainable- machine-learning-challenge
3https://www.vanderschaar-lab.com/from-black-boxes-to- white-boxes/

1) To the best of our knowledge, there is no review that
covers these topics in-depth while highlighting the link
and applications of explainable and trustworthy methods
for the medical domain.

2) Our review also proposes a pipeline from development
to deployment to attain an explainable ML framework
for healthcare.

3) We highlight various security, safety, and robustness
challenges that hinder the trustworthiness of ML.

4) We also focus on the the ethical issues of healthcare ML
and describe how explainable and trustworthy ML can
resolve these ethical problems.

5) Finally, we elaborate on the limitations of existing ap-
proaches and highlight various open research problems
that require further development.

For instance, Adadi et al. [12] provided a review of ex-
plainable artificial intelligence (XAI) techniques and partly
described the applications in transportation, healthcare, legal,
finance, and military domains. Arrieta et al. [19] have provided
a brief overview of the concept of explainability and the avail-
able future opportunities in the field, along with the research
challenges. Amitojdeep Singh et al. [14] have briefly described
the explainable methods for DL and applications of these
methods in medical image analysis. This review is unique
because it comprehensively provides the application of each
interpretable and trustworthy method in support of healthcare
applications besides the aforementioned contributions. The
comparison of this paper with existing surveys is presented
in Table I.

Organization of paper: The organization of this paper is
as follows: Section II, presents challenges encountered in
developing clinically effective explainable and trustworthy
ML. Section III provides a brief background of explainable
and interpretable ML with the description of why we need
XML models for healthcare, what characteristics healthcare
XML models should have, and how to evaluate the quality
of explained results. In Section IV, we describe the notion of
safe, robust, and trustworthy XML for healthcare along with
a comprehensive overview of XML approaches applied in the
literature for explaining decisions of healthcare applications
for sustaining trust in ML applications. In Section V, we
discussed the requirement of ML ethics for healthcare along
with the history of medical ethics, various ethical challenges
related to healthcare, and principles of healthcare ethics.
Insights and pitfalls are discussed in Section VI and various
future directions are provided in Section VII. Finally, we
conclude the paper in Section VIII. List of acronyms used
in the paper is provided in Table II.

II. CHALLENGES

For the sake of trustworthy and secure models for clinical
settings, researchers are developing the tools and techniques
for XML. Despite their efforts, there exist many issues that are
causing challenges for effective XML. A few such challenges
are described below.



TABLE I: Comparison of this paper with existing surveys. Legends: /= discussed, x= not discussed, ~ = partially discussed,
ML = explanation of conventional ML methods applied in healthcare, DL = explanation of DL methods applied in healthcare

Reference Year Scope Methods Challenges Future
Focused Explainable/ . Directions
Healthcare P ML | DL Trustworthy | Ethics
Application(s) Interpretable
Holzinger Segmentation of
ot al. [g] 2017 v medical images X =~ v X X X ~
and omic data
. N Trends of explainable - -
Adadi et al. [12] | 2018 ~ approaches v | o= v x x v ~
Categorization of XAl
- methods and partially - -
Tjoa et al. [13] 2019 v discussed application ~ ~ v x X v v
for healthcare.
Detection and predict-
Singh et al. [14] | 2020 v -ion of disease using X Vv v X X X ~
medical imaging.
Identification of ethical
Char et al. [15] 2020 v problems for healthcare Vv ~ ~ X Vv Vv v
application.
Partially discussed
Adadi et al. [16] | 2020 v XML applications for X ~ v X X X Vv
healthcare
. All most all healthcare
This paper 2021 v applications Vv Vv v v Vv Vv Vv
TABLE II: List of Acronyms B. Lack of Standardized Representation Methods
AM Activation Maximization All visualization-based explanations produce saliency maps
CAM Class Activation Maps or heatmaps that highlight the areas of images more participat-
CNN Convolutional Neural Network . X p. . ghiig o g . p p
Defence Advanced Research ing in predictions. However, it is not standardized yet whether
DARPA . . . . . .
Projects Agency the radiologists or neurologists are interested in these expla-
DeconvNet | Deconvolutional Network nations or not. It is also not evident how the end-user (i.e., a
DeepLIFT Deep Learning Important Features . C . oy e .
DL Deep Learning patient or a.chmclan) will interpret the ex.plfmatlons. Moreover,
DNN Deep Neural Network it may be difficult for new or untrained clinicians to understand
DT Decision Tree the language of explained results. Also, there is a possibility
EMANET Evidence Activation Mapping .
- that the medical experts may be unable to understand the
FA Feature Attributes ) X K . .
EATML Fairness, Accountability, and explained risk factors and estimated probabilistic explanations
) Transparency in ML [20]. There must be a platform connecting the medical experts
FICO Fair Isaac Corporation with XML researchers so that they can communicate for
GAM General Additive Model h dardized . £ | . 211. Anoth
GB Guided Back Propagation the stan ardize représentatlons of exp anat19ns[ ]. .not er
GWAS Genome-Wide Association Studies challenge is to quantify how much explanation is required to
HSCNN Deep Hierarchical Semantic making the decision understandable to the non-technical end-
Convolutional Neural Network users like patients, which also equally important to gain their
1G Integrated Gradient . p [ q y mmp g
Local Interpretable Model-Agnostic trust in these applications.
LIME .
Explanations
LRP Layer-wise Relevance Propagation . X
ML Machine Learning e C. Lack of Standardized Requirements for XML
M-LAP Multi-Layers Average Pooling Researchers have developed some initial guidelines about
P2v Patient2Vec h . £ d XML del. h h
PDP Partial Dependence Plot t e regulrements of a good model, however, these
PET Positron Emission Tomography guidelines are generic. Requirements for explaining the de-
RF Random Forest cisions of animal image tagging will be different from the
SA Sensitivity Analysis : : . .
medical image tagging. The current field of medical XML
SHAP Shapley Additive Explanations . g g8 . 8 . .. .
XML Explainable ML lacks requirement guidelines about designing, measuring, and

A. Lack of Formal Definitions

The explanation of the model structure or decision has no
formal definition and is defined according to the problem at
hand (as we discussed in Section III). This is also the case
for XML for healthcare applications. There is also the need
for defining terms like feature relevance, feature importance,
saliency maps, heatmaps, etc. As there is no consistency in
the use of these terms.

testing explanations. These guidelines are required to build
more explicit and systematic ways for generating explanations
of how the black-box models predict or detect a particular
disease [22].

D. What Clinicians Want: Accuracy vs. Explainability

It is a well-known problem of XML that the simple ML
is easy to explain with less accurate results and complex DL
produce more accurate results with fewer explanations due
to their complex non-linear structures. This challenge is not



limited to the healthcare XML. However, due to the multi-
dimensional nature of medical data, DL algorithms are crucial
to avoid for precise results which leads to less explained results
or algorithm-centric explanations. One possible solution to this
problem is to design inherently explainable techniques that can
produce accurate results with complex medical data [23]. The
other possible solution is taking the preference of the end-user
into consideration.

E. What and Hows of the Explained Results

Feature maps of medical image data produce reconstructed
images, which consist of highlighted areas that represent
human-understandable features. However, the answers of ques-
tions like what to do with these partially reconstructed images,
how can we guarantee that the combinations of features
highlighted by the XML are robust to perturbations, how
researchers can use the internally highlighted parameters to
recover input data that is not yet considered. The reverse
image analysis will help analyze complex medical data. This
analysis can leverage the clinicians to understand the hidden
mechanism of many life-threatening diseases like COVID-
19, breast cancer, Zaire Ebola, and human immunodeficiency
viruses (HIV).

FE. Validation of Explanations

The measures to validate the quality of produced expla-
nations are not adequate. In particular, one major problem
is the unavailability of a metric for comparison of generated
explanations using different methods. For examples, to explain
the detection of glioma tumors, various XML techniques have
been implemented (discussed in Section IV-D) but no one
compared which method produced the better explanation of
the tumor detection. Similarly, for each healthcare application,
clinicians may need different measures for the validation of
explained results. There does not exist any standard method
for measuring the quality of explained healthcare decisions.
Also, there is no measure to check which explanations should
be preferred from the different explanations produced by the
same method [24].

G. Lack of Theoretical Understanding

Applied DL for medical applications lack theoretical fun-
damentals for working with the randomness of data. Field
experts tried to overcome this gap by applying mathematical
techniques for dealing with random artifacts and noise present
in medical data. However, due to the unavailability of sound
fundamental laws and models, the explanation of DL cannot
be produced up-to the required scale. These issues are also
causing challenges for developing self-explained generalized
DL for medical applications [8]. In addition, this black-box
nature of the DL is yet a major challenge in developing
trustworthiness [25].

H. Lack of Causality

DL is designed to produce precise results by learning the
hidden patterns that generate data. The problem arises with

the application of these techniques for healthcare tasks where
decisions should be based on the causal links. However, DL
is not efficient to infer causal relations between decisions and
data. This leads to the generation of inadequate results, which
cause unsatisfactory or incomplete explanations. Moreover,
XML should answer the cause-effect scenarios, i.e., the de-
cision of the model will change from A to B if the doctor
replaces treatment C with D [26]. These causal links are
required for taking fair decisions. Moreover, Castro et al.
emphasized the need of causal relationship between images
and their annotations [27].

1. Ethical Constraints

For gaining the trust of clinicians and patients, explanations
of black-box models must ensure the ethical balance between
end-users and XML. In particular, an explanation should
contain the complete information and not misguide the end-
user [28]. XML should explain the reasons for the error in
results to increase fairness and reliability. Unfortunately, there
are no criteria for assessing exactitude and comprehensiveness
of explanations. Due to the unavailability of these measures,
the application of XML in clinical settings may have adverse
affects. Moreover, understanding how the explanations impact
the dignity and well-being of patients is also an ethical
requirement, i.e., data reconstruction from explanations can
be used negatively [29].

J. Security Challenges

Notwithstanding the state of the art performance of ML,
particularly, DL-based methods, many recent studies have
highlighted the vulnerabilities of these systems towards ad-
versarial ML attacks [30]. Moreover, such attacks have been
already realized on ML/DL-based medical systems [31]. Be-
yond adversarial ML, there are many security challenges that
hinder the practical deployment of ML/DL in actual clinical
settings, a detailed overview of these challenges can be found
in [32]. These challenges raise many concerns about thy safety
of ML/DL empowered systems, therefore, the robustness of
ML/DL models is crucial in developing trustworthiness and
transparency in ML/DL empowered healthcare applications.
As the excellent performance of a ML/DL cannot be evidence
of its safety, which is simply the determination of how safe
is the ML/DL empowered system for humans, i.e., patients.
On the other hand, it is equally important that the ML/DL-
based techniques should be trusted by both the clinicians and
patients.

III. EXPLAINABLE & INTERPRETABLE ML

XML is a research field first explored by Van et al. in 2004
[33]. They described that their system has the ability to explain
the behavior of Al algorithms in simulation games application.
Although the problem of explaining intelligent algorithms to
humans is known since the 1970s, however, the work in this
research area slowed down due to advances in ML techniques
[34]. With increasing employment of AI/ML methods in indus-
try, medicine, education, and defense systems, the explanation
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Fig. 2: Depiction of how the explainable ML technique is different from the typical ML technique.

of the machine decisions is crucial to avoid unwanted circum-
stances, specifically, for healthcare applications. For example,
applications like medicine suggestion, disease prognosis or
prediction, and mortality prediction puts social and ethical
obligation for explainable decisions.

A. Explainable Vs Interpretable ML

In the research area of ML and Al, explainability and
interpretability are often used synonymously. These terms are
very closely intertwined it is worth noting the differences.
Interpretability is about the understanding of the causality of
learned features and the effects of causes within a system.
One can also understand it as the extent to which humans
can predict how the algorithm or model behaves with a slight
change in input or algorithmic parameters. On the other hand,
explainability is to explain the internal mechanics of a ML
system in human-understandable terms. It is facile to overlook
the subtle difference between these two terms. However, one
can remember it like this: interpretability is being able to
understand the mechanics of an algorithm without necessarily
knowing why. Explainability is being able to explain what is
transpiring.

1) Definitions in Literature: Explainable and interpretable
ML has no formal and generally applicable definition. Some
of the definitions introduced and used by researchers are the
following:

o Explainability: DARPA defines explainability as produc-
ing explainable models while maintaining high prediction
results that help users to understand and trust the de-
cisions of artificial systems [11]. FAT-ML cleared their
goals by stating XML as a procedure to ensure that
machine decisions and the data driving those decisions
should be explainable to humans in non-technical terms
[10]. FICO said that XML is a shift towards converting
the black-box of ML to a white-box. The organization
defined XML as a challenge to develop techniques that
provide a trustworthy explanation with high accuracy to
meet the needs of end-users. Leilani et al. [24] stated the

term as a science of perceiving what a model did or might
have done.

o Interpretability: Miller et al. [35] defined interpretability
as the extent to which humans can understand the source
of the resolution while interpretability in ML is defined
by Kim et al. [36] as the extent to which humans can
continuously predict results from the model. Thus in ML,
a system will be more interpretable if the person can
easily predict and resolve the model behavior. Similarly,
a model is considered more interpretable than another if
it is easy to predict the outcome of the prior than the
latter. However, recently Doshi-Velez et al. [37] explain
interpretability as a capacity to disclose or to introduce
in justifiable terms to a human. Molnar et al. [38] defines
interpretable ML as the strategies and the models used
to explain the prediction of the outcome in a humanly
comprehensible way. So interpretability is all about how
a person understands and infers from the model just by
looking at it.

From now on in the paper, we will use only the explainabil-
ity word because in literature interpretable and explainable
methods are described as a single concept. Predictions in the
medical field should not be based on blind faith since the
consequences can be tragic. By explanation of prediction, we
mean providing textual or visual features that provide a contex-
tual interpretation of the correlation between the components
of the instance and the prediction results of the model. The
idea of XML is illustrated in the Figure 2. It is clear that if
understandable explanations are given, a doctor is far better
prepared to make a decision using these explainable models.
In this example, a small list of conditions with corresponding
weights is an explanation of taking the decision. Humans
typically have foreknowledge of the problem domain, which
they will use to believe or deny a prediction if they understand
the explanation of results by the algorithm.

B. Taxonomy of XML

To explain the decisions and behavior of ML, different
explaining models should be developed and implemented.



Here we describe the categorization of XML approaches based
on their complexity, scope, and employment.

o Intrinsic Model: This explaining method is used to design
the explainable models by reducing the complexity of the
ML. Another aspect is, inherently or intrinsically XML
are the ML methods that are explainable because of their
simplistic architectures.

e Post-hoc Models: It is a technique to analyze complex
high-performance black-box ML after the training pro-
cess. To derive the explanation of these models reverse
problem techniques are usually applied.

e Model-specific Explanation: Techniques for model-
specific explanations are restricted to specific types of
models. For example, the explanation of learned weights
of regression or linear model is limited to the specific
model. Moreover, the explanation of intrinsic models is
model-specific by definition.

o Model-agnostic Explanation: These can be usually ap-
plied to any ML model after the training. Agnostic mod-
els cannot access the internal architecture and weights
of the ML technique. For the post-hoc models agnostic
explanations are sometimes drawn by using simplification
techniques to reduce the complexity.

e Surrogate Methods: In this method, different explainable
models are designed to analyze the ML black-box. The
explanation of black-box models is produced by compar-
ing the decisions of surrogate models and the decision of
the black-box model.

o Visualization Methods: These explanation methods use vi-
sual graphics like activation maps or heatmaps to explain
some parameters of architecture of the black-box model.

Based on the mechanism of the explanation model, ex-
plainable methods have two broad categories white-box ex-
planation and black-box explanation. The white-box learning
model produces explanations for individual output. In this
technique, the model identifies the portion of features that
are significant for the prediction [39]. Another approach used
for white-box explanation is the gradient computation of the
prediction with respect to individual input samples to find out
the prediction relevant features [40]. White-box explanation
mostly provides the model-specific explanation. The black-
box methodology provides local explanations of a model for a
prediction [41]. However, this mechanism lacks in describing
all representations learned by the model.

C. Need of XML for Healthcare

Explanation of results are not only necessary for financial
gains and ethical challenges but are desirable for clinical
practice if end users (patients or doctors) want to learn,
understand, and efficiently manage ML algorithms. Based on
the literature reviewed, the following factors are the reason
for the necessity of XML models in the research area of
healthcare.

1) To explicate data: Contamination of clinical data and its
complex and multivariate nature can lead to bias in the data
that the model can learn. Learning of biased information leads
to the life-risking results in the medical domain. Explanations

derived from the XML allow the visualization of the relation of
features affecting the outcome. Thus, the explanation provides
a fair analysis of model architecture and learned parameters
[42].

2) To pick the best model: Many design choices, not just the
selection of the classification or prediction algorithm but innu-
merable variations in each stage of pre-processing of medical
data during model development, will alter the model slightly.
There can be countless algorithms with high predictive results.
It can be a case that the model with higher performance and
accuracy is the worst one and can limit the understanding
of end user in the real-time clinical practice. It is called
the Rashomon effect [43]. The explanation of each algorithm
reveals entirely different aspects of the disease learned by the
model. These explanations of the results can help researchers
and developers to pick between high performance models.

3) To enhance clinical use of ML: With the availability
of an enormous amount of medical data and advanced ML
techniques, research and publication on healthcare are also
growing. However, the employment of these algorithms for
clinical practice or the use of patients is still distant. The
primary reason for this gap is the unexplained results of algo-
rithms and sometimes the poor performance of the algorithm.
The explainable techniques allow the researchers or end-users
to get involved in improving the performance of the algorithm
and to trust the prediction results [44].

4) To facilitate end-users: ML and XML algorithms are
designed to aid the medical staff, not for replacing the medical
experts [45]. Medical-related decisions and their explanations
have a direct influence on the results of treatment and survival
of patients. So, these intelligent systems still require human
supervision to avoid any adverse effects. There can be cases
where ML can guide healthcare staff to improve or correct
their decisions about treatments. This human-machine combi-
nation is a powerful tool to facilitate the patients and develop
high-quality treatments [21]. Explanations of these systems are
required to gain insights into ML decisions. These insights can
help improve the prescribed medicines, facilities provided to
patients in hospitals [46], and health monitoring systems [47].

D. Enhancing the Clinical Practice of ML : A Framework of
Effective XML for Healthcare

It is now evident that the explainability of black-box models
is required to attain fair and trustworthy healthcare decisions.
Researchers have started developing techniques to build ex-
plainable models. However, the field of XML for healthcare
has many directions to improve. In this section, we formulate
the pipeline for the explainability of data-driven healthcare
applications. We discuss the need for explainability at each
stage from development to clinical deployment of algorithms.

1) Unfolding the hidden aspects of data: ML techniques
learn patterns of data to make decisions. Any bias in the data,
subjectivity, redundancy, or problem in data representation
causes misleading results. To produce trustworthy and fair
results, we should start with the explanation of data. We can
take the work of Caruana et al. [48] as an example. They
built classifiers for pneumonia patients to classify them as
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Fig. 3: The pipeline for explaining the black-box models.

high or low risk of in-hospital death. Their best model gave
the results that a patient with asthma has a low risk of in-
hospital mortality when admitted for pneumonia. However,
the opposite is true. When they further investigated, they
came to know that the asthma patients, when admitted due
to pneumonia, were provided more timely treatment than the
patients without asthma, which is why incurring a survival
success.

Another example can be the data of patients who were
denied to take medical care because of no health insurance.
If ML learns from that data, it will generate biased results.
Similar is the case for data leakage, which can mislead the
model learning and testing [49]. To avoid these problems,
researchers need to develop a data explanation method that
interrogates all dependencies of the target on acquired data.

2) Explaining the structure of black-box: The problem of
explaining the black-box can be further divided into two
categories. First category is explaining the logic of the black-
box in a human-understandable way (model-based explana-
tions), and the second category is explaining the input-output
relevance used by the model to make decisions (explanation
of results) [50]. The model-based explanation methods are
well developed and implemented for healthcare applications
(further discussed in Sec IV-D). These models very well mimic
the behavior of black-box models in terms of logic learn-
ing and provide global interpretability. Some ML techniques
are inherently explainable due to their simple structure, like
decision trees and random forest. However, many black-box
models require other models that mimic their work for the
explanation.

3) Explaining the results: Explaining the structure and
logic of a model can be complicated for some non-technical
medical end-users. In this case, only the explanation of why
the model is making this decision can be helpful. This expla-
nation usually consists of the feature relevance for output. In
contrary to the local explanation, for a single patient, a global
explanation is required for generalization purposes.

4) Measuring the effectiveness of explanations: Due to the
non-monolithic concept and subjective nature of explainability,

evaluation of explanations is a complicated task. There are
no sound traces of the best measurement for evaluating the
XML, nor we could say anything about how much the model is
explainable. Despite the increasing research on the said topic,
few researchers focused on the problem of evaluating XML.
Some approaches opted by the healthcare researchers for the
evaluation are the following. These approaches are not limited
to the evaluation of healthcare XML. Figure 3 is the depiction
of these steps required for explaining the black-box models.

a) Application-based Evaluation: Place the explanation
into the product or application and get it tested by the end
customer, which is usually a domain expert. This technique
helps in evaluating the explanation in real-time practical sce-
narios. For example, consider the ML-based medical data an-
notation software that places markers on the diseased regions
of data. In the clinical application, the clinician would test the
annotation software to evaluate the model. The clinician can
explain the same decision and can evaluate the explanation
and performance of data annotating software.

b) Human-based Evaluation: This technique is similar
to application-based evaluation. However, the difference is
that it does not require a costly experimental environment
and domain expert for testing. One can test the explanations
with laypersons, and it helps to generalize the findings as
the more number of testers (laypersons) are easily available.
This evaluation approach was applied by Mohseni et al. for
evaluating the explanations using image and text data.

c) Function-based Evaluation: This approach does not
require humans in the loop (layperson or domain expert). It
works appropriately when human-based or application-based
evaluations have already been performed.

E. Characteristics of XML for Healthcare

The goal is to explain the decisions of the ML methods
applied for detection and prediction of diseases, and to achieve
this goal research community relies on explanation method. An
XML technique usually explains in a human-understandable
way how the feature of data relates to prediction results, i.e.,



what features of X-ray images a model learns to detect the
fractures. Robnik et al. [51] listed some properties of good
quality XML method. These properties are mostly required
for explanations of any black-box model, however, we are
describing these in terms of healthcare domain. The only
limitation is that there is no definite method to calculate these
properties. Figure 4 depicts these properties.
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Fig. 4: Tllustration of characteristics of XML model for health-
care applications.

o Domain adaptable outputs: It is how an explainable
model represents its explanation according to the ap-
plication domain and end-users. The explanation could
be an if-then scenario, decision trees, in the from of
mathematical formulation, or a natural text language. For
end-users of the medical field, i.e., clinicians, radiologists,
pathologists, neurologists, and patients, it is more likely
that they do not have enough knowledge of understanding
complex mathematical explanations. So, for them, rule-
based, textual, or visualization-based explanations are
required.

o Translucency of XML: It represents how much the ex-
plaining method depends on the internal architecture of
the ML model, i.e., learnable parameters. The more the
dependency is, the more translucent the explanation will
be. High translucency allows the explanation method
to gather information from more internal parameters of
a model. Low translucency has the advantage of more
compact explanation results. To get a generalized model
for clinical use low translucency is desirable and for
a patient-specific application, the explanation should be
more detailed and accurate that can lead towards high
translucency.

e Adoptability: It illustrates the variety of ML methods
for which an explanation technique can be applied. The

techniques with low translucency are applicable to a wide
range of ML methods. Explanation methods of complex
deep neural networks (DNN) have high translucency thus
can not be applicable for other models.

The above mentioned characteristics could be use to select,
design and compare the architectures of XML methods for
healthcare applications. A good explanation should be accurate
specially in case of disease prediction. Low value of accuracy
is acceptable if the performance of ML model is also low.
Fidelity is a property of explanation that shows the precision
of approximating the decision of ML method.

F. Explaining DL Techniques

With advanced DL techniques, deep neural networks
(DNNs), convolutional neural networks (CNNSs), and recurrent
neural networks are widely employed for healthcare applica-
tions, i.e., epilepsy seizure prediction [52], segmentation of
brain tumor [53], Alzheimer detection [54], genomics [55],
and medical prescriptions [56]. These techniques are precise in
terms of performance but their decisions are difficult to explain
because of their complex model architecture. Saliency methods
and feature attribution (FA) are the two broad categories of
methods applied for explanation of DL models.

Saliency methods produce the explanation by presenting
important feature maps of each data sample. Gradient-based
saliency methods reveal how the output of the model changes
with a small change in the input. These methods are compu-
tationally efficient because of a single pass of input (forward
and backward) through the network. The simplest way is to
take the gradient of the input sample with respect to the
output of the model and visualize these gradient as heatmaps.
Several techniques have been proposed to improve the visu-
alization quality of these heatmaps, i.e., SmoothGrad [57],
class activation maps (CAM) [58], and gradient weighted class
activation mapping (GradCAM) [59]. The signal method is
used to highlight the patterns of data that activate the neurons
of higher layers. This can be done by back-propagating a
signal from the last layer of the network to the input layer.
DeConvNet [39], Guided BackProp [60], and PatternNet [61]
are commonly applied signal-based saliency techniques. The
feature attribution method decomposes each value produced
from each neuron of the output layer according to the contri-
butions made by the individual dimensions of an input sample.
Deep-Taylor decomposition [62] and integrated gradients [63]
are famous attribution methods.

A local interpretable model-agnostic explanation (LIME)
technique was proposed by Marco et al. [64] to address
the issue of explaining results of black-box models. LIME
produces an explanation list that shows the contribution of
individual features to the prediction. This local explanation
allows the end-user to determine which feature is important
for the precise prediction and how the perturbation in feature
affects the prediction results.

Samek et al. compared the explanation quality of two
methods: sensitivity analysis (SA) and layer-wise relevance
propagation (LRP). These methods generate values for each
feature of the input sample according to the contribution



of features in predicting the output. They showed that the
heatmaps produced by SA are much more noisy compared
to the heatmaps generated using LRP [65]. Samek et al. also
provided a brief survey on the post hoc methods for explaining
the DL models with theoretical background of each methods
[66].

IV. SAFE, ROBUST, AND TRUSTWORTHY ML FOR
HEALTHCARE

The lack of transparency of ML techniques, particularly
DL is yet another key challenge that hinders the practical
deployment of these methods into critical applications like
healthcare. It is crucial for a typical ML/DL empowered
healthcare system to be fully trusted by both the clinicians and
patients for getting the real impact of such systems. Moreover,
unlike other domains, healthcare has unique challenges that
involve legal, regulatory, and ethical challenges that need
to be considered while integrating ML/DL based algorithms
into actual clinical settings while ensuring that the deployed
systems are robust and free from algorithmic bias.

We have discussed such challenges in detail in an earlier
section, in this section, we will describe the notion of safe,
robust, and trustworthy ML for healthcare.

A. Principles of Trustworthy Al for Healthcare

The literature refers to two sets of popular principles
that have been outlined by the Organisation for Economic
Co-operation and Development (OECD) [67] and European
Commission’s Al High-Level Expert Group (HLEG) [68] that
can be used for sustaining trust and trustworthiness in Al. The
OECD defines the following five complementary principles for
implementing trustworthy Al

1) Inclusive growth, sustainable development, and well-

being

2) Human-centred values and fairness

3) Transparency and explainability

4) Robustness, security and safety

5) Accountability

These principles in the OECD framework argue for a
human-centered approach for building sustainable trustworthy
Al systems for healthcare and respect for human dignity,
values, autonomy, fairness, and explainability. On a similar
note, the Al HLEG defines the following guidelines to develop
trustworthy Al systems.

1) Human agency and oversight

2) Technical robustness and safety

3) Privacy and data governance

4) Transparency

5) Diversity, non-discrimination and fairness

6) Environmental and societal well-being

7) Accountability

It is worth noting that the majority of the guidelines in both
aforementioned frameworks mainly focus on the Al aspects
of robustness, safety, security, explainability, and fairness and
are therefore the key requirements for building trustworthy Al
systems. Moreover, these principles are human-focused and
value-based that respect ethical values along with focusing on
the legal and regulatory considerations.

B. Secure, Safe, and Robust ML for Healthcare

The literature suggests that ML systems are not safe, secure,
and robust. Such vulnerabilities can be exploited by adver-
saries for misleading the Al-empowered system to get desired
outcomes. In the literature, different kinds of attacks have been
proposed ranging from privacy attacks to targeted adversarial
attacks. In this section, we will focus on the implications
of security and robustness issues while building trustworthy
Al systems and we refer the interested readers to our recent
detailed work on the security and robustness ML/DL models
for healthcare applications [32]. An abstraction of safe, robust,
and trustworthy ML outlining challenges like privacy and
adversarial attacks in ML/DL pipeline for healthcare appli-
cations is shown in Figure 5. From the figure, it is evident
that the trustworthy ML can only be possible by addressing
challenges related to privacy, fairness, explainability, security,
and robustness.

The safe and robust ML is a broad term and we define the
robustness of the ML/DL models along three dimensions, i.e.,
robustness to security threats, robustness to distribution shifts,
and data imperfections. We further note that security threats
can be of many kinds, e.g., evasion attacks, adversarial attacks,
and privacy breaching attacks, etc.

1) Robustness to Security Attacks:

a) Adversarially Robust ML: In recent years, adversarial
ML attacks have been shown to be a real threat to the clinical
deployment of ML/DL models. For instance, an adversarial
attack for manipulating CT scans in an active hospital network
is presented in [69]. Similarly, the threat of adversarial ML is
highlighted for different medical applications, e.g., medical
image classification [31], medical image segmentation [70],
and as well as using time series medical signals [71]. In
[72], the authors argued that adversarial attacks in medical
images are due to the noise inherent in the technology of
their formation. Robustness to adversarial attacks can be a
road map towards developing safe and trustworthy ML-based
healthcare applications. The adversarial robustness can be
defined as the survivability of ML-based systems to adversarial
attacks. In this line, three types of adversarial defense methods
have been proposed in the literature, i.e., modifying data,
modifying model, and adding auxiliary model, a taxonomy
of such methods can be found in [73].

b) Privacy Preserving ML: Preserving the privacy of the
patients is one of the key challenges in data-driven healthcare
and is a matter of high concern in building trust in Al-
based systems. Privacy preservation refers to that the ML
model should not reveal any confidential information about
the data owners (i.e., from whom data has been generated
and collected) either at training and at inference time. On
the other side, the users (i.e., patients and clinicians) expect
that the Al system is safe and respects their privacy. Privacy
attacks on data integrity can be of two types, i.e., learning
about the confidential information and malicious use of data
[32]. Similarly, privacy information can also be unveiled by
querying the deployed ML model. Therefore, the development
of appropriate defense strategies to withstand privacy attacks
is crucial to ensure safe and trustworthy ML in healthcare
applications. In this regard, different techniques can be use for
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Fig. 5: An abstraction of safe, robust, and trustworthy ML for healthcare applications.

preserving privacy, e.g., using cryptographic approaches (like
homomorphic encryption [74], and multi-party computation
[75], etc.), differential privacy [76], and federated learning
[77]. In addition, hybrid approaches can also be developed, for
instance, the use of differential privacy in federated learning
settings is proposed in [78].

2) Robustness to Distributional Shifts and Data Imperfec-
tions: Data distribution shifts (which refers to the divergence
of training and testing data) is yet another major challenge
that hinders the practical deployment of ML/DL models in
realistic clinical settings [79]. As it is highly expected that the
distribution of real-world data encountered by the deployed
model is different from the one it was trained. This issue re-
sults in the reduced performance of the developed ML system
in an actual clinical environment and on the other hand, it also
fails to gain the trust of end-users, i.e., clinicians and patients.
In addition, the real-world data contains imperfections and is
imbalanced, e.g., for example, incomplete data due to missing
observations or variables and uneven distribution of samples
across different classes, respectively. These data imperfections
will eventually result in biased training and will increase the
false positives and negatives. Therefore, to build trust in ML-
based systems, the development of generalized approaches that
can mitigate these issues is required. As the life-critical nature
of healthcare applications demands that the developed ML
systems should be safe and robust and should remain safe
and robust over time. The difference in data distributions can
be leveraged to craft adversarial examples [80]. Moreover,
adversarial robustness is closely related to robustness to certain
kinds of distributional shifts. In this context, the literature
recommends that future adversarial defenses should consider
evaluating the robustness of their methods to distributional
shifts [81].

C. Trade-off between Accuracy, Explainability, and Robust-
ness

It is worth noting that one has to pay a cost for devel-
oping explainable, robust, trustworthy, and accurate ML/DL
models, as shown in Figure 6. Robust models pay the cost
of accuracy and can be more explainable and interpretable
as compared to the complex models having high accuracy
with low explainability. Therefore, the higher the accuracy
of the predictive model, the less explainable/interpretable it
becomes. Moreover, it has been provably demonstrated that
there exists a trade-off between adversarial robustness and
the accuracy of the model even in a concrete simplistic
setting [82]. In addition, the trade-off analysis between the
accuracy and adversarial robustness of eighteen well known
ImageNet classifiers with different metrics is presented in [83].
Furthermore, the authors suggested that there exists a clear
trade-off between accuracy and robustness. This highlights
that solely getting high-accuracy from an ML/DL model
may get us in real trouble. A few studies have focused on
addressing this trade-off [84], however, such methods are not
generalizable and applicable to all domains, in particular, task-
specific ML/DL applications.

D. Applications of XML Models for Trustworthy Healthcare

Translucency, credibility, and explainability of ML models
are requirements for the clinical application of these models.
Transparency of decisions of these models can help clinicians
to trust and rely on ML/DL prediction algorithms. Moreover,
the interpretable and explainable Al models are required for
answering questions about accountability and transparency of
their decisions and outcomes. These questions are particularly
important for domains like healthcare where failing to provide
accountable and transparent Al predictions will limit the
potential impact of AI. According to new directions of the
European general data protection regulation (GDPR), explain-
ability and accountability are necessary for the application
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of ML/DL models in any domain, especially in the medical
domain [9]. The explainability of black-box models can assure
reliable and ethical use in the medical field. Transparency of
ML models can help to eradicate myths by explaining what
features a model learned for making the predictions and can
help in building the trust of end-users [14]. Explainable ML
can be a potential step towards trustworthy ML by building
trust of clinicians in Al system [85]. Below we described the
application of XML models in the medical domain:

1) Intrinsic XML Models: As we described earlier that
intrinsic models are explainable due to their simple archi-
tecture and are understandable by themselves. The following
are applications of inherently XML models and Table III
is the summary of model-intrinsic explanation methods for
healthcare applications.

a) Decision Tree (DT): These are the self-explanatory
surrogate models that use the if-then rule for the explanation
of decisions. However, for complex high dimensional medical
data DTs are not feasible for producing human-understandable
explanations. Dlaeen et al. [87] implemented DTs to predict
Alzheimer’s disease of seventeen patients. They used gender,
age, genetic causes, brain injury, and vascular disease as data
attributes and measured information gain of attributes for the

selection of nodes. However, they have not evaluated the
quality of the explanation.

A DT shows considerable change in output with a small
perturbation in the input, which considerably affects the per-
formance of these models. By averaging large numbers of DTs
for constructing ensemble DTs is a solution for improving
the performance. Gibbons et al. [86] used a hybrid approach
for incorporating both the benefit of individual DT and the
efficiency of ensemble DTs. They worked on the development
of a computerized adaptive diagnostic (CAD) system for the
diagnosis of major depressive disorder (MDD) using random
forest and DTs. They worked with the data of 656 patients and
achieved a sensitivity of 95% and specificity of 87%. Suresh
et al. [88] proposed the use of radial basis function (RBF)
network and DTs for the detection of lesions in mammograms.
DT algorithm learns the suitable attributes of data in a top-
down search manner. They selected the best attributes by
constructing and evaluating the different structures of DTs.
They also compared their algorithm with k-nearest neighbors
(K-NN), support vector machine (SVM), and naive Bayes
classifier and concluded that DTs outperformed all these
classifiers. Generalization of algorithms is required for clinical
employment. However, DTs have a secondary generalization



TABLE III: Summary of model-intrinsic explanation methods for healthcare applications.

Explaining o s .
Method Year | Reference Description Application Modality
2013 | Gibbons et al. [86] The self-explanatory surrogate MDD detection {::&;%Tfet :C and non psychiatric
DT the model uses if-then logic for —— -
. Alzheimer’s disease Gender, Age, Genetic causes,
2014 | Dlaeen et al. [87] decision . L .
detection Brain injury, Vascular disease
2020 | Suresh et al. [88] Breast cancer detection Mammographic images
. 2016 | Khare et al. [89] Textual format explanation using Card1qvascu]ar disease Various attributes of patients
Rule-Lists . . - X detection
if-then logic for decision making -
Question classification in Coarse and fine-grained
2019 | Agrawal et al. [46] ) classes from cloud
health care X .
questionnaire
2017 | Wang et al. [90] Epilepsy detection EEG signals
Social demographic factors,
2019 | Byeon et al. [91] AlzheTmer s patients depression Heqlth status, BehaVIQrs,
detection Living style, Economic
activity
Breast cancer, Diabetes,
An ensemble of large numbers of Heart disease, Spect-heart,
RF 2019 | Kaur et al. [47] DTs, used mainly for regression Healthcare monitoring system Thyroid, Surgery,
or classification Dermatology,
Liver disorder
2020 | Simsekler et al. [92] Evaluation of patient Cor}tmuoqs and .Categorlca]
safety culture variables for patient safety
2020 | Iwendi et al. [93] C0v1d' death and recovery rate Categorlgz@ variables in dataset
detection such as fatigue .fever ,cough.
2015 | Caruana et al. [94] Pneumonia risk prediction Various attributes of patients
The output is modeled as the iffzzitﬁ(;fcafgo?tngfd;?l%]oséiients Various attributes related
GAM 2019 | Sagaon et al. [95] weighted sum of random nonlinear or? svchosocial activi tieI: to psychosocial
functions of data features PSychos L and behavioural outcomes
and behavioral activities
2020 | Dastoorpoor et al. [96] Effect of air pollution on Various air pollutants data
pregnancy
Study air pollution effect Pulmonary TB and air
2020 | Yang et al. [97] on TB cases pollutants data

property that is why these algorithms are not appropriate for
healthcare applications.

b) Rule-Lists: Rule-based XML models produce expla-
nations using if-then rules or other complex rules. These
are different from the DTs as they generate the explanations
in textual format. The other differences are the order of
rules (rules are ordered according to their properties) and
the generation of mutually exclusive rules (different rules
that are generated by the same attributes). Khare et al. [89]
implemented the association rule technique using 23 attributes
of cardiovascular data for the detection of heart diseases. They
generated the rules which map the attributes to classes to
identify features that are provoking the disease. They used
confidence, lift, and support as parameters for the generation of
rules. For the validation of generated rules, they implemented
the accuracy metric.

With the emerging use of natural language processing
(NLP) and ML, automatic answering to healthcare-related
questions is a conspicuous technique. Classification of ques-
tions is required for the generation of answers. Agrawal et
al. [46] implemented a rule-based algorithm for the question
classification system (QCS). They extracted reules after the
preprocessing of 427 health-based questions to classify these
into 9 question types. For the validation of extracted rules,
they measured the accuracy of the algorithm. Their rule-based
algorithm classified 345 questions correctly and achieved
80.7% accuracy.

¢) Random Forest (RF): This algorithm is an ensemble
of large numbers of DTs, broadly used for regression or

classification. This algorithm generates several DTs, each DT
in RF perform the classification. The final output of the algo-
rithm is measured based on the most occurring class. Wang
et al. [90]. implemented an RF, C4.5 algorithm of DT, SVM-
based RF, and SVM-based DT algorithms for the detection of
epileptic seizures using the Bonn university dataset. To detect
the seizures, they classified EEG signals into different groups.
They concluded that the RF algorithm outperformed all other
classifiers with the accuracy of 98.6% for two-class, 96% for
three-class, and 82.6% for five-class classification experiments.

Saftey of a patient is necessary for ensuring the quality
of medical facilities provided by a healthcare unit. The way
to provide safety to the patients is a patient safety culture
of a hospital or clinic. Simsekler et al. [92] implemented an
RF algorithm to estimate the association between the safety
culture dimensions and grades of patient safety by using
the HSOPSC dataset from 677 U.S. hospitals. They studied
12 variables of safety culture and using an RF algorithm
they checked the importance of each variable for the safety
of patients. They measured mean absolute percentage error
(MAPE), mean absolute error (MAE), and mean square error
(MSE) for checking the quality of explanation of safety
variables.

In recent work, Iwendi et al. [93] used an RF model
with the AdaBoost algorithm to the severity of Covid-19,
death, or recovery rate for a patient. Due to their simple and
self-explanatory structure, these models are also implemented
for predicting the depression of Alzheimer’s patients [91],
healthcare monitoring systems [47], prediction of medical



expenditures [98].

d) General Additive Model (GAM): ML regression mod-
els produce predictions by adding weighted features. GAM
modeled the output as the weighted sum of random nonlinear
functions of data features. A combination of spline functions
is used to approximate these non-linear functions. GAM is
extensively used in health-related environmental research [96],
pneumonia risk prediction [94], research on the distribution of
species [99], and the effect of age and a diagnosis-specific co-
hort of HIV patients on psychosocial and behavioral activities
[95]. Yang et al. [97] studied how tuberculosis (TB) cases
changed with air pollution in the Wulumugqi. They obtained
the air quality and TB patients data of slightly larger than
two years duration. They found that PMs 5, PMiy, SOa,
NO,, CO, and O3 were the dominant pollutants in the air
data. They implemented GAM to study the relation between
these pollutants and the number of TB cases. They assumed
that the number of patients followed the Poisson distribution.
To encounter the linear and non-linear features of data, they
used the natural cubic spline. With statistical validation of
results, they concluded that with the 1 mg/ m?> increase in
PMs 5, PMig, SOy, NO3, CO, and Og particles number of
TB patients increased by 0.09%, 0.08%, 0.58%, 0.42%, 6.9%,
and 0.57% respectively.

2) Model-Agnostic Explainability: These explanations are
flexible in terms of applications of models and representation.
Table IV Summaries the model-agnostic explanation methods
for healthcare applications and following are the details of
these methods for explaining healthcare decisions:

a) Partial Dependence Plot (PDP): These plots provide
visual explanations by showing the partial effects the input
features have on the prediction of a black-box model. These
plots also help in visualizing the type of relation (linear or non-
linear) between the label and data features. Yang et al. [100]
predicted the mortality of COVID-19 patients using age, time
to the hospital, gender, and any chronic disease as attributes.
They plotted partial dependencies to check the effect of each
attribute on the prediction of mortality. They showed that the
age of a patient is the most important factor and the second
important factor is how much time the patient has spent in the
hospital.

b) Class Activation Maps (CAM): These models are used
to explain the decisions of CNNs by highlighting the class
relevant areas of images. However, CAMs are only applicable
for specific CNN architecture, i.e., CNN must have a dense
and global averaging pooling layer after the last convolutional
layer. Vikash Gupta et al. [101] detected the acute proximal
femoral fractures in elderly people using radiographic data.
They detected the fractures using VGG16 and used CAM to
localize the fractures. Aayush Kumar et al. [102] classified
the malaria cells by proposing a mosquito-net and explained
the decision using the GradCAM (a variant of CAM) and
CAM. Sebastian et al. [103] used CAM to evaluate the errors
of their CNN model proposed for the multiclass labeling of
ECG signals. Pereira et al. [104] explained the brain tumor
grading decision of a proposed CNN classifier using CAM.
Irvin et al. [105] used the GradCAM to provide the visual
explanation of active pleural effusion areas of chest radiograph

which were indicated by the CNN model. Izadyyazdanabadi
et al. [106] integrated multiscale activation maps (MLCAM)
with the CNN model to locate the attributes of glioma tumors.

c) Layer-wise Relevance Propagation (LRP): This tech-
nique backpropagates the output decision to the input layer
to estimate the relevance of each attribute. Yang et al. [107]
proposed the use of LRP to select the features with high
relevance for predicting the decision of therapy of patients.
They also evaluated the quality of explanation from the expert
clinicians. Chlebus et al. [108] implemented an LRP algorithm
for explaining the decisions of semantic networks used for
segmenting the liver tumors. They highlighted MRI segments
that were most relevant for the classification of tumors. Bohle
et al. [109] implemented LRP and guided backpropagation
(GB) for explaining the decisions of CNN that they used
for the classification of Alzheimer’s disease. They evaluated
the quality of generated explanations of both techniques by
measuring Atlas-based evaluation metrics. They concluded
that LRP generates more relevant explanations by describing
why any individual patient has the disease. Taeho Jo et al.
[110] implemented LRP to highlight the areas of tau positron
emission tomography (PET) that highly contribute to the
classification of Alzheimer’s disease using 3D-CNN.

d) Local Interpretable Model-Agnostic Explanations
(LIME): This technique generates explanations by apportion-
ing an image data sample into superpixels (groups of pixels
having similar features) that provided contextual details about
the local part of the image. Samples of perturbated images are
then generated by tweaking the values of randomly selected
superpixels. The algorithm provides information about how
perturbation in features affects the prediction. The significance
of every superpixel for the prediction is measured as weighted
values, i.e., positive values show a high impact in a correct
prediction and negative values show less or no impact in
prediction. Sousa et al. [111] implemented LIME for gener-
ating the explanation of how CNN and VGGI16 detect the
metastases from the histology WSI patches. They evaluated
the explanations by cross-checking the highlighted areas with
expert pathologists and showed that the algorithm used the
human-like approach for explanation generation, at least for
this application.

Zafar et al. [116] pointed out the problem of instability
of generated explanations due to perturbation addition and
random feature selection in the medical computer-aided diag-
nosis (CAD) systems. They proposed the use of hierarchical
clustering (HC) and KNN to group the data and for the
selection of relevant feature clusters. They named the proposed
algorithm deterministic LIME (DLIME). They implemented
the DLIME algorithm for explaining the decisions of three
medical domains, i.e., breast cancer, liver disease, hepatitis
detection. They concluded that the DLIME shows better results
than LIME. Kitamura et al. [112] detected diabetic nephropa-
thy (DN) using a CNN network from the immunofluorescent
images. They analyzed the decision of CNN using LIME and
described that CNN learned the patterns of peripheral lesion
of DN glomeruli for DN detection.

e) Deep Learning Important FeaTures (DeepLIFT):
DeepLIFT provides the explanations of black box models by



TABLE IV: Summary of model-agnostic explanation methods for healthcare applications. Legends: N/M = Not mentioned.

E,fe[:ii:gmg Year | Reference Description f/[li(cll;lBox Application Modality
Highlight the partial effects the input e
PDP 2020 | Yang et al. [100] features have on the prediction of XG-Boost Mortdhty rate A_gc, Gender,.
a black-box model in COVID-19 Time to hospital
2020 | Vikash Gupta et al. - VGG16 Fracture detection X-Rays
CAM [101] Highlight the class relevant areas
2020 | Sebastian et al. [103] of input data. CNN ECG classification ECG signals
2018 | Pereira et al. [104] CNN Grading of brain MRI
tumor
Irvin et al. . . Detection of different
GradCAM 2019 [105] Generat.es we1gl_1ted gradient CAM by CNN diseases Chest X-Rays
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identification of the saliency of input data. The algorithm
measures the saliency according to how sensitive the prediction
of the algorithm is to input features in comparison to their
reference value. The selection of reference value is based
on the problem at hand. Sharma et al. [117] implemented
DeepLIFT for Genome-Wide Association Studies (GWAS),
which focused on studying genetic variants caused by common
diseases. They proposed the use of DeepLIFT to explain that
revealed diabetes genetic risk factors are identifiable using DL
techniques.

f) SHapley Additive exPlanations (SHAP): SHAP ex-
plains the prediction of a data sample by calculating the
contribution of each feature to the prediction of the algorithm.
The SHAP uses coalitional game theory to calculate Shapley
values. Shapley values show the distribution of prediction
among features. Tseng et al. [113] studied the effect of
intraoperative variables on the cardiac surgery-associated acute
kidney injury. They used various ML algorithms logistic
regression (LR), SVM, RF, extreme gradient boosting (XG-
boost), and RF + XGboost to solve the problem. Using SHAP
values they described that the intraoperative urine output,
IV fluid infusion, blood product transfusion, and dynamic
changes of hemodynamic features are significant causes of
injury. They also stated that these factors were not revealed
using traditional techniques. Daping Yu et al. [118] detected
lung cancer from the copy number variation (CNV) derived

cell-free DNA (cfDNA) using an extreme gradient boosting
(XGBoost) algorithm. They showed the contribution of each
plasma feature using SHAP. They concluded that a high
concentration of cfDNA in plasma and CNV in chromosomes
affected the pathogenesis of cancer cases.

g) Sensitivity Analysis (SA): SA is an effective and
powerful algorithm to understand the stability of black box
models by examining the effect of perturbations in input
on the prediction of the model. If the model outcome has
changed notably with perturbations, it shows us that the
feature has a high contribution to the prediction. Couteaux
et al. [119] implemented an explanation method based on
the DeepDreams concept for explaining the classification of
tumors using data of liver computed tomography (CT). Their
proposed method used SA of each feature by maximizing the
neuron activation using gradient ascent. They showed that the
network is sensitive to intensity and sphericity in coherence
with domain information.

h) Guided Back Propagation (GBP): GBP is also known
as guided saliency. GBP uses the concept of both vanilla back-
propagation and DeconvNets to explain the decisions of DL
models. The only difference is that the positive error signals
are backpropagated and negative gradients are set to zero.
While like vanilla backpropagation the algorithm limits itself
to positive inputs. Theerasarn et al. [114] proposed 3D-CNN
architecture for Parkinson’s disease (PD) and to explain the



detection they implemented and compare six different explain-
able methods, i.e., saliency map, GBP, Grad-CAM, Guided
Grad-CAM, DeepLIFT, and SHAP. The GBP produced best
explanations among all other methods. DeepLIFT and SHAP
produced second best explanations by distinguishing between
features of healthy and PD patients. These three methods
performed better in PD diagnosis by correctly analyzing the
absorption of 23I-Ioflupane in the dopamine depletion region
of single-photon emission computed tomography (SPECT) of
PD patients. They evaluated the quality of produced explana-
tions using dice coefficient measure.

i) Integrated Gradient (IG): 1G is a DL technique that
uses the input feature significance to visualize the model
prediction. IG works by calculating the gradient of model
output with its input attributes. IG does not require any
changes to the primordial deep neural network. IG can be
implemented for any kind of model, i.e., image. This algorithm
works on two axioms sensitivity and implementation variance.
In the drug development classification of toxic and non-toxic
drugs is not enough. To resolve the problem of toxic drugs
a chemist need the structural element which is causing the
problem. Preuer et al. [120] demonstrated that IG can identify
these elements from the classified drug using CNN.

J) Activation Maximization (AM): AM aims to maximize
the activation of neurons. In the AM model weights and output
remain the same while by changing the input we maximize the
activation of the neuron. Borjali et.al [115] trained the CNN
model for orthopedic application in observing hip implant
misplacement using X-rays dataset. The explainability of this
CNN model at a lower level is done using AM. AM is used
to visualize the classification of the model.

k) Deep Hierarchical Semantic Convolutional Neural
Network (HSCNN): Shen et al. [121] proposed an interpretable
deep network named hierarchical semantic convolutional neu-
ral network (HSCNN) to detect the malignant pulmonary
nodule that appeared on computed tomography (CT) scan.
Their proposed model provided two types of outputs, one was
low-level semantic features which were used by radiologists,
and also provide the explanation of how the model detected
the malignant nodules. The second level of output was the
malignancy prediction score. They also compared the perfor-
mance of their proposed model with CNN and concluded that
the HSCNN out-performed the CNN with a high prediction
score and explainable results.

) Patient2Vec (P2V): The extensive use of electronic
health record (EHR) in the clinical system provides a large
amount of data for healthcare. Jinghe et al. [122] presented
P2V to explain the unexplored EHR dataset for predicting
disease correlation, health outcome, and health history of new
patients. P2V is a recurrent convolutional neural network used
to explain the longitudinal EHR dataset customized for each
patient. The implementation of P2V improves the predictive
model working efficiency and also increase the explainability
of these models. They used the proposed model to explain
the importance of each diagnostic product, medication, and
treatment procedure.

m) Evidence Activation Mapping (EMANet): Lia et al.
[123] proposed a CNN based model for glaucoma diagnosis

named as EAMNet. The proposed architecture not only able to
detect the diseases but also show transparency by highlighting
the affected area detected by the system. The system consists
of CNN as the backbone for feature extraction and uses multi-
layers average pooling (M-LAP) to overcome the gap problem
between the information interpretability and localization while
evidence activation mapping is used for the verification.

V. ETHICAL ML FOR HEALTHCARE

The integration of AI/ML into healthcare practice and clini-
cal applications promises to provide substantial improvements
to the healthcare sector. To name a few, it can improve care
quality, cut the overall costs, reduce or even eliminate diag-
nostic errors and improve the process of predicting disease.
In response, private companies are incorporating ML-based
technologies into healthcare decision making, creating tools
that assist clinicians and developing algorithms designed to
perform independently of them. Clinicians and researchers
are prophesying that knowledge of ML for analyzing het-
erogeneous medical data will be a primary requirement for
future physicians and that ML models might compete or even
replace clinicians in fields that involve analysis of images,
such as radiology and anatomical pathology [124]. However,
incorporating the ML techniques into the healthcare system
also raises serious ethical challenges and complex questions
that need to be seriously considered in order to make a
robust and well-balanced assessment of possible benefits and
expected harms [125].

For the purpose of setting the scene for those who are not
specialists in bioethics, this section will start by (a) providing
a concise overview of bioethics as a scholarly discipline and
its methodological approaches, with focus on the so-called
“principlism” and the widely known four principles, namely
beneficence, non-maleficence, autonomy, and justice [126]. It
is to be noted here that explicability is a newly proposed
principle, within the particular AI context, which has the
same meaning outlined above in this paper [127]. In the
remaining part of this section, we will (b) review the key works
that examined the interplay of AI/ML and bioethics and (c)
analyze the main bioethical issues and challenges posed by
the implementation of AI/ML applications in the healthcare
sector.

A. Historical Overview

That practicing medicine or providing healthcare should
be tied to, and governed by, certain sets of moral principles
and values is one of the widely agreed-upon facts throughout
human history. The Hippocratic oath is one of the earliest and
most widely known codes of ethics for medical professionals.
The oath established various principles of medical ethics and
its purport continues to be the subject of modern studies,
which examine its possible relevance to the modern bioethical
discussions [128]. World religions like Judaism, Christianity,
and Islam also brought their own insights to ethicize the
physician’s work. A good representative example here is the
work of the 9*-century physician Ishaq b. Ali al-Ruhawi, who
lived in the golden age of the Islamic civilization and wrote
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one of the most popular works on medical ethics, entitled
Adab al-Tabib (Ethics of the physician) [129],[130]. Back
in 1803, the physician, Thomas Percival, published a report
on the necessities and expectations of medical staff to assure
ethical medical practice [131]. This code of medical ethics was
adapted for the first time in 1847 [132], and is now broadly
accepted and practiced throughout the world as an ethical code
for the medical domain.

Owing to a wide range of diverse factors, not only re-
lated to the breathtaking biomedical advancements but to
various intellectual and sociopolitical changes, the twentieth
century, especially from the second half onwards, witnessed
the history-making shift from the pre-modern “medical ethics”
to the modern “biomedical ethics” or simply “bioethics”. The
American oncologist Van Rensselaer Potter (1911-2001) was
the first to use the term “bioethics” in the title of his book
Bioethics: Bridge to the Future, published in 1971. Potter
proposed the idea of introducing a new discipline, which he
named Bioethics, to address the basic problems of human
flourishing by creating interdisciplinary discourse between the
two cultures of humanities and sciences [133].

One of the important milestones in modern bioethics is
the so-called “Belmont Report*; produced in 1979 by the US
National Commission for the Protection of Human Subjects
of Biomedical and Behavioral Research. The report charted
the basic ethical principles and guidelines that should govern
the conduct of biomedical and behavioral research involving
human subjects. The report identified three main bioethical
principles, namely respect for persons, beneficence and justice.
Exactly parallel to these developments, the two renowned
American bioethicists, Tom Beauchamp and James Childress,
published the first edition of their seminal work Principles
of Biomedical Ethics. The authors introduced four principles,
namely autonomy, beneficence, nonmaleficence and justice
[126]. Their principle-based theory, which later came to be
known as principlism, proved to be one of the most seminal
contributions to the modern field of bioethics, as demonstrated

4The Belmont Report: Ethical Principles and Guidelines for the
Protection of Human Subjects of Research https://www.hhs.gov/ohrp/
regulations-and-policy/belmont-report/read- the-belmont-report/index.html

by the number of subsequent editions and printings of their
book, the eighth edition was published in 2019, and by
the global discussions around this theory [134]. Besides the
famous principlist approach to bioethics, there are other impor-
tant approaches in modern bioethics, including virtue ethics,
casuistry and narrative ethics, feminist approach, and care
ethics. Each of these approaches has its own proponents and
opponents who debate on the added value of each approach
and its possible drawbacks [135]. Figure 7 illustrates the
history of development of bioethics over time.

Besides these foundational publications for modern
bioethics, the atrocities of the two world wars and the as-
sociated ethical violations in conducting medical research on
human subjects also resulted in issuing a number of codes
and documents to regulate research experiments and trials on
humans. The Nuremberg code, drafted in 1947, is one of the
main examples in this regard. It consisted of ten points under
the title of “Permissible Medical Experiments”, including
consent of patients, patient’s right to end the experiment at any
stage, high expertise of researcher, and avoiding unnecessary
mental and physical suffering [136]. In 1964, the declaration
of Helsinki was developed by the World Medical Association
(WMA). This declaration consisted of ethical principles and
regulations for the physicians. Respect for each patient, right to
self-determination, a thorough evaluation of possible risks and
benefits, and beneficence of society and mankind are a few of
the principles stated in this declaration [137]. Because of they
were produced at earlier dates, none of the aforementioned
foundational works, codes or documents paid special attention
to the ethical challenges triggered by the implantation of
AI/ML technologies into healthcare. However, these works
and the bioethical approaches they introduced and theorized
remain essential for developing a robust analysis of related
challenges and questions. Additionally, some of the recently
published bioethical works examined a number of the ethical
questions, which are specific to the interplay of AI/ML and
bioethics. These key works will be reviewed below.



B. Key Works

The field of healthcare is increasingly representing one of
the main applied areas of AI/ML technologies. This fact is
reflected in the growing number of publications in this research
area. Due to space availability, we will not be able to provide a
comprehensive review of all the relevant publications. Instead,
we will focus on a number of the key works in this emerging
field, especially those published as book-length studies or the-
matic issues in reputable journals. Individual journal articles
or book chapters will be referred to only when they relate to
the examined books and/or thematic issues.

Some of the relatively early works in this area were more
focused on issues related to the conventional computerization
and digitalization of healthcare. However, they occasionally
touched upon bioethical issues within the particular context of
Al and ML. In Ethics, computing and medicine: Informatics
and the transformation of health care, published in 2007
[138], a group of interdisciplinary authors examined the ethical
issues related to health informatics. A distinct chapter was
dedicated to “Ethical and Legal Issues in Decision Support”
[139]. The digital doctor, a New York Times science bestseller
and published in 2015, by Robert Wachter (University of
California San Francisco), also serves as a good example
in this regard [140]. Similar issues were also examined in
the edited volume Smart Health: Open Problems and Future
Challenges, published in 2015 [141].

One of the main contributors to the discourse on Al-driven
healthcare is the American cardiologist and professor of ge-
nomics, Eric Topol, who is a well-known high-tech enthusiast.
Between 2012 and 2019, Topol wrote what can be called a
trio on the revolutionization of medicine by making use of
available digital, smart and Al-based technologies. In his The
Creative Destruction of Medicine: How the Digital Revolution
Will Create Better Health Care, published in 2012 [142], and
The Patient Will See You Now: The Future of Medicine Is in
Your Hands, published in 2015 [143], the focus was more on
the benefits of using available digital technologies, especially
those offered by smartphones. In 2019, Topol crowned this trio
by publishing Deep Medicine: How Artificial Intelligence Can
Make Healthcare Human Again, where Al technologies were
introduced as the main drive of the promised revolutionization
of medicine [144]. He also outlined his ideas in this area in an
article published in 2019 in Nature Medicine [145]. Besides
simplifying the scientific and technical information that would
otherwise be unintelligible to the non-specialist reader, Topol
touched upon, and sometimes seriously examined, some of
the ethical questions and challenges triggered by the promised
revolutionization of medicine, including those related to pri-
vacy of people, confidentiality of information and security of
data. Topol, a paid adviser to Al health companies, is also
sometimes criticized for adopting a market-driven discourse
that is similar to the one propagated by tech-giants like Google
and Facebook [146].

In 2020, The American Journal of Bioethics published a
thematic issue entitled “Planning for the known unknown:
Machine learning for human healthcare systems” [147]. The
contributions to this thematic issue, made by a number of

interdisciplinary experts, provided useful frameworks that are
meant to help future researchers to critically examine the
ethical concerns of the AI Health Care Applications (HCA).
Important ethical questions related to the concepts of explain-
ability, auditability, and accountability were also addressed
in this issue. The edited volume Artificial Intelligence in
Healthcare, published in 2020, provided an extensive overview
of the current state of art in this field and outlined what is
achievable in the near future. Besides discrete references to
ethics throughout the work, the last chapter was dedicated to
“Ethical and legal challenges of artificial intelligence-driven
healthcare” [148]. The important reference work, The Oxford
Handbook of Ethics of Al, published in 2020 as well, included
a distinct chapter on “ The ethics of Al in biomedical research,
patient care and public health” [149].

One of the latest relevant publications in this area is Ma-
chine Learning and Al for Healthcare: Big Data for Improved
Health Outcomes, whose second edition was published in
2021. Besides introducing the basic terminology, concepts and
applications of Al technologies in healthcare, the book also
discussed various ethical issues and a distinct chapter was
dedicated to “Machine Learning and Al Ethics” [150].

C. Main Ethical Questions and Challenges

The possible integration of AI/ML technologies into health-
care is characterized by the promise of potentials that will
be of great benefits to many involved stakeholders, including
patients, and physicians. Thus, the great potential is optimizing
the overall quality, efficiency and access in healthcare system
[147]. On the other hand, these applications concurrently raise
various ethical challenges and complex questions that need
to be seriously examined. Below, we give an analytical and
systematic overview of these issues.

1) Data related ethical concerns: As outlined above, the
main thrust of AI/ML applications in healthcare is to maximize
the benefits (principle of beneficence) and minimize the harms
(principle of non-maleficence) for as many stakeholders as
possible, especially the patients. To achieve this noble aim,
the Al technologies are highly dependent on huge amounts of
data from which these technologies will “learn” how to make
predictions and decisions. The “automation” of these Al-based
tools for algorithmic decision-making provides no guarantee
that we will have more ethically-committed outcomes. This is
because the input of big data is actually a record of human
actions, which are not free from biases and injustices. Thus,
the behavior of machine learning systems is simply mirroring
and echoing human behavior, including its moral failures even
if we claim that we do not do them intentionally [147].

Against this background, the quality of training data has a
high impact on the performance of ML algorithms. ML models
learn the latent variable of data to deduce the predictions.
So it is required to consider the problems with the data first
while developing efficient models. Here we discuss the ethical
problems related to the medical datasets:

a) Imbalance Datasets: Imbalance class data is one of
the common data-related problems that occur in the supervised
training of ML/DL models. This problem arises due to the non-
uniform distribution of samples among classes. Training the



model on such imbalanced data results in outcomes that are
biased to certain categories. Biases in outcomes of models used
for healthcare services may have profound consequences. One
of the famous examples in this regard is the Google Health
study, published in Nature, which argued that an Al system
can outperform radiologists at predicting cancer. The study
was later accused of violating the principles of transparency
and reproducibility [151], [152].

b) Data Bias: Other than the biased outcomes due
to class imbalance, the biases in data also lead to biased
outcomes. In order to realize the impactful significance of
ML/DL methods, it is highly required that the ML/DL models
should produce fair outcomes that are bias-free. Here we will
discuss the various facts and circumstances that are affecting
fair healthcare data collection that cause the data bias. For
example, researchers have shown that the model predicts that
black people have a strong immunity and are healthier as
compared to equally sick white people because of the fact
that less money is spent on the healthcare facilities of black
people in comparison to white people [153]. Dependence of
models’ learning on the skin-tone, face structure, or nationality
is problematic for healthcare applications. Another problem
is that ML-based healthcare products are manufactured by
Western companies and these products are developed and
tested on Caucasian data. This problem can be resolved by
ensuring diversity in the collection of data around the globe.
The healthcare datasets are mostly biased towards males
because clinical trials held for collecting the data have large
data samples of male patients. This bias causes ML models
to show more precision for males in contrast to females. It is
important to take into account that the healthcare datasets must
represent both genders equally [154]. It is a common practice
that more healthcare facilities are available for wealthy people
which makes it less likely that low-income people are able
to access advanced technological treatments. This bias in the
availability of facilities is also reflected in the data and can
cause the biased decision of ML algorithms [155]. Similar
is the case for geographical biases, where fewer healthcare
facilities are provided in rural areas and under-developing
countries [156]. Explanation of the data, as we proposed in
the pipeline of explainable ML presented in Figure 3, in the
first place is required to check for these biases.

2) Privacy: Protecting the privacy of patients and the
confidentiality of their data is one of the fundamentals of
ethical healthcare. This principle is also translated into legal
codification. For example, the health insurance and portability
and accountability (HIPAA) act assures the privacy of the
medical data of patients. HIPAA’s policy standards are de-
signed to improve the healthcare systems and mandate it for all
healthcare organizations to protect medical information [157].

In the healthcare context, privacy is defined as keeping the
information of patients protected from unauthorized access.
However, ML algorithms requires access to as much data as
possible to improve the precision and accuracy of the outcome.
The amount and type of the needed data are increasing by time
to the extent of seriously blurring the boundaries between what
is “medical”, which should be shared with one’s physician, and
what is “personal” and thus one has the right to keep it private.

How Al-based healthcare or the so-called “deep medicine”
would deal with a disease like depression is an apt example
in this regard. To achieve the potential of “deep medicine”,
the scope of the to-be collected data should be wide enough
to include speech, the intonation of voice, reaction times
from keyboard use, GPS data, social media usage, distinctive
facial attributes in one’s selfies, etc. [144], [146]. To make
the situation more complex, conducting proper analysis for all
these data would necessitate giving access not only to one’s
physician but to many other experts in various areas. Against
this backdrop, special attention should be given to the privacy
requirements, e.g., determining which data is needed, for what
purpose and who should have access to it. Various factors can
put people’s privacy at risk, and we highlight here two of them:

a) Unprotected Data Sharing: With the advanced tech-
nologies, the records and reports of patients are converted into
electronic health records (EHR). These records are available
online via the cloud servers. Techniques based on Internet-
of-Things (IoT) are widely used in healthcare systems for
real-time monitoring of critical patients. However, this ability
leads to data breaching through tracking and monitoring of
patient’s routines which dishonors the patients’ privacy. An
un-protected data sharing technique may lead to breaching
healthcare data and hackers can access confidential informa-
tion like email accounts, messages, and reports of patients. A
systematic review focused on the ethical issues related to the
use of IoT is presented in [158].

b) Misuse of Medical Data: Online prognosis and diag-
nosis systems are trending these days. Many websites provide
cloud-hosted ML/DL-based healthcare facilities that allow
users to get the recommendation through an online healthcare
system based on their EHRs. These websites also provide free
data storing facility and are not always concerned about the
privacy of the users’ data. Consequently, they might unethi-
cally trade the record or data of patients to other companies.
Considering the sensitive nature of medical data and the
requirement for protecting the privacy of patients, there is
a need to design a system that protects against such data
breaches. It must be considered while developing a system that
patient data cannot be inferred by examining the outputs of the
ML/DL model [159]. Thus, it is crucial to manage and protect
the personal information of the patients. Concerned medical
staff and researchers should be aware of risks linked with the
breach of patient data and their legal responsibilities about
processing the data. Because of the particular significance of
addressing the data-related concerns, different countries have
developed policies and laws [160].

3) Informed Consent: As outlined above, the respect for
persons and autonomy are among the widely-agreed upon
principles in modern bioethics. Obtaining an informed consent
from the patient before exposing him/her to any medical inter-
vention is one of the practical applications of these principles
[135]. As it is clear from its very term, the consent of the
patient should be “informed” in nature. In other words, the
patient’s consent should be premised on sufficient informa-
tion about the medical procedure, especially efficacy, safety,
possible benefits and expected harms.

The black-box nature of ML models, as outlined in this



paper, is a serious obstacle to get the necessary informed
consent from the patients. Due to this black-box nature, neither
the patient nor even the clinician will be able to understand
the rationale behind the conclusions or recommendations made
by the AI technologies. To address this concern, the general
data protection regulation (GDPR) has introduced rules for
the decisions and methods based on data-driven approaches to
provide an ethical framework [161]. According to the GDPR
rules, it is the right of an individual to understand why the
model is taking a specific decision and the underlying mech-
anism of decisions concerning the individual. This step limits
the implementation of ML models for clinical applications
because of the use of patient data. That is why improving
the explainability and interpretability of the black-box models,
as discussed in detail in Section III, represent an ethical
requirement in order to facilitate obtaining a proper informed
consent.

Until this ideal situation is in place, where both accuracy
and explainability of ML-based healthcare systems can be
achieved, a number of ethical considerations should be in
order. At the minimum level, the patient should be properly in-
formed about the black-box nature of the ML applications and
all related pros and cons of these applications should be made
clear. Additionally, ML-based medical interventions cannot
be judged indiscriminately; without considering the morally
significant differences and nuances. For instance, consenting
for using ML-based interventions as the only available tool to
treat an incurable and life-threatening disease will not be the
same as consenting for an intervention meant for enhancing
specific physical traits rather than treating a serious health
condition.

Other concerns related to the doctrine of informed consent
have to do with the surveillance of public health, which also
raises ethical issues [160]. Lack of ethical guidelines and fewer
or no proper training of such surveillance programs raises
ethical concerns [162]. Due to the availability of implantable
devices, it is now possible to monitor the patients without
their consent. Despite all these ethical issues, Lee et al. [163]
provided ethical justification about the surveillance of public
health without any explicit consent is ethically justifiable if
principles of contemporary clinical and public health ethics
are taken into the account. However, it is also not guaranteed
that the data collected for a specific objective will always be
used for the same purpose. As it has been shown, the data
can be used for any other purpose by doing slight changes.
Additionally, merging datasets of two different experiments
can be used for the modeling of a third type of experiment
[164]. Therefore, the explicit and targeted consent of patients
is required for the data collection through IoT and for ML/DL
empowered personalized medical systems [165].

4) Care Ethics: As mentioned above, modern bioethics
have other approaches besides principlism. Some of these
non-principlist approaches can provide fresh insights for some
of the ethical questions triggered by AI/ML-based healthcare
systems. The care ethics approach, which focuses on the
domain of intimate human relationships rather than the abstract
application of rules [135], serves as a good example in this
regard. The points discussed below are meant to just give

representative examples of how the care ethics approach can be
of benefit and relevance to the ethical discussions on AI/ML-
driven healthcare.

The issues that can be discussed within this approach go
beyond the question of solely measuring the efficacy and safety
of certain applications or calculating their possible health-
related benefits and harms. For instance, there is a concern
about how these developments would negatively affect the job
security of the medical staff, who may be replaced by Al
devices that can relentlessly work and possibly more efficiently
than humans and without complaints. In response, different
voices stress that the Al tools are meant to support, facilitate,
and enhance the human work of healthcare providers but not
to replace them. On the other hand, some optimist voices
argue that integrating the Al systems into healthcare will make
the healthcare profession more humane, by improving the
physician-patient relationship [144], [148].

Additionally, some researchers expressed specific concerns
about the negative impact of certain applications on the desired
intimate inter-human relations, especially in the healthcare
sector. One of the famous examples is the so-called “carebots”;
employed to offload caregiving to a machine. Even if this
automation of caregiving will not result in causing medical
harm to the patient or job cuts in the healthcare staff, replacing
human care will still have social costs, e.g., exchanging
feelings and emotions among humans will cease to be part of
caregiving [166]. It is to be noted that this concern was a point
of heated discussions among early pioneers in the ethics of
computer science. For instance, the computer scientist, Joseph
Weizenbaum, wrote in the 1970s that it is immoral to use
computer systems for substituting a human function, which
involves interpersonal respect, understanding, and love, even
if they proved to be technically successful [167]. Figure 8
illustrates the overview of the explainable, trustworthy, and
ethical ML methods used for healthcare in literature.

VI. POTENTIAL PITFALLS

The recent advancements in the technology have made it
possible to acquire, save, and share high-resolution medical
images. Such data is being massively generated by many
healthcare facilities on daily basis which has a significant
potential to enable data driven healthcare. In this regard,
researchers are developing learning-based methods using such
large-scale datasets, particularly, DL-based methods have pro-
vided the state-of-the-art performance in many medical image
analysis tasks [168]. However, despite their significant perfor-
mance these models are black-box and lack theoretical under-
standing behind their decisions. Their black-box nature makes
them susceptible to many vulnerabilities such as adversarial
attacks, biased decisions, and being not able to generalize
out of distribution samples, etc. Thus raising concerns about
robustness and trustworthiness of M methods is of high im-
portance, because of their practice in life-critical applications
like healthcare. To circumvent this issue, the explainability
of black-box models and considering ethical constraints is
proposed in the literature. However, the developed explanation
methods have unique challenges and limitations associated
with them, which are described below.
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Fig. 8: Overview of the explainable, trustworthy, and ethical ML models for healthcare.

A. Vulnerability to Input Changes

In clinical settings, it is highly desirable that the explanation
of a particular method should be similar for the same disease
across different patients, which are geographically dispersed
and have unique characteristics (i.e., generalized explanations
for a particular disease type for different patients). However, it
has been shown in the literature that the explanation methods
are vulnerable to input changes. For instance, Ghorbani et
al. [169] demonstrated that a small change in the input
sample caused large fluctuations in the output representations
generated by XML. In addition, the inherent bias in the input
(medical) data (e.g., class imbalance) can be reflected in the
model’s outputs i.e., model might prefer a specific class as
compared to other classes and this bias might influence the
explanations of the model [170].

B. Sub-optimal Explanations

In the literature, visualization-based methods are widely
applied to explain the decisions of ML/DL methods. However,
it is not evident that these explanations are the optimal require-
ment of the medical experts. Weerts et al. [171] examined
how the explanations produced from SHAP influence human
performance for alert processing tasks. They conducted a
human-based study to evaluate whether decision-making tasks
can be improved by presenting explanations. They showed that

SHAP explanations to class probability did not improve the
decision-making. Similarly, Mohseni et al. [172] conducted
a human-grounded study and evaluated the performance of
the LIME algorithm by comparing the explanation produced
by LIME with the weighted explanations generated by 10
humans experts. Their results showed that LIME highlights
some attributions which were irrelevant to the explanations
produced by humans. Therefore, without using the sound
quality measuring technique, the use of these explanation
methods should be avoided for making healthcare decisions.

C. Dependence on Data and Model

The literature suggests that explanations generated by some
gradient-based methods are dependent on the model archi-
tecture and data generation procedure [173]. As these ex-
planations are dependent on the choice of reference point
and a slight change in the reference point of gradient will
significantly change the explanation thus causing confusion
that will eventually lead to misleading results or interpretation.

D. Accountability Attribution

There is no doubt that the deployment of ML for clinical
practice will aid the clinicians. However, it is not clear yet
that who will be responsible in case an algorithm shows



wrong outputs? Whether the clinicians will be responsible
because they are the ones for making final decisions or
institutes forcing clinicians to rely on the decisions of ML?
Researchers developing the algorithms can also be responsible
for bad decisions [174]. This situation becomes even more
complex when we consider all stakeholders in the loop. This
blame game will eventually foster “epistemic vices” such as
“dogmatism or gullibility” [175].

E. Rigorously Evaluating the Method

It has been emphasized in the literature that rigorous eval-
uation of the ML method should be performed to ensure that
no unintended label leakage can occur between the datasets
used in the model training [176]. Label leakage can possibly
arise in subtle ways, e.g., an algorithm may learn the inherent
noise instead of learning the diagnostic parameters. Another
important aspect is to identify and validate the scope of model
performance in both cases, i.e., where it succeeds to accurately
diagnose and where it fails. Moreover, it has been argued in the
literature that traditional statistical performance metrics like
the area under the curve may not be sufficient for evaluating
the models making clinical decisions [176]. Therefore, clini-
cally relevant metrics should be developed for evaluating such
models. In addition to using quantitative metrics, qualitative
measures can be used to identify whether the model is reliable
and relevant for the intended task. Randomized controlled
validation should be performed to evaluate the model efficacy
in a real-time environment. The silent mode testing can be
effective for identifying the errors in the real-time settings
[177].

VII. FUTURE RESEARCH DIRECTIONS

The motivation and the need for explainable, trustworthy,
secure, and robust ML/DL methods applied in healthcare
is clear. In this section, we discuss some future research
opportunities in this field.

A. Explaining Medical Data

ML techniques build their decisions on the latent variables
which are learned from the data. Medical data is one of the
most difficult data to handle due to its complex, multi-variate,
and sometimes non-stationary and scarce nature. The depen-
dence of latent-variables on each other can cause misleading
patterns and due to this issue, the ML-based decision-making
will be misleading. The literature suggests that the data should
be thoroughly scrutinized before the model development to
ensure that it is appropriate for the problem being modeled
[176]. Moreover, it is very important to understand how and
for what purpose this medical data was collected. In addition,
bias in the data is also a major challenge to handle and
that can eventually lead to algorithmic bias [178]. These
biases are hard to undo and their elimination have unintended
consequences on the results [179]. The presence of these subtle
biases in medical data decreases model reliability, especially
when they are not corrected during model development [180],
[181]. Therefore, to develop explainable, reliable, robust, and
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trustworthy algorithms, it is highly required to explain the
dependence and relevance of data variables and patterns first
(before feeding the data to ML algorithms).

B. Representation Techniques for Explanation

It is well established that the explanation of the ML/DL
techniques is required to gain the trust of clinicians in ML/DL
empowered healthcare solutions. However, it very important
to understand that how these explanations are presented to
them, i.e., explanations should be completely understandable
to clinicians. The representation of the explanations needs
adoption of knowledge from other fields. For example, human-
computer interaction (HCI) is a well-developed technique
to empower users. XML researchers should incorporate the
knowledge and techniques from the HCI to better represent
the explanations. Therefore, developing efficient representation
techniques for explanations of ML/DL methods remains an
open research problem.

C. Generalized Explanations

As discussed in Section VI, the explanations produced by
the data-dependent explanation models are vulnerable to the
change in inputs and may vary from patient to patient and
even for the same patient for same disease. This issue should
be resolved by developing robust, efficient, and generalize
explainable models. As we discussed in Section III, that the
explanations of the DL models are model-specific in nature,
therefore, it is also required to develop inherently explainable
and generalize explainable methods for the DL algorithms in
future.

D. Adversarially Robust ML

To attain the explainable, trustworthy, safe, and robust
ML/DL methods, it is very important to address the challenges
like adversarial ML attacks. Over the past few years, it has
been shown that ML/DL methods can be easily fooled and
desired outcomes can be obtained [30], [31]. The critical na-
ture of healthcare applications provides significant motivation
for the malicious actors to defame the ML/DL-based system
and to get the desired outcomes. In the literature, a wide
variety of adversarial ML attacks have been already proposed
and the research on developing respective defense methods
is very limited [73]. This highlights that there is an utmost
need for developing adversarially robust ML/DL techniques.
Moreover, the clinical impact of ML/DL advancements is only
completely possible by overcoming challenges like adversarial
ML attacks.

E. Interdisciplinary Development Workforce

The advancements in ML/DL techniques have a great poten-
tial to revolutionize healthcare. However, to get the real benefit
of these advancements, challenges like ethical issues are need
to be effectively addressed. In this regard, a few studies
suggested involving all types of stakeholders into the ML/DL
method development process that may include clinicians,
policymakers, data scientists, ML researchers, and hospital



staff, to name a few [182], [176]. Such an interdisciplinary
development workforce will enable collaboration between
the knowledge experts (i.e., clinicians and ML researchers)
and healthcare service providers that will eventually improve
productivity and outcomes.

VIII. CONCLUSIONS

In this paper, we have built upon existing literature on the
explainable, trustworthy, and ethical machine learning (ML)
for healthcare and have provided a comprehensive review
of these emerging topics. In addition, we have highlighted
the interconnection among them along with their relevance
and applicability for healthcare applications. We highlighted
various challenges that are hindering the successful deploy-
ment of ML and deep learning (DL) techniques in healthcare
applications and formulated the pipeline for the development
of clinically deployable and explainable ML methods. We also
elaborate upon different security, safety, robustness, and ethical
challenges which are the key barrier towards the development
of trustworthy ML/DL-based healthcare applications. Further-
more, we have discussed in detail, how explainable ML can be
used to address such challenges. Finally, we have identified the
limitations of existing methods and highlighted various open
research issues that require further developments.
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