
1

Towards a systematic approach to manual
annotation of code smells

Nikola Luburić, Simona Prokić, Katarina-Glorija Grujić, Jelena Slivka, Aleksandar Kovačević,

Goran Sladić, and Dragan Vidaković

nikola.luburic@uns.ac.rs, simona.prokic@uns.ac.rs, katarina.glorija@uns.ac.rs, slivkaje@uns.ac.rs,

kocha78@uns.ac.rs, sladicg@uns.ac.rs, vdragan@uns.ac.rs

Faculty of Technical Sciences, University of Novi Sad, Serbia

This work has been submitted to the IEEE for possible publication. Copyright may be transferred

without notice, after which this version may no longer be accessible.

Abstract

Code smells are structures in code that indicate the presence of maintainability issues. A significant

problem with code smells is their ambiguity. They are challenging to define, and software engineers

have a different understanding of what a code smell is and which code suffers from code smells.

A solution to this problem could be an AI digital assistant that understands code smells and can detect

and even resolve them. However, it is challenging to develop such an assistant as there are few usable

datasets of code smells on which to train and evaluate it. Furthermore, the existing datasets suffer from

issues that mainly arise from an unsystematic approach used for their construction.

Through this work, we address this issue by developing a procedure for the systematic manual

annotation of code smells. We use this procedure to build a dataset of code smells. During this process,

we refine the procedure and identify recommendations and risks for its use. The primary contribution is

the proposed annotation model and procedure and the annotators’ experience report. The dataset and

supporting tool are secondary contributions of our study. Notably, our dataset includes open-source

projects written in the C# programming language, while almost all manually annotated datasets contain

projects written in Java.

Keywords: code smell dataset, manual annotation, clean code, software quality, refactoring, machine

learning

mailto:nikola.luburic@uns.ac.rs
mailto:simona.prokic@uns.ac.rs
mailto:katarina.glorija@uns.ac.rs
mailto:slivkaje@uns.ac.rs
mailto:kocha78@uns.ac.rs
mailto:sladicg@uns.ac.rs
mailto:vdragan@uns.ac.rs

2

1 Introduction

Software code is written to answer specific requirements and enable use cases required of the complete

software solution. These requirements state what the code must do (e.g., what output should it produce

for the given input) but do not care for how it is designed or implemented. This abstraction, coupled

with the software’s softness, has the following consequence – a requirement can be fulfilled by a near-

infinite set of different code configurations. Even when limited to a single programming language and a

simple requirement, it is easy to list many code samples that fulfill the requirement using different

coding styles and language features.

While many code solutions can fulfill a requirement, not all of them are acceptable. Some solutions

cause subtle bugs, performance loss, or expose security vulnerabilities. Furthermore, many of the

possible solutions present another severe but less obvious problem. Code that is hard to understand and

modify harms the software’s maintainability, evolvability, reliability, and testability (Sharma & Spinellis,

2018), introducing technical debt. Such code requires more significant mental effort to process and

understand before a programmer can reliably modify it. Consequently, the programmer’s morale and

productivity decline as they spend more time and energy reading old code (Tom et al., 2013), increasing

the overall cost of development (Sharma & Spinellis, 2018). Researchers (Sharma & Spinellis, 2018;

Hozano et al., 2018) and software industry leaders (Fowler, 2018; Martin, 2009) note that such solutions

suffer from code smells – properties of the code that might harm its readability and understandability,

and as a consequence, the related software quality attributes. Removal of harmful code smells results in

sustainable software development (Sharma & Spinellis, 2018; Hozano et al., 2018; Fowler, 2018; Martin,

2009).

Unfortunately, removing code smells is not easy, as many code smell definitions are vague and lack a

concrete heuristic that can unambiguously determine the smell’s presence. For example, the Long

Method code smell (Fowler, 2018) is present in functions that try to do too many things (Martin, 2009),

requiring the programmer to analyze regions of the function to understand their intent before

understanding the overall function. Such methods require much cognitive power to understand (Hozano

et al., 2018; Fowler, 2018). Notably, this smell is not strictly tied to the method’s length in terms of code

lines. Functions with 30 lines of code might not suffer from the Long Method smell if they contain

repeated and easy-to-understand instructions. In contrast, functions with ten sophisticated lines might

require refactoring. As Fowler (2018) noted, even a single code line might be suitable for extraction into

a separate function if its intent is unclear.

Because of their impact on the software’s quality and the ambiguity concerning their identification and

resolution, it would be helpful if code smells could be automatically detected and even resolved.

However, without a clear definition and set of heuristics, it is impossible to rely on simple rules based on

metrics and thresholds (e.g., the number of code lines is higher than ten) to automatically identify code

smells. Such solutions result in many false positives when the threshold is too low or poor recall when it

is high (Sharma & Spinellis, 2018). More sophisticated artificial intelligence (machine learning) models

are needed to understand the code’s semantics or provide more advanced smell detection rules.

Azeem et al. (2019) conducted a systematic literature review that analyzes machine learning (ML)

approaches used for code smell detection. They concluded that ML models generally outperformed

heuristics-based approaches. However, the authors note that the reviewed studies are affected by

3

several threats to validity. Notably, most studies used small or poorly constructed datasets to train and

test their models, limiting their generalizability.

Many larger code smell datasets are automatically labeled using heuristic-based tools (Azeem et al.,

2019). Such datasets exclude instances that do not satisfy some threshold, eliminating positive instances

that an expert would otherwise identify. While some studies manually filter the generated dataset to

remove false positives, there is no way of knowing the number of false negatives (Walter et al., 2018;

Palomba et al., 2015). This issue is especially relevant for code smells such as Long Method and Large

Class (Fowler, 2018) that significantly depend on the code’s semantics and not on, for example, the

number of code lines.

Manually annotating code smells is time-consuming (Azeem et al., 2019) and challenging (Hozano et al.

2018), where a high disagreement exists between software engineers on which code snippets suffer

from some code smell (Hozano et al., 2018). Taibi et al. (2017) presented code snippets that suffer from

some code smell to engineers and found that only 29% of them could name the smell, while 41% could

describe the problem imposed by the smell. Because of these issues, there are no large-scale manually

constructed datasets.

While the lack of large manually annotated datasets is a problem in and of itself, a more severe issue is

that most of the available datasets lack a systematic approach to their construction. As mentioned,

some annotation procedures heavily rely on automated tools and ignore false negatives (Azeem et al.,

2019; Walter et al., 2018; Fontana et al., 2016; Rasool & Arshad, 2017). Others purposefully avoid

training the annotators, aiming to get pure results (Madeyski & Lewowski, 2020; Palomba et al., 2015).

Notably, most studies start with vague definitions of what they are annotating (Hozano et al., 2018) and

produce datasets that are not published in a form that can be used for reliable reproduction, as pointed

out in (Madeyski & Lewowski, 2020).

In this study, we work towards developing a systematic approach to creating a code smell dataset useful

for training machine learning smell detectors. The primary contribution is the proposed annotation

model and procedure and the annotators’ experience report. By surveying the literature, we defined an

initial version of the annotation model and procedure to resolve some threats to the validity of the

existing datasets. We then refined our procedure while building a medium-sized corpus1 for the Long

Method and Large Class code smells (Fowler, 2018), which we selected due to their prevalence and

impact. We report on our annotation experience while following the proposed procedure, highlighting

any recommendations and risks we identified.

We developed an acquisition tool to simplify the process of collecting data for annotation. The tool is

open-sourced as part of the Clean CaDET platform (Prokić et al., 2021) and supports data acquisition

from C# source code repositories. We have also published manuals to help other researchers benefit

from our tool2. The dataset and supporting tool are secondary contributions of our study. Notably, our

dataset includes open-source projects written in the C# programming language, while almost all

manually annotated datasets contain projects written in Java. Aside from the novelty, we chose C#

1 The dataset is available at https://github.com/Clean-CaDET/clean-cadet-dataset
2 The Dataset Explorer tools, along with the documentation, is available at https://github.com/Clean-
CaDET/platform/wiki/Module-Dataset-Explorer

https://github.com/Clean-CaDET/clean-cadet-dataset
https://github.com/Clean-CaDET/platform/wiki/Module-Dataset-Explorer
https://github.com/Clean-CaDET/platform/wiki/Module-Dataset-Explorer

4

because of its popularity and similarity with the Java programming language, making our contributions

relevant for the large research community.

The rest of the paper is structured as follows: Section 2 presents the related work. We examine

procedures used to create existing datasets and comment on the threats to validity we look to address.

In Section 3, we present our annotation model, which includes a generic conceptual model applicable to

all code smells, and its concretization for the Long Method and Large Class smells. Section 4 describes

our annotation procedure and its composing steps. In Section 5, we present our findings, including the

annotators’ experience reports, the characteristics of the constructed dataset, and our study’s

limitations. Finally, Section 6 concludes our work and lists opportunities for future work.

2 Related Annotation Procedures

Experimental studies on source code usually rely on data from three sources, including commercial

projects, academic projects, and open-source projects (Malhotra, 2019). Researchers favor open-source

projects, as the study results are relatively easy to reproduce, validate, and compare with other studies

(Walter et al., 2018). We reviewed the studies that produced code smell datasets from open-source

code snippets and analyzed their annotation procedure.

Walter et al. (2018) developed a dataset from 92 Java open-source projects, which are part of the

qualitas corpus (Tempero et al., 2010) curated Java code collection for empirical studies. They used 11

automated tools for smell detection, which could collectively identify 14 code smells. They ran each

code snippet through a set of tools that could identify a particular smell and defined a label for the

percentile agreement (grouped to 25%, 50%, 75%, and 100%) of the tools for the smell. The authors

note that the descriptions of code smells are usually vague, and detectors interpret them differently. A

dataset generated by heuristics-based tools can be used as a training set. However, manual annotation

is necessary to produce better results.

Fontana et al. (2016) also worked on the qualitas corpus (Tempero et al., 2010). They used five

automated detectors to identify four code smells, where at least two detectors could identify each

smell. This automated annotation identified a set of code smell candidates. Following a semi-random

sampling procedure, three MSc students selected code snippets and manually validated 1986 instances,

determining that over half (1160) were incorrectly classified. They finally produced a dataset of 420

instances for each smell, where one-third included positive instances, while the rest were negative

instances. The authors purposefully selected this distribution for their final dataset to enable machine

learning models to work with a more balanced dataset. However, this unrealistic distribution might

affect the generalizability of machine learning models trained on this dataset, as pointed out in (Di Nucci

et al., 2018). Concretely, the dataset instance distribution responsible for the model’s high performance

significantly differs from a realistic software project (Palomba et al., 2018).

Lenarduzzi et al. (2019) created the technical debt dataset, where they collected 33 Java projects and

ran them through a series of automated tools for quality evaluation and code smell detection. The

automated tools analyzed historical changes for the selected projects by processing their state for

multiple commits and uncovered 38 thousand code smells. All code smells were automatically detected

and the authors did not perform manual validation of the results.

5

Recently, Sharma and Kessentini (2021) published a large dataset of code smells and quality metrics.

They automatically analyzed over 55 thousand Java and 31 thousand C# code repositories to determine

their quality metrics and code smells. While the size of the dataset is impressive (counting over a million

code smells), it was automatically generated using their existing smell detection tool with no manual

validation of the results.

Palomba et al. (2015) built a dataset by annotating 20 open-source Java projects for five different code

smell instances, defining 243 positive instances. One author examined the projects to identify the initial

set of code smell candidates. A second author validated the set of candidates and discarded any false

positives. While such a procedure increases the likelihood that the remaining positive instances are

correctly classified, it does not account for the false negatives the first author might have made. This

issue is particularly relevant for annotating code smells. Other studies have shown a high subjectivity

and disagreement among engineers for determining the presence of a code smell in code (Hozano et al.,

2018; Mantyla et al. 2004).

Another study conducted by the same group (Palomba et al., 2018) presents a dataset made from 30

open-source Java projects, where the authors manually validated 17350 positive instances of 13

different code smells. The authors used an automatic detection tool to gather a list of code smell

candidates. Two annotators have manually validated the candidate code smells. The detection tool uses

simple rules with low thresholds that overestimate the presence of code smells to ensure a high recall.

Significantly, a Long Method smell candidate is selected if a function’s number of lines of code (LOC)

exceeds the average of the project, while a God Class is detected if a class has LOC above 500 and its

cohesion is lower than the average of the project. These rules can vary greatly depending on what the

average LOC for the project is. For projects with inexperienced engineers, the average can quickly go

above the conventional recommendations from the industry and other research, where functions with

LOC above 30 (Hozano et al., 2018; Fowler, 2018; Martin, 2009) and classes with LOC above 100

(Bafandeh Mayvan et al., 2020) might be affected by a smell. Furthermore, even functions with LOC

above ten can impose a readability issue if the code is sufficiently complex (Fowler, 2018; Martin, 2009).

Madeyski and Lewowski (2020) developed a dataset from 792 open-source Java projects. A total of 26

software engineers looked for four different code smells and annotated 4770 code snippets, randomly

selected from the project pool. As multiple engineers labeled each code snippet, the dataset includes

14739 independent annotations. Notably, 16 annotators individually labeled less than 300 instances

(positive and negative) of the four smells collectively. This means that each of the 16 engineers might

have labeled less than 50 instances for a specific smell. In our experience, the annotators had to

examine many instances for each smell (e.g., over a hundred) before they could annotate it reliably and

consistently, regardless of their previous experience. Therefore, the labels made by these annotators

might present a threat to the dataset’s validity. To the study’s credit, the five most active annotators

had an average of 10 years of professional programming experience. Another limitation is that some

instances were labeled by a single annotator, which is problematic as the labeling process is error-prone.

Rasool and Arshad (2017) present one of the few studies that include an open-source dataset of code

smells found in C# projects. However, this dataset has several limitations, as it includes four C# projects

where the annotation was done automatically using simple heuristics. A single MSc student

subsequently validated the candidates to produce the final set of code smell instances.

6

The chief threat to the validity of many annotated datasets is the starting premise – the definition of a

code smell. Most studies roughly define a code smell, usually with a few high-level sentences, and in the

best case, with illustrative examples. For manually annotated datasets, the studies either purposefully

avoid training the annotators or list a short workshop. This preparation might be problematic, as manual

code smell detection is subjective (Mantyla et al. 2004), produces high disagreement among

experienced software engineers (Hozano et al., 2018; Taibi et al., 2017), and significantly differs

between the scientific literature (Bafandeh Mayvan et al., 2020) and industry best practices (Fowler,

2018; Martin, 2009). Another common limitation is the lack of a usable and easily accessible dataset.

Many datasets are not published in a form that can be used for reliable reproduction, missing vital

information such as source code revision and URLs to code snippets, as pointed out in (Madeyski &

Lewowski, 2020). While not a shortcoming of any one study, almost all available datasets contain

projects written in the Java programming language.

In this paper, we develop an annotation model and procedure to address the listed limitations by:

• Establishing a common understanding of the smells, related heuristics, and code characteristics

used for their identification through the annotation model and training the annotators

appropriately.

• Creating an annotation procedure with opportunities for cross-validation and discussion to align

understanding as new coding styles are uncovered.

• Defining a schema for the dataset that supports reliable reproduction and contains the

necessary information.

• Building a dataset of code smells in C# software projects.

3 Annotation Model

The most important consideration for developing a code smell dataset is the definition of the code

smell. Without a good understanding of what is being annotated, it is impossible to produce a useful

dataset. We first explored the guidelines regarding code smells from books, whitepapers, and blogs

authored by notable subject matter experts (Fowler, 2018; Martin, 2009; Martin et al., 2003) and tool

vendors that specialize in code quality analysis (Campbell, 2018). We noted what engineers look for

when doing code reviews and which metrics the quality analysis tools calculate for their smell detection

engines. Next, we explored the scientific literature for related research, including:

• Dataset annotation studies. We examined the literature described in the previous section to

extract any annotation guidelines useful to our context.

• Studies that examine engineer perception of code smells. We examined these studies (Hozano

et al., 2018; Hofmeister et al., 2017; Taibi et al., 2017; Padilha et al., 2014; Palomba et al., 2017;

Santos & de Mendonça, 2015; Palomba et al., 2014; Schumacher et al, 2010) to extract the

guidelines stemming from human intuition regarding code smell annotation and smell severity.

• Studies of automated smell detection. We examined studies gathered in the systematic

literature review on the topic (de Paulo Sobrinho et al., 2017; Bafandeh Mayvan et al., 2020) to

extract the domain knowledge researchers strived to encode in their algorithms.

From this literature, we developed a conceptual model of code smells, which we describe in Section 3.1.

To provide a concrete example of this abstraction and precisely define what we annotated, we briefly

7

define the annotation model for the Long Method and Large Class code smells in Section 3.2. We focus

on the Long Method and Large Class code smells due to their prevalence in all software types (Palomba

et al., 2018), extensive research body from which we can derive heuristics (Sharma & Spinellis, 2018;

Azeem et al., 2019), and the negative impact they have on software quality attributes (Kaur, 2020). We

consider severe instances of the Large Class code smell to be akin to the God Class (Santos & de

Mendonça, 2015).

3.1 Conceptual Model

Figure 1 describes our code smell annotation conceptual model, where we denote the entities and their

relationships.

Figure 1 Code smell annotation conceptual model

3.1.1 Code smell model

Our Code Smell entity is a high-level concept that denotes a category of issues that harm the code’s

maintainability by making the code difficult to understand or change to fulfill new requirements. We

derive these entities from catalogs of code smells, such as (Fowler, 2018).

Smell Heuristics decompose code smells into less vague properties of the code and are closely related to

the software engineer’s cognitive load, thinking process, or experienced issues when working with the

code (Hozano et al., 2018). For example, we define the “method is too complex” heuristic for the Long

Method code smell. This heuristic applies to a code snippet when the engineer spends much time

processing a line of code or region of a function to determine its intended behavior. As another example

not related to our selected smells, the Shotgun Surgery code smell (Fowler, 2018) could define a

heuristic as “supporting a change to an existing functionality requires opening too many source files.”

We determine heuristics for a specific code smell by examining industry recommendations (e.g., from

books (Fowler, 2018; Martin, 2009), blog posts, tutorials) and empirical research related to the

engineer’s perception of code smells (Hozano et al., 2018; Mantyla et al. 2004).

Importantly, both the code smell and its related heuristics are inherently subjective, which means that

one engineer might claim that a method is too complex, while another might not. This subjectivity is the

reason why it is challenging to apply rule engines or other automatic tools to identify and label code

smells. Refer to Section 1 of our supplementary material for an example illustration of this point.

3.1.2 Annotation model

Once we select the code smells and determine heuristics that signal their presence, we can instantiate

the label model for a set of code snippets. We use the term code snippet to define any code that can be

8

affected by a code smell (i.e., a function for Long Method, and a class for Large Class). An annotator

instantiates a Smell Annotation entity for each code snippet that is examined for a specific smell.

The annotator determines the presence and severity of a particular code smell. We used the severity

scale defined in (Fontana et al., 2016), where:

0. means there is no smell or that it is very mildly present and negligible. The code snippet does

not require refactoring regarding this code smell. This does not mean that the code is perfect,

and a code snippet can have room for minor enhancement and still have a severity of 0.

1. means there is a minor presence of the smell that slightly reduces the snippet’s readability.

Usually, one or two refactoring operations can resolve the issue. In terms of prioritizing work,

we note that such code is “good enough” . However, engineers should refactor such instances as

part of normal development to reduce the comprehensibility strain that arises from multiple

severity 1 instances.

2. means there is a significant issue that hampers readability. It should be resolved by applying a

series of refactoring operations. We consider such refactoring a high-priority activity when the

code snippet is part of a module under active development, as it negatively impacts daily tasks.

3. means there is a critical issue that severely harms the readability of the code snippet. Resolving

this issue requires dedicated work to redesign the code snippet and entails many refactoring

operations. We consider refactoring mandatory for such code snippets, provided they are part

of a module under active development.

Before determining the severity of a code smell, the annotator labels any applicable heuristics regarding

the smell. For each Heuristic Annotation, they provide reasoning why the heuristic is applicable. This

reasoning provides insight into the thinking process of the annotator and helps guide the annotation

procedure. For example, an annotator might apply the “method is too complex” heuristic for a code

snippet. They then define the reasoning that justifies this application. For example, the annotator can

state that “the method has many long expressions and message chains” or “the method has several

complex conditional expressions that include literal values with unclear meaning”.

Notably, the final severity is not the sum of the applicable heuristics. For example, we annotated code

snippets with two applicable heuristics and severity of 3, while another had three applicable heuristics

and severity of 2. This can occur because a heuristic might present a minor violation (e.g., “method does

multiple things” applies because it does three things), a major violation (e.g., “method does multiple

things” applies because it does 30 things), and everything in between. We do not model the severity of

each heuristic, as this overly complicates the annotation procedure.

3.1.3 Code characteristics

Significantly, our smell heuristics differ from the heuristics defined by Martin (2009) and a significant

portion of industry best practice authors. Martin’s heuristics focus on code characteristics instead of the

engineer’s perception. They are much more concrete, as most can easily map to a specific code

structure. For example, Martin defines a heuristic around “magic numbers” where the goal is to identify

any token with a value that is not self-describing (e.g., a literal number with a strange value), and

replace it with a descriptive variable or constant. In general, these low-level concepts can be traced to

specific lines of code, structural metrics, or concern metrics (Padilha et al., 2014) of the code snippet.

9

We represent Martin’s heuristics as Code Characteristics in our model. These low-level concepts can

explain why our heuristic is applicable for the given code smell. For example, an annotator might find

the heuristic “method does multiple things” applicable when they find several code regions in a function

that are delimited by newline characters and comments that explain what the next region of code does.

In this case, the comments and newline characters are the code characteristic. Likewise, for the

“method is too complex” heuristic, an annotator might determine that the reason behind this

complexity are several sophisticated conditional expressions that are hard to process mentally.

We differentiate two categories of code characteristics, including Structural Indicators tied to structural

metrics and Semantic Indicators related to concern metrics (Padilha et al., 2014). Unlike metrics that

give a concrete number (e.g., how many lines of code a function has or how many responsibilities a class

has), our indicators are assessments of the contribution of the given code characteristic to the

applicability of the related heuristic. As an example, an annotator might explain that a “method is too

complex” because of high cyclomatic complexity combined with several long conditional expressions

that use magic numbers and fields with mysterious names. When taken to the extreme, these code

characteristics might be sufficient to set the Long Method’s smell severity to 2 or 3, even though the

function might have less than thirty lines of code.

Notably, we relate these code characteristics to our heuristic annotations very loosely, through the

“Reasoning” free-form description. We do not explicitly annotate these indicators, as that would

significantly reduce the speed of annotation. Instead, we list notable instances of these indicators during

the annotation procedure to refine it and align the annotators’ understanding.

3.2 Long Method and Large Class heuristics

Here we briefly discuss the heuristics that guided our annotation of the Long Method and Large Class

code smells. In the supplementary material, we provide a deeper analysis of each heuristic in Sections 2

(for Long Method) and 3 (for Large Class). There we discuss the literature findings that support the use

of the heuristic for smell identification and examine the related code characteristics. We supplement

this set of code characteristics with our experience from the proof-of-concept annotation.

For the Long Method code smell, we defined the following set of heuristics:

• Method is too long, where the annotators focus on the length of the method and the logic it

performs.

• Method is too complex, where the annotators focus on code characteristics that make the

method harder to comprehend.

• Method does multiple things, where the annotators focus on the semantic cohesiveness of the

logic inside a method.

For the Large Class code smell, we defined the following set of heuristics:

• Class is too long, where the annotators focus on the length of the class, the number of fields,

properties, and methods.

• Class is too complex, where the annotators focus on code characteristics that make the class

harder to comprehend.

• Class has multiple concerns, where the annotators focus on the semantic cohesiveness of the

logic inside a class.

10

4 Data Annotation Procedure

Starting from the annotation model described in the previous section, we designed an annotation

procedure and used it to create a dataset of Long Method and Large Class code smells. Figure 2 presents

the main activities of the annotation procedure used to create our dataset.

The initial annotation model and procedure were constructed by three authors (NL, JS, AK). One of them

(NL) then followed the annotation procedure with two other authors (SP, KGG) to create the final

dataset. NL has six years of experience in the software engineering industry and is a professor on several

programming and software engineering courses. SP and KGG are Ph.D. students researching code

quality and code smells with several small-scale industry projects behind them, amounting to a year and

a half of industry experience each. We conducted two two-hour workshops to train the annotators

through theory and exercises and reach a common understanding of the selected smells and heuristics.

Figure 2 Annotation procedure

As part of the proof-of-concept annotation, we annotated a set of code snippets to test the chosen

heuristics’ validity, streamline the annotation procedure, and further develop the understanding of code

smells among the annotators. This activity resulted in most of the changes to the annotation model. We

describe the proof-of-concept annotation in Section 4.1. Then we performed the full annotation of code

snippets to create the complete dataset. We describe the details of this activity in Section 4.2.

4.1 Proof of Concept Annotation

We used the proof-of-concept annotation to test the annotation model and procedure and gather

insight for their improvement. We conducted the proof-of-concept annotation in three rounds over four

software projects listed in Table 1.

At the start of each round, we selected code that we would annotate. We chose a simple student project

developed by four third-year undergraduate students as part of their software engineering semester

project for the first round. For the second round, we selected a random subset of code snippets from an

open-source project, randomly retrieved from GitHub. Finally, we selected a random subset of code

snippets from two open-source projects for the third round. In the second and third rounds, we chose a

random 10% of classes and functions, excluding any functions that had less than 5 lines of code to avoid

trivial code snippets, as recommended in (Madeyski & Lewowski, 2020). We also excluded test-related

classes and functions (i.e., integration and unit tests) to focus on functional code smells and not test

smells.

11

Table 1 Summary of selected projects for the proof-of-concept annotation

Name Software type Selected classes Selected methods and constructors

Student Project Administrative application 81 263

BurningKnight Video game 130 408

ShopifySharp Integration library 25 20

Core2D 2D diagram editor 30 120

Three annotators independently annotated the presence of a code smell, its severity, and applicable

heuristics for each code snippet. When annotating a single instance of our dataset, we adhered to the

following algorithm:

1. For each heuristic, determine if it is applicable. For example, declare if a “method is too long” by

answering the question, “In your opinion, does the method’s length harm its readability?”.

2. For each applicable heuristic, provide brief reasoning behind the decision. We used the

reasoning to understand which code characteristics are related to each heuristic. We describe

the findings we made through this reasoning in the previous section.

3. Considering the applicable heuristics and the code snippet’s overall structure, determine the

presence and severity of a particular code smell.

During each round, the annotators met several times to discuss their progress and observations

regarding the annotation procedure and align their understanding. Additionally, each round ended with

a retrospective discussion. Here we summarized these findings to enhance the annotation model and

streamline the procedure for the next round. For example, the student project’s simplistic nature guided

us to select larger open-source projects and exclude the student project from the dataset. Then, to

increase the variety of examined coding styles, we opted to select a smaller percentile of random code

snippets from a single project to have time to cover more projects.

By the end of the third round, each annotator labeled 155 classes and 709 methods and constructors.

We refined the annotation procedure, conceptualized the final annotation model, and achieved a

common understanding of the code smells and heuristics between the annotators. We made a final

review of the labels and contributed the annotations related to the open-source projects to the final

dataset.

4.2 Full Annotation

We conducted a full annotation to build a medium-sized dataset. Here we followed a similar approach

for the full annotation as with the third round of the proof-of-concept annotation with several

differences.

We expanded the code selection strategy to exclude classes with less than two methods or four fields.

We determined that such classes are too trivial to suffer from the Large Class code smell. Furthermore,

we searched GitHub for sufficiently sophisticated projects developed in C#. Using the advanced search,

we looked for moderately popular projects (i.e., over 5000 stars) that had undergone sufficient

development (i.e., over 1000 commits) and had development activity within the past six months. This

search criterion helped us avoid simplistic and under-developed projects that might not represent a

typical active open-source project. Table 2 lists the selected projects for the full annotation. Finally, we

12

selected different types of projects (e.g., video games, graphic frameworks, AI frameworks, security

libraries, media systems…) to cover a wide variety of coding styles and flavors of code smells.

Table 2 Summary of selected projects for the full annotation

Name Software type Selected classes Selected methods and constructors

ShareX Screen capture and media sharing library 81 194

OpenRA Strategy game engine 219 441

Jellyfin Software media system 129 519

MonoGame Video game development framework 70 280

osu! Video game 236 593

We divided the snippets into subsets, where two of the three annotators independently annotated each

subset. The third annotator examined code snippets where the two annotators were not in agreement

regarding the presence of the code smell or its severity. Without looking at the individual annotations,

the third annotator would submit a third opinion for the code snippet. This disagreement resolution is

like the cross-check performed in (Madeyski & Lewowski, 2020). If a code snippet was annotated with

three different severity scores, we extensively discussed the snippet and the reasoning behind our

severity score. Often the initial disagreement would be the result of an oversight by an annotator, and

they would modify their score after more in-depth analysis.

Annotating each project ended with the retrospective discussion. The annotators discussed new code

characteristics that helped them determine the presence and severity of a smell, expanding the previous

section’s findings.

5 Results and Discussion

In this section, we discuss the outcomes of our work and present the related findings and limitations.

Section 5.1 details the characteristics of our dataset, including its datasheet and basic statistical

information. In Section 5.2, we compare our results with the most similar dataset in the literature and

perform a series of statistical tests on both datasets to discuss the advantages of our approach. In

Section 5.3, we perform a series of statistical tests to determine the consistency of our annotations

across multiple dimensions. Section 5.4 describes the annotators’ observations and experience of

annotating the dataset of code smells. Here we explore our recommendations regarding building the

annotation model and conducting the procedure. We group these takeaways into an annotation

guideline to support researchers in building their datasets. Finally, in Section 5.5, we discuss the

limitations of our study and threats to validity.

5.1 Dataset Characteristics

The datasheet of our dataset is inspired by (Madeyski & Lewowski, 2020), where each annotated

instance contains the following:

• Code Snippet ID – the full name of the code snippet. For classes, this is the package/namespace

name followed by the class name. The full name of inner classes also contains the names of any

outer classes (e.g., namespace.subnamespace.outerclass.innerclass). For functions, this is the

full name of the class and the function’s signature (e.g., namespace.class.method(param1Type,

param2Type)).

13

• Link – The GitHub link to the code snippet, including the commit and the start and end LOC.

• Code Smell – code smell for which the code snippet is examined.

• Project Link – the link to the version of the code repository that was annotated.

• Individual annotations – the severity score and applicable heuristics determined by each

annotator.

• Final severity – a single severity score calculated using the algorithm described below.

• Metrics – a list of metrics for the code snippet, calculated by our platform (Prokić et al., 2021).

For the final annotation, if there is a majority vote, where a single severity score has the most votes, it is

selected (e.g., when individual annotations of an instance are 0, 0, 2, the final severity is 0). Otherwise,

we choose the severity given by the more experienced annotator.

Table 3 lists the basic characteristics of our dataset. Notably, our dataset consists of 3495 annotated

instances across two code smells, with a minimum of two annotations made by different annotators for

each instance. Compared to a larger corpus, such as (Madeyski & Lewowski, 2020), our dataset

comprises fewer projects and annotators but maintains a similar number of annotations, resulting in a

medium-sized corpus.

Table 3 Basic characteristics of our dataset

Characteristics Value

of projects 8

of annotated smells 2

of annotators 3

Total # of annotated instances 3494

Total # of annotations 8202

Average # of annotations per instance 2.35 (minimum 2)

Average # of annotations per annotator 2734 (minimum 2599)

Table 4 counts individual severity labels for each smell. We note that more than 25% of the examined

code displays at least minor maintainability issues. However, if we consider that severity 1 code is “good

enough,” we conclude that roughly 10% of the examined code requires immediate refactoring.

These results align with previous empirical research on the diffuseness of code smells (Palomba et al.,

2018). However, two things should be considered when interpreting these results in terms of software

maintainability. First, most of our instances (80%) stem from popular and active open-source projects.

This subset of all software (including less popular open-source projects and commercial projects) might

not represent the broader distribution of code smells. Second, while a single severity 1 smell might be

“good enough,” many code snippets suffering from such smells add up and harm the software’s

maintainability.

14

Table 4 Number of final severity labels for each smell

Code Smell
Total # of
instances

of final severity labels

0 1 2 3

Large Class 920
677
(73.6%)

145
(15.8%)

69
(7.5%)

29
(3.2%)

Long Method 2574
1924
(74.7%)

417
(16.2%)

182
(7.1%)

51

(2%)

5.2 Comparison with other datasets

We compare our dataset solely with the MLCQ dataset (Madeyski & Lewowski, 2020) for the following

reasons:

• It was fully manually annotated, and its annotation procedure most closely resembles ours.

• It was a large-scale initiative that included 26 practitioners, examined code snippets from 523

projects, and produced 4019 Large Class labels and 3362 Long Method labels.

In Table 5, we examine the severity label distribution for the code smells annotated in both datasets.

Notably, our dataset has twice as many Long Method annotations, while the MLCQ dataset has twice as

many Large Class annotations. Interestingly, the severity label distribution is similar, especially for labels

2 and 3. We also note a higher presence of severity 1 labels in our dataset, arriving at 5.2% for Large

Class and 7% for Long Method.

Table 5 Number of individual severity labels for each smell in our dataset compared to the MLCQ dataset

Code
Smell

Clean CaDET Dataset MLCQ Dataset (Madeyski & Lewowski, 2020)

Total # of
annotations

of individual severity labels Total # of
annotations

of individual severity labels

0 1 2 3 0 1 2 3

Large
Class

2130
1497
(70.3%)

393
(18.5%)

174
(8.2%)

66
(3.1%)

4019
3045
(75.8%)

535
(13.3%)

312
(7.8%)

127
(3.2%)

Long
Method

6072
4200
(69.2%)

1243
(20.5%)

498
(8.2%)

131
(2.2%)

3362
2556
(76%)

454
(13.5%)

274
(8.1%)

78
(2.3%)

We examine the top five contributors of the MLCQ dataset, including reviewers with IDs 1 (7.5 years as a

professional software developer), 3 (6.25 years), 4 (19 years), 5 (2 years), 20 (15 years). These

contributors created 74% of the Large Class and 74% of the Long Method labels. As expected, the label

severity distribution of these contributors varies only slightly from the distribution presented in Table 5.

Interestingly, the severity label distribution does not correlate with years of professional experience.

Reviewer 3 stands out from the rest of the contributors as having a stricter labeling strategy. For Large

Class, reviewer 3 contributed 25% of the total labels, including 39% of severity 1 labels, 49% of severity 2

labels, and 74% of severity 3 labels. On average, each of the other four reviewers contributed 12% of the

total labels, including 9% of severity 1 labels, 6% of severity 2 labels, and 2% of severity 3 labels. We find

a similar but less extreme trend for the Long Method annotations.

In the MLCQ developer survey, reviewer 3 stands out from the rest of the top contributors as someone

who: (1) contributes to open-source projects, (2) uses code smell names in team discussions and code

reviews, and (3) considers both Large Class and Long Method a significant (5 out of 5) code smell. These

15

findings indicate a higher interest and possibly expertise in code quality, explaining the different labeling

strategies.

5.3 Statistical analysis of the annotation process

Annotators used predefined heuristics for code smells in the annotation process. As noted in 3.1.1, the

subjectivity of these heuristics poses a challenge to automated tools, as even annotators may have

different understandings of code smells and their heuristics. Code metrics represent non-subjective

code characteristics, unlike heuristics, and for this reason, we used metrics in conducted statistical tests.

We used the ANOVA (Analysis of Variance)3 and MANOVA (Multivariate Analysis of Variance)4 tests from

the Statsmodels library (Seabold & Perktold, 2010) to calculate:

• The annotation consistency of the single annotator - The goal of the statistical tests we

conducted is to determine whether annotations of a single annotator are consistent regarding

code metrics.

• The annotation consistency between annotators - In this case, we want to determine whether

different annotators are mutually consistent in the annotation process, i.e., whether they follow

the same guidelines as measured by code metrics when annotating.

• The significance of code metrics in the annotation process – The final step in our statistical

analysis is to identify individual metrics that indicate differences in the understanding of the

code smell.

From the results of statistical tests, we can identify potential rules or patterns that exist and thus

improve the annotation process. The results of metric-based statistical tests that indicate annotations'

inconsistency can help annotators see where they went wrong when annotating. For example, suppose

the annotators assigned the same severity to instances that differ according to a particular metric. In

that case, the heuristics may not cover the metric-expressed aspect of the code smell. However, note

that not all code metrics are relevant for all smells. Thus, a domain expert should examine this result - if

a metric indicating annotation inconsistency is irrelevant for a code smell, it should be ignored.

We used 25 metrics for Large Class code smell and 18 metrics for Long Method code smell5. Regarding

the interpretation of test results, it is important to emphasize that we compared the p-value with the

significance level α of 0.05 (this value indicates a 5% risk assuming a significant relationship between the

dependent and independent variable where the relationship does not exist).

5.3.1 The annotation consistency of the single annotator

The annotation consistency of the single annotator was analyzed using the MANOVA test. Our goal was

to conclude whether the annotations of one annotator are consistent. Ideally, an annotator should

assign the same severity to instances similar in terms of code metrics values and different severity to

instances different in terms of code metrics values.

3 Statsmodels library https://www.statsmodels.org/stable/anova.html. Accessed August 9, 2021
4 Statsmodels library
https://www.statsmodels.org/stable/generated/statsmodels.multivariate.manova.MANOVA.html. Accessed
August 9, 2021
5https://github.com/Clean-
CaDET/platform/blob/c4acff95ec00ff6c25fa62dde4818c1f40e39d39/CodeModel/CaDETModel/CodeItems/CaDET
Metrics.cs

https://www.statsmodels.org/stable/anova.html
https://www.statsmodels.org/stable/generated/statsmodels.multivariate.manova.MANOVA.html
https://github.com/Clean-CaDET/platform/blob/c4acff95ec00ff6c25fa62dde4818c1f40e39d39/CodeModel/CaDETModel/CodeItems/CaDETMetrics.cs
https://github.com/Clean-CaDET/platform/blob/c4acff95ec00ff6c25fa62dde4818c1f40e39d39/CodeModel/CaDETModel/CodeItems/CaDETMetrics.cs
https://github.com/Clean-CaDET/platform/blob/c4acff95ec00ff6c25fa62dde4818c1f40e39d39/CodeModel/CaDETModel/CodeItems/CaDETMetrics.cs

16

The data preparation for the test involves separating annotated instances into groups (a group for each

severity). The annotation (severity) is an independent variable, and the metrics are dependent variables.

In this context, a statistically significant difference between groups means that the metric values of

those instances marked with different severity are different. In contrast, the instances within the same

group are similar in terms of metrics.

We executed the MANOVA test for each annotator and code smell separately. One of the conditions for

performing the MANOVA test is that the number of elements in each group must be greater than the

number of the dependent variables6. Since this condition was not met on most individual projects, we

ran the MANOVA test on the entire data set (on all annotated instances). Based on the p-values from

Table 6, the annotation consistency of the individual annotators was satisfactory. The assigned

annotations are consistent with metric indicators (annotators marked code snippets with similar

metrics' values with the same severity).

Table 6 P-values obtained from MANOVA test results for a single annotator

Code smell
Annotator

1 2 3

Large Class 0.000 0.000 0.000

Long Method 0.000 0.000 0.000

5.3.2 The annotation consistency between annotators

The annotation consistency between annotators was analyzed using the MANOVA test. Our goal was to

conclude whether the instances annotated with particular severity differ in metrics' values. Ideally,

different annotators should assign the same severity to instances similar in terms of their code metrics

values.

We prepared the data for the test by separating annotated instances into groups for each annotator,

where the annotator is an independent variable, and the metrics are dependent variables. A statistically

significant difference between groups indicates that the metrics’ values of instances annotated with the

same severity are different.

We executed the test for each severity and code smells separately. As in testing the consistency of a

single annotator, the condition for the size of the data set of individual projects was not met here, so we

ran the MANOVA test on the entire data set. P-values shown in Table 7 indicate no statistically

significant differences between groups in most cases, which is favorable in this case. The absence of a

difference between the groups indicates that the metrics’ values of the instances annotated with the

same severity by different annotators are similar. The test showed that in some cases (severities 1 and 2

for Long Method code smell), different annotators annotated instances with non-similar metrics’ values

with the same severity (cells marked with *). After obtaining the results of the MANOVA test, we

executed the ANOVA test for each metric separately to determine which metrics influenced the

inconsistency between annotators.

6 One-way MANOVA in SPSS Statistics https://statistics.laerd.com/spss-tutorials/one-way-manova-using-spss-
statistics.php. Accessed August 9, 2021

https://statistics.laerd.com/spss-tutorials/one-way-manova-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/one-way-manova-using-spss-statistics.php

17

Table 7 P-values obtained from MANOVA test results between annotators

Code smell
Severity

0 1 2 3

Large Class 0.7072 0.3973 0.9994 0.9838

Long Method 0.7989 0.000* 0.0014* 0.6832

Table 8 shows the metrics for which the p-values from the ANOVA test were less than the significance

level (given the number of metrics, we do not display a table with all p-values). The results indicate that

instances annotated with the same severity have statistically significant differences in these metrics.

Table 8 Long method metrics with the least impact on the annotations

Severity No. of metrics Metrics

1 12 out of 18 CYCLO, CYCLO_SWITCH, MLOC, MELOC, NOLV, MNOL, MNOC, MNOA, NONL, NOMO, MMNB, NOUW

2 10 out of 18 CYCLO, CYCLO_SWITCH, MLOC, MELOC, NOLV, MNOL, MNOC, NOSL, MMNB, NOUW

Following this analysis, we discuss why instances annotated with the same severity differ in the values of

these metrics. We performed a subsequent manual inspection of the inconsistent subset of our

annotations. In some cases, particularly in our earlier annotations, there were human errors. We

corrected these annotations to improve the correctness of our dataset. However, there were cases

where we kept a nonzero severity label due to the particularity of the code, even though metric values

would signal that there is no code smell (see Supplementary material, Section 4 for examples). Based on

such instances, we assume that not all inconsistencies between the values of the metrics and the

annotated severity are indicators of incorrect annotations.

5.4 Annotator Observations

Due to the ambiguity of the subject matter, annotators were instructed to pay close attention to the

procedure and annotation model and write down all observations they made along the way. High-level

observations were concerned with the procedure’s format and workflow, which we examined during the

retrospective discussions to make them more effective. Low-level observations were related to the

annotation model and particular code snippets. We systematically examined the Reasoning fields

(described in Section 3.1.2) during each retrospective discussion and expanded our annotation model

(summarized in Section 3.2) when appropriate.

Apart from expanding the annotation model, frequent discussions enabled us to define how we treat

certain code constructs. For example, we agreed to treat anonymous inline functions as part of the

containing method. We also agreed that inner classes could be independently annotated while

contributing to the outer class’s complexity and length.

Recommendation 1: While frequent discussions and retrospectives are helpful for any data

annotation, they are essential for data with ambiguous meaning, such as code smells. We

recommend that annotators take the time to align their understanding of the subject matter

and discuss all observations, especially in the starting rounds of the annotation procedure and

after any lengthy break from the annotation work.

18

While annotating various projects, we discovered that annotation experience could affect the labels.

Once we started annotating a new project, the novel domain, coding style, and constructs introduced

cognitive overhead that might increase the severity score by a grade. As we got familiar with the project,

the code snippets were generally easier to understand, affecting the heuristics related to complexity.

Recommendation 2: Engineers familiar with the code might have a different perception of the

presence and especially the severity of a code smell than somebody who has never seen the

code (Taibi et al., 2017). This phenomenon affects annotators as well. We recommend

annotators consider this familiarity factor and discard, give less weight to, or revisit their first

annotations for a given project.

Regardless of previous experience, all three annotators had to go through several projects (about 100

code snippets per smell) to stabilize their labeling strategies and severity scores. Each annotator had to

look at different projects, coding styles, and smell severities through the heuristics lens and to

contemplate and discuss their applicability to develop a consistent mental model. The initial lack of

consistency is why we excluded the first project we annotated (the student project) from the dataset

and why we reexamined the second project at the end of the proof-of-concept annotation.

Recommendation 3: While software engineering experience contributes to the quality of code

smell detection and resolution (Madeyski & Lewowski, 2020; Taibi et al., 2017), annotating code

smells appears to be a loosely related skill. We recommend that annotators label snippets from

several different projects and coding styles to stabilize their labeling strategy. They should then

discard, give less weight to, or revisit earlier annotations once they become confident in their

labeling consistency.

After overcoming the initial labeling inconsistency and considering the familiarity factor, we found two

more factors influencing our labeling consistency. First, all three annotators reported a maximum of two

hours per day spent on labeling. It was not easy to maintain focus after that, and the quality and speed

of the annotation significantly declined. Second, all three annotators reported a subjective feeling of

“annotating too fast, at the cost of quality” after annotating code snippets over a more extended period

(e.g., two-three weeks).

Recommendation 4: Annotating code smells following our annotation model is mentally taxing

and becomes tedious when practiced over an extended period (i.e., over a few hours a day or

several weeks in a row). We recommend annotators spread out their dataset construction and

integrate periods of downtime to refresh their perspective and patience.

Before the proof-of-concept annotation, our initial set of Long Method and Large Class heuristics was

larger than the one reported in Section 3. For Long Method, we examined the applicability of the

“method has expressions at different levels of abstraction” and “method has side-effects” heuristics. We

quickly found that the first heuristic always applies when the heuristic “method does multiple things”

applies. As it was a subset, we declared the “abstraction levels” heuristic to be a code characteristic of

the “multiple things” heuristic. Regarding side-effects, we found it was too difficult to identify and

consistently annotate this heuristic. Similarly, the Large Class contained two additional heuristics that

we discarded because they were too difficult to examine and consistently label.

19

Recommendation 5: It is not easy to define a good set of heuristics due to the ambiguity of code

smells. We recommend that annotators remain flexible with their annotation model. They

should be aware of heuristics that rarely get selected and remove them. They should also look

for heuristics that are tightly correlated with other heuristics and consider demoting them to

code characteristics of the superset heuristic. Finally, while our experience did not include such

cases, annotators should examine if any heuristic could benefit from being divided into multiple

heuristics.

Over time, we refined rules that would exclude trivial code snippets that had no chance of suffering

from a code smell. We inherited one rule from (Madeyski & Lewowski, 2020) by excluding methods with

less than five lines of code (including method header). We then modified this rule to exclude methods

with less than three effective lines of code to eliminate short methods that were expanded because of

whitespace or comments. Likewise, we introduced a rule to eliminate class code snippets with less than

two methods or four fields.

Recommendation 6: Over time, annotators will discover that certain combinations of code

characteristics will always result in a zero-severity score for some smell. We recommend that

annotators filter out such instances while providing a thorough justification for this exclusion.

Importantly, annotators should avoid the pitfall made by previous studies that use too high

thresholds (e.g., LOC > 100), as discussed in Section 2.

5.5 Limitations

Here we discuss the limitations of our study and the identified risks inherent to the study of code smells.

The first threat to our study’s validity is related to our annotators and their expertise. Firstly, the three

annotators had modest experience in software engineering, where one had six years of prior

experience, while two had a year and a half. However, our annotators have spent a significant portion of

the past two years studying software maintainability and code smells. Furthermore, we showed how

industry experience does not correlate with a practitioner’s labeling strategy in the MLCQ dataset

(Section 5.2). We also saw examples where engineers of the same experience level had significantly

different criteria for determining the severity of a smell.

Another limitation related to the annotators is their unfamiliarity with the annotated code. While this

problem affects all the results, it is especially prominent when annotators were not familiar with the

domain for which the software was built. In those situations, the identifier names were less helpful, and

there was an increase in cognitive load. Furthermore, different projects adhere to different coding styles

and use various language features, patterns, and conventions. An annotator that has a strong

preference for one coding style might grade another more severely. To combat these tendencies, we

trained our annotators to keep these difficulties in mind and separate the source of any identified

issues. We examined situations when a code smell resulted from some meaningful heuristic or

unfamiliarity with the domain or coding style during our retrospective discussions. However, it is

possible that we graded some projects more severely due to the unfamiliarity factors.

The final limitation regarding our annotators is the possibility of human error. Annotating a dataset, in

general, is repetitive work prone to mislabeling. Annotating code smells is even more challenging due to

the complexity of the instances and ambiguity of the smells. The purpose of our annotation procedure is

to combat this difficulty and reduce the chance of human error. We mitigated the risk of mislabeling

20

through our disagreement resolutions and retrospective discussions. We also introduced validation logic

in our supporting tool (Prokić et al., 2021) to avoid trivial mistakes such as forgetting to set the severity

or providing invalid data. However, it is still possible that some instances remain mislabeled.

A significant limitation of our annotation procedure stems from the way we examine code snippets.

Methods are examined in isolation, without significantly considering the other methods in a class, while

classes are graded without understanding the broader package and software design. Without

understanding the broader context, it might be challenging to determine if a class or method has too

many responsibilities. In software engineering, we often reveal issues that a module has when working

on its clients (the code that calls the module) (Fowler, 2018; Martin, 2009). Because of this, an annotator

torn between two severity grades might give a lower grade without examining the broader context and

a higher grade if they understand how the client code works. Notably, a severity 0 long method cannot

be a severity 3 long method in a different context. Apart from raising our annotators’ awareness of this

issue, we could not address it as it would significantly slow down the annotation process.

While not the focus of our work, the produced dataset is limited to open-source C# projects, where

most of the code snippets come from popular solutions. The selected code snippets might have a

different distribution of code smells than open-source solutions developed by smaller teams or

commercial projects. This selection might affect the generalizability of any machine learning models

trained on our dataset.

6 Conclusion

We can confirm that manually annotating code smells is time-consuming and challenging, aligning with

earlier findings (Hozano et al., 2018; Azeem et al., 2019). Due to the ambiguity of code smells,

annotators must invest the effort to understand a code smell, the heuristics used to define and identify

them, and the related code characteristics that can be weighed to determine the presence and severity

of the code smell. However, understanding the code smell is only the first step. A systematic procedure

must be established to mitigate the mislabeling risks arising from human error, unfamiliarity with the

software’s domain, and the used coding styles. Finally, consistent annotating requires practice.

Annotators should label a significant number of instances for each smell (e.g., over a hundred) before

considering their annotations valid.

We developed an annotation model and procedure as a step towards a systematic approach to manual

annotation of code smells. We refined our procedure while building a medium-sized corpus for the Long

Method and Large Class code smells. We developed a supporting tool for the procedure and made it

available to researchers to aid their annotating efforts. We analyzed our resulting dataset through

statistical tests and compared it with similar datasets to validate our procedure. Finally, we prescribed a

set of recommendations to help annotators perform more efficient and effective code smell annotation.

In future work, we plan to explore other prominent code smells and discover their heuristics and

significant code characteristics. Furthermore, we look to understand better the Large Class and Long

Method code smells and explore how we can decompose them to align with the low-level code

characteristics analyzed by static code analysis and other related tools more closely. Notably, the

concern heuristics present a challenge as the automated semantic understanding of code remains an

open issue.

21

Acknowledgments

This research was supported by the Science Fund of the Republic of Serbia, Grant No 6521051, AI-Clean

CaDET.

References

Azeem, M. I., Palomba, F., Shi, L., & Wang, Q. (2019). Machine learning techniques for code smell

detection: A systematic literature review and meta-analysis. Information and Software

Technology, 108, 115-138.

Bafandeh Mayvan, B., Rasoolzadegan, A., & Javan Jafari, A. (2020). Bad smell detection using quality

metrics and refactoring opportunities. Journal of Software: Evolution and Process, 32(8), e2255.

Campbell, G. A. (2018, May). Cognitive complexity: An overview and evaluation. In Proceedings of the

2018 international conference on technical debt (pp. 57-58).

Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., & De Lucia, A. (2018, March). Detecting code

smells using machine learning techniques: are we there yet?. In 2018 ieee 25th international

conference on software analysis, evolution and reengineering (saner) (pp. 612-621). IEEE.

[dataset] Fontana, F. A., Mäntylä, M. V., Zanoni, M., & Marino, A. (2016). Comparing and experimenting

machine learning techniques for code smell detection. Empirical Software Engineering, 21(3),

1143-1191.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley Professional.

Hofmeister, J., Siegmund, J., & Holt, D. V. (2017, February). Shorter identifier names take longer to

comprehend. In 2017 IEEE 24th International conference on software analysis, evolution and

reengineering (SANER) (pp. 217-227). IEEE.

Hozano, M., Garcia, A., Fonseca, B., & Costa, E. (2018). Are you smelling it? Investigating how similar

developers detect code smells. Information and Software Technology, 93, 130-146.

Kaur, A. (2020). A systematic literature review on empirical analysis of the relationship between code

smells and software quality attributes. Archives of Computational Methods in Engineering, 27(4),

1267-1296.

[dataset] Lenarduzzi, V., Saarimäki, N., & Taibi, D. (2019, September). The technical debt dataset.

In Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics

in Software Engineering (pp. 2-11).

[dataset] Madeyski, L., & Lewowski, T. (2020). MLCQ: Industry-relevant code smell data set.

In Proceedings of the Evaluation and Assessment in Software Engineering (pp. 342-347).

Malhotra, R. (2019). Empirical research in software engineering: concepts, analysis, and applications.

Chapman and Hall/CRC.

Mantyla, M. V., Vanhanen, J., & Lassenius, C. (2004, September). Bad smells-humans as code critics. In

20th IEEE International Conference on Software Maintenance, 2004. Proceedings. (pp. 399-408).

IEEE.

22

Martin, R. C., Newkirk, J., & Koss, R. S. (2003). Agile software development: principles, patterns, and

practices (Vol. 2). Upper Saddle River, NJ: Prentice Hall.

Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson Education.

Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A., & Sant’Anna, C. (2014, June). On the

effectiveness of concern metrics to detect code smells: An empirical study. In International

Conference on Advanced Information Systems Engineering (pp. 656-671). Springer, Cham.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., & De Lucia, A. (2014, September). Do they really smell

bad? a study on developers' perception of bad code smells. In 2014 IEEE International

Conference on Software Maintenance and Evolution (pp. 101-110). IEEE.

[dataset] Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk, D., & De Lucia, A.

(2015, May). Landfill: An open dataset of code smells with public evaluation. In 2015 IEEE/ACM

12th Working Conference on Mining Software Repositories (pp. 482-485). IEEE.

Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., & De Lucia, A. (2017). The scent of a smell: An

extensive comparison between textual and structural smells. IEEE Transactions on Software

Engineering, 44(10), 977-1000.

[dataset] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., & De Lucia, A. (2018). On the

diffuseness and the impact on maintainability of code smells: a large scale empirical

investigation. Empirical Software Engineering, 23(3), 1188-1221.

Prokić, S., Grujić, K.G., Luburić, N., Slivka, J., Kovačević, A., Vidaković, D., & Sladić, G. (2021). Clean Code

and Design Educational Tool. In 2021 44th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO) (In Press). IEEE.

de Paulo Sobrinho, E. V., De Lucia, A., & de Almeida Maia, M. (2018). A systematic literature review on

bad smells—5 W's: which, when, what, who, where. IEEE Transactions on Software Engineering.

[dataset] Rasool, G., & Arshad, Z. (2017). A lightweight approach for detection of code smells. Arabian

Journal for Science and Engineering, 42(2), 483-506.

Santos, J. A. M., & de Mendonça, M. G. (2015, April). Exploring decision drivers on god class detection in

three controlled experiments. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing (pp. 1472-1479).

Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M. (2010, September). Building empirical

support for automated code smell detection. In Proceedings of the 2010 ACM-IEEE international

symposium on empirical software engineering and measurement (pp. 1-10).

Sharma, T., & Spinellis, D. (2018). A survey on software smells. Journal of Systems and Software, 138,

158-173.

[dataset] Sharma, T., & Kessentini, M. (2021). QScored: A Large Dataset of Code Smells and Quality

Metrics. Methods, 73, 16-072.

Seabold, S., & Perktold, J. (2010, June). Statsmodels: Econometric and statistical modeling with python.

In Proceedings of the 9th Python in Science Conference (Vol. 57, p. 61).

23

Taibi, D., Janes, A., & Lenarduzzi, V. (2017). How developers perceive smells in source code: A replicated

study. Information and Software Technology, 92, 223-235.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., ... & Noble, J. (2010, December). The

Qualitas Corpus: A curated collection of Java code for empirical studies. In 2010 Asia Pacific

Software Engineering Conference (pp. 336-345). IEEE.

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of technical debt. Journal of Systems and

Software, 86(6), 1498-1516.

[dataset] Walter, B., Fontana, F. A., & Ferme, V. (2018). Code smells and their collocations: A large-scale

experiment on open-source systems. Journal of Systems and Software, 144, 1-21.

