
Harmonia: Securing Cross-Chain Applications
Using Zero-Knowledge Proofs

Rafael Belchior , Dimo Dimov , Zahary Karadjov ,

Jonas Pfannschmidt , André Vasconcelos , Miguel Correia

Instituto Superior Técnico INESC-ID Blockdaemon Metacraft Labs

CONTENTS

I Introduction 2
I-A Problem and Solution Overviews 2
I-B Problem Definition 3
I-C Technical Challenges 3
I-D Contributions 4
I-E Outline 4

II Preliminaries 4
II-A Blockchain 4
II-B Cryptographic Building Blocks 5

II-B1 Cryptographic Keys 5
II-B2 Hash Functions 5
II-B3 Signatures 5
II-B4 Accumulators 5

II-C Merkle Trees and Merkle Proofs 5
II-D Light Client Protocol 6
II-E Altair Hard Fork and the Ethereum Sync

Committees 6
II-F SNARKs 6
II-G Cross-chain Transactions / Logic / State 7

III The Harmonia Framework 7
III-A System Model and Components 7
III-B Threat and Network Model 8
III-C System Goals 8
III-D Architecture 8
III-E Altair Light Client 1.0 9
III-F DendrETH: Strengthening the Security

of ALC 10
III-F1 Threat Model 10
III-F2 Ghost Checkpoint Attesta-

tion Attack 10
III-F3 Sync Committee Slashing . . 12

III-G Building Cross-Chain Applications . . . 12
III-H State Migration with Harmonia 14

IV Implementation 15
IV-A SNARK Relayer 15
IV-B Cross-Chain Logic 17
IV-C Application Relayer 17
IV-D Light Client Verifier & Application

Proof Verifier Contracts 17

IV-D1 Verifiers For EVM-based
chains 17

IV-D2 Verifiers for non-EVM-
based chains 18

IV-E Circuits 18
IV-E1 Target Domains 18
IV-E2 Committment 18

IV-F Trusted Ceremony 18
IV-G SNARK Generation 18

V Evaluation 19
V-A Setup 19
V-B Circuits 19
V-C Latency 19
V-D Performance Improvements 20
V-E Storage 21
V-F Hardware 21
V-G Transaction Fees and Costs 21
V-H Considerations on Throughput 21
V-I Reproducibility 22

VI Discussion and Qualitative Assessment 22
VI-A Safety 22

VI-A1 Experiment 1 – Malicious
Validator Ratio 23

VI-A2 Experiment 2 – Churn Rate
Safety Thresholds 23

VI-A3 Experiment 3 – Fine-Grain
Risk Assessment 23

VI-B Liveness 24
VI-C Accountability and Auditability 25
VI-D Censorship Resistance 25
VI-E Upgradeability, Flexibility, and Extens-

ability 26
VI-F Security Analyisis 26
VI-G Trusted Ceremony and Initialization . . 27
VI-H Post-Quantum Considerations 28
VI-I Incentivization 28
VI-J Extending light client security to the

whole validator set of Ethereum 28

VII Related Work 29
VII-A Blockchain interoperability 29
VII-B Light Client Protocols 29
VII-C Comparison with other interoperability

approaches 29
VII-D SNARK-based cross-chain bridges . . . 29
VII-E Rollups 30

VIII Conclusion 30

References 30

Appendix A: Additional Context 35

Appendix B: Merkle Proof Verification 35

Appendix C: The Ethereum Blockchain 35
C-1 System Actors 35
C-2 State 36

C-A Consensus 36
C-B Sync Committee 37

Appendix D: A Gentle Introduction To SNARKs 37
D-1 Trusted Setup 38
D-2 Generating SNARKS 38
D-3 Verifying SNARKS 38
D-4 Groth16 38

Appendix E: Evaluation Plots 38

Appendix F: Altair Formal Specification 39

Appendix G: Circom Test Results 39

Appendix H: Detailed Future Work Directions 39
Abstract—The field of blockchain interoperability plays a

pivotal role in blockchain adoption. Despite these advances, a
notorious problem persists: the high number and success rate of
attacks on blockchain bridges.

We propose Harmonia, a framework for building robust,
secure, efficient, and decentralized cross-chain applications. A
main component of Harmonia is DendrETH, a decentralized
and efficient zero-knowledge proof-based light client. DendrETH
mitigates security problems by lowering the attack surface by
relying on the properties of zero-knowledge proofs. The Den-
drETH instance of this paper is an improvement of Ethereum’s
light client sync protocol that fixes critical security flaws. This
light client protocol is implemented as a smart contract, allowing
blockchains to read the state of the source blockchain in a trust-
minimized way. Harmonia and DendrETH support several cross-
chain use cases, such as secure cross-blockchain bridges (asset
transfers) and smart contract migrations (data transfers), without
a trusted operator. We implemented Harmonia in 9K lines of
code.

Our implementation is compatible with the Ethereum Virtual
Machine (EVM) based chains and some non-EVM chains. Our
experimental evaluation shows that Harmonia can generate light
client updates with reasonable latency, costs (a dozen to a few
thousand US dollars per year), and minimal storage requirements
(around 4.5 MB per year). We also carried out experiments to
evaluate the security of DendrETH. We provide an open-source
implementation and reproducible environment for researchers
and practitioners to replicate our results.

I. INTRODUCTION

With the development of increasingly more complex cross-
chain logic, the trend is for the major decentralized ap-
plications (dApps) to go either cross-chain or multi-chain
[1], where various chains coexist, sharing data and digital
assets. This allows developers and users to choose the best
infrastructure based on trade-offs (e.g., cost, performance, and
convenience [2], [3]). This enables workflows supported by
different infrastructure components that process data transfers,
asset transfers, and asset exchanges, the so-called interoper-
ability modes [2]. In practice, realizing these interoperability
modes is orchestrating a set of coordinated reads and writes
of transactions settled in different blockchains. Data transfers
are implemented by arbitrary message-passing bridges [4],
oracles [5], [6], and blockchain gateways [7]–[9]; cross-chain
bridges typically implement asset transfers [10], [11]; asset
exchanges are implemented by hash time lock contracts or
liquidity networks [1]. Asset transfers are particularly vulner-
able. In fact, current bridge implementations are insecure to
the point of having caused around $3B in losses [12]–[14].
The causes include large attack surface, lack of transparency,
poor monitoring techniques, lack of incident response plans,
reliance on a single point of failure (either individual nodes
or committees) [15], cybersecurity attacks that steal private
keys [16], bad operational practices [17], attacks on economic
incentives [18], and others [10], [12], [14].

A. Problem and Solution Overviews

Academia and industry agree that interoperability mecha-
nisms (IMs) relying native verification of transactions across
the source and destination (or target) blockchains are the safest
[1], [19], [20]. Bridges allow the transfer of funds by providing
facts on the source chain and relaying those to the destination
chain. The destination chain independently verifies that the
received state is valid and final according to the state transition
and consensus rules of the source network. For example, a
user can lock (or burn) some tokens in a source chain, and
the bridge can mint the corresponding amount of that asset
on the destination chain provably (asset transfer). To prove
a transaction is valid on an external blockchain, cross-chain
applications use light clients [14].

A light client protocol (or simply light client) is a pro-
tocol that allows proving the inclusion of a transaction in a
blockchain without downloading the full blockchain (typically
only the block headers [21], or a subset of them [22]). This
requires, e.g., in the case of Ethereum, that 1) there is a
valid block header that includes the transaction to be proved
and 2) a valid Merkle proof against the block header root
is provided. The sequence of transactions happening in a
blockchain creates a ”history”, that is appended to the blocks
that form the blockchain. However, light clients allow multiple
valid histories to be validated as long as they respect consensus
rules. This creates an attack vector that, combined with the
lack of incentives for different parties to behave correctly,
can lead to exploiting the light-client system. We call this

2

exploitation Ghost Checkpoint Attestation Attack. We explain
this attack and a possible solution later in the paper.

In this work, we propose Harmonia1, a framework to build
reliable cross-chain applications, realizing data or asset trans-
fers. At its core, Harmonia leverages a light client protocol,
assuring the safety of interoperability. Our implementation
allows us to prove facts on the direction Ethereum → other
blockchains. An additional contribution is DendrETH, an
improved version of Ethereum’s light client protocol [23] that
prevents the Ghost Checkpoint Attestation Attack. Introduced
in the Altair hard fork, the Altair Light Client protocol suffered
from critical security vulnerabilities. DendrETH takes as input
a zero-knowledge proof, specifically, a succinct non-interactive
argument of knowledge, or SNARK [24]–[26], which allows
verifying on-chain the light client protocol rules in a cost-
efficient way.

The key intuition of the paper is that SNARKs can be
used to prove that DendrETH rules are correctly executed,
which is useful because SNARKs can be verified on-chain.
If the verification is successful, the light client is updated.
The output of the light client update is a validated block
header. In this way, cross-chain applications can verify the
state of other chains by using different cross-chain proof
mechanisms [27] such as Merkle proofs [28] against the
updated block header. This allows cross-chain applications
to have guarantees on the cross-chain state, e.g., transaction
inclusion, and to perform arbitrary cross-chain logic (rules that
orchestrate cross-chain transactions2) [12]. Therefore, we lay
the infrastructure to build trustless cross-chain applications
(dApps), without the need to depend on external parties to
verify transactions, thus eliminating a single point of failure
and improving interoperability security.

Figure 1 shows the high-level architecture of our framework.
The starting point is two cross-chain smart contracts, A and E.
Contract E will have read and/or write dependencies on A,
depending on the defined cross-chain logic. In steps 0 and 1,
user B interacts with the source chain smart contract A directly
or through the Application Relayer C (respectively), issuing
transactions that change the local state of A; therefore, we
deem the relayers blockchain clients. The Application Relayer
(C) will see changes to the contract in step 2 and create
a Merkle proof that attests to the state changes that step 1
triggered. The Merkle proof and use-case-specific data are sent
to E according to the cross-chain logic.

In parallel, the SNARK Relayer D gathers the state and
data of the light client (step 3) to create a SNARK proof
that proves a light client update. The SNARK, along with
the necessary input data are sent to the light client verifier
contract G, which is a SNARK verifier contract (step 4). If
the verification succeeds, the necessary data to validate Merkle
proofs will be available on the smart contract to be consumed
by applications. The Application Relayer can transact with E

1Named after the Greek god of harmony and concord, Harmonia provides
harmonious and reliable integration of different blockchains.

2Example rule: “after a lock event on the source blockchain, an unlock
event should happen in the target blockchain, within a certain time interval.”

following a determined cross-chain logic (step 5). The cross-
chain logic contract on the target chain will only execute the
logic if the Merkle proof verification on the Application Proof
Verifier Contract (contract F) succeeds (step 6). Contract F
calls the SNARK verifier to obtain validated state roots to run
the Merkle proofs against.

B. Problem Definition

Let us consider a pair of chains A and B, a light client
protocol L, and cross-chain rules R. The problem at hand is
decomposed into two sub-problems.

The first problem is to prove the validity of a block header
from blockchain A on blockchain B succinctly and cheaply
(without having access to the whole blockchain, which would
be impractical [29]). Proving the validity of a block header
further proves the validity of any transactions included in that
block header. Conveniently, SNARKs provide the necessary
properties for this. Solving this problem provides us with
a validated block header, which contains valid state roots.
We will show that this problem is aggravated by the fact
that, currently, the group of nodes running L in the case
of Ethereum can create and propagate multiple conflicting
variations of the same history, conducting a new type of attack
with repercussions on the cross-chain ecosystem connected to
Ethereum.

The second problem is to prove a claim on chain A (in terms
of reads and writes), such that chain B can be convinced and
allow the execution of arbitrary logic R. Such proofs are, for
example, Merkle proofs and are rooted in the validated state
root. Solving the proposed problems implies solving a set of
technical challenges.

C. Technical Challenges

We aim to provide a light client protocol that addresses the
following key challenges (C), some on-chain and the last off-
chain:

• On-chain Safety Failure (C1): A light client that has been
compromised presents risks to cross-chain use cases. A
compromised light client can lead to the validation of
invalid block headers, which can then be submitted and
executed on a remote deployment. We provide a solution
for this challenge in Section VI-F.

• On-chain Safety Failure Propagation (C2): If the light client
is compromised, an invalid message could be created and
executed on a remote deployment with immediate effect,
giving no time for stakeholders to react. We handle this
challenge in Section H.

• On-chain Accountability (C3): The source chain light client
should only be able to sign one light client update (one
valid version of the history) at any time. Relayers should
detect on-chain misbehavior in the form of multiple
signatures, so that it is punished by slashing an amount
of collateral. We solve this challenge in Section III-F.

• Off-chain Liveness Failure (C4): Failure of the source chain
for long periods could significantly delay or altogether

3

D. SNARK
Relayer

C. Application
Relayer
(Client)

Source Chain: Ethereum
Destination Chain G. Light

Client
Verifier

Contract

E.
Cross-Chain

Logic
Contract
(target)

 A. Cross-Chain
Logic Contract

(source)
F.

Application
Proof

Verifier
Contract

6

7

4

2

3

B. User
(Client) 1

5

0

Fig. 1: Harmonia’s high-level architecture. The cross-chain contract is represented by . Relayer components . Destination
chain components .

prevent updates on the target chain. These liveness fail-
ures come in the form of occasional intermittent inter-
ruptions that lead to delayed or overlooked messages. We
provide a solution for this challenge in Section VI-F.

The existing technical challenges hinder the development of
solutions that can create and verify SNARKs on-demand [30]
across a wide range of use cases.

D. Contributions

This paper provides a safer way to implement cross-chain
applications by minimizing the attack surface, learning from
the past while focusing on high performance and cost reduc-
tion. In particular:

• We propose Harmonia, a framework to build robust, se-
cure, efficient, and decentralized cross-chain applications
based on SNARK-based light clients.

• We formalize the properties of Altair Light Client (ALC),
the canonical light client protocol for the Ethereum 2.0
network, as well as specify, formalize, and present an im-
provement that strengthens the cryptoeconomic security
of the ALC, which we call DendrETH. To our knowledge,
we are the first to propose improvements that fix critical
issues in ALC security.

• We implement and experimentally evaluate Harmonia
instantiated with DendrETH in terms of latency, through-
put, and costs. We implement a data transfer use case
using Harmonia and DendrETH. After that, we provide
a qualitative evaluation that addresses the problems and
technical challenges of this new technology: security,
availability, censorship resistance, and others. This in-
cludes simulations of long-range attacks that may affect
ALC and DendrETH.

E. Outline

This paper is organized as follows: in Section II we intro-
duce the background on blockchain, cryptography, SNARKS,
and cross-chain applications. Section III presents Harmonia,
namely the system model and actors, threat and network

model, system goals, ALC, and DendrETH. After that, we
present our framework for building cross-chain applications
using SNARK-based light clients. Next, Section IV showcases
the implementation details of the relayers and verifier smart
contracts. In Section V, we present the empirical evaluation.
Section VI presents the qualitative evaluation, discussion,
security proofs, and future work. Section VII presents the
related work. Section VIII concludes the paper. A set of
appendices complements the paper.

II. PRELIMINARIES

This section introduces the background. We build on the
notation of previous work [27]. Let λs be the security param-
eter and λl be the liveness parameter. Let x[i] denote the ith

element in a vector x.

A. Blockchain

We consider a ledger (or blockchain) L a versioned key-
value store. The block number (also called the height of the
blockchain) allow us to version the key-value store. Reading
key a at version/block number b from ledger L is represented
by readL(a)[b], and writing value v at a by writeL(a, v). If
b is omitted, we are reading the latest state (i.e., maximum
height). Blockchains store their data in blocks, and we follow
the definition from [2].

Definition 1. Secure ledger. A ledger is deemed secure if it
satisfies three properties:

• Consistency: honest nodes possess a large common prefix,
i.e., if n honest parties prune x blocks from their local
chains, the probability that the resulting pruned chains
will not be mutual prefixes of each other drops exponen-
tially with the number of blocks belonging to the common
prefix.

• Chain quality: there is an upper bound on the ratio of
blocks proposed to the chain of any honest party n
contributed by malicious parties.

4

• Liveness: if an honest node receives a valid transaction,
it is eventually included in the blockchain by all honest
nodes.

For these properties to hold, it is required that the number
of malicious nodes f is bounded by the number of honest
nodes n - the typical byzantine fault tolerance threshold is
n > 3f + 1. Malicious parties, also called Byzantine, may
act arbitrarily, while honest parties follow the protocol. These
properties apply to the generality of ledgers - in a private
ledger, however, chain quality is typically 100% as parties are
not malicious or, if they are, they are held accountable [31],
and ensure correct state transitions.

Definition 2. State. The state of a blockchain is a tuple
(sk, sk,v, T , πk), where sk is the state key, sk,v the value
corresponding to that key, at the latest block number, T a list
of transactions and πk a list of proofs. We denote the global
state by the union of all state tuples at time t):

St =
⋃

k sk,v

We can derive the state of a blockchain at different times
by computing all the transactions since the initial state. Trans-
actions trigger state changes in smart contracts. For users to
interact with smart contracts, they need to sign transactions
such that their payload targets a specific smart contract. Users
pay a tax on executing programs on the decentralized network
of nodes called gas. There is a dynamic market rate between
gas and Ether (ETH), the native cryptocurrency used in the
Ethereum network that depends on supply and demand. Gas
is used as an incentive for users to do moderate their use of
blockchain resources (since all validator nodes do the same
computation, and database/storage is replicated across all full
nodes). Some operations are more expensive than others. For
instance, an Ether transfer in Ethereum costs 21K gas, while
verifying an EdDSA signature costs about 500K gas [32],
about 1.6 USD and 40 USD, respectively, at the time of writing
(June 2023). Storing 1MB of data costs about 655 million gas,
around 50K USD [33]. However, reading data is free. While
adding a natural barrier to transaction scalability, imposing a
gas limit helps reduce the amount of irrelevant information on
the blockchain and prevents Sybil attacks [34]. In this paper,
we will study the application of specific types of proofs to
offload computation off-chain, to reduce on-chain computation
and storage.

The source chain (or source blockchain) is the chain about
which we want to prove facts and execute custom cross-chain
logic (on a target chain or destination chain) [4].

B. Cryptographic Building Blocks

1) Cryptographic Keys: Accounts of a blockchain are tu-
ples (Kid

k , Kid
P , id), capable of reading and writing to a ledger

via a blockchain client (or node), where [35]:
• Kid

k is a private key, used as the signing key.
• Kid

P is a public key, used as the verifying key.
• id is the unique identifier of the participant. It is the output

of a function over the participant’s public key.

2) Hash Functions: A cryptographic hash function is a
function that takes an input and returns a fixed-size string of
bytes, typically called a hash value or digest. The output is
unique, with overwhelming probability to each unique input
(one-way function). Given a hash h, it is computationally
infeasible to find an input value x such that hash(x) = h
(pre-image resistance property) or to find two different inputs
that hash to the same output (collision resistance). These prop-
erties make hash functions essential in various cryptographic
operations, such as digital signatures and message integrity
checks [36].

3) Signatures: A signature is a mathematical scheme for
verifying the authenticity of messages. A node N can cre-
ate a signature σ via algorithm SIGN over a message m
using its private key, i.e., SIGNKn

k
(m) → σ. To verify a

signature σ, a verifier can run VERIFY, taking as input a
signature, a message, and the public key of the signer, i.e.,
VERIFYKn

p
(m,σ)→ {0, 1}.

Aggregate signatures [37] are digital signatures where a
set of nodes uses a mathematical function to combine their
signatures {σ1, σ2, . . . , σN} into a single signature σ1−N .
A widely used aggregate signature scheme is BLS (Boneh-
Lynn-Shacham) [38], which is also used in Ethereum [39].
Verification of a BLS signature is computationally expensive
compared with verification of an ECDSA signature. The
advantage of aggregate signatures in the context of this paper is
that aggregate signatures provide a succinct way to represent
a set of signatures in constant size. Signatures can also be
aggregated with SNARKs (which we will discuss later).

4) Accumulators: Accumulators enable succinct (space and
time efficient) and binding representation of a set of elements,
supporting proofs of membership (or non-membership) [40],
[41]. Accumulator operations include adding an element,
creating a membership proof π that element v is in the
accumulator set s, and verifying π. Removing elements and
proofs of non-membership are optional and depend on the
specific implementation. Next, we present Merkle trees, a type
of accumulator.

C. Merkle Trees and Merkle Proofs

Merkle trees are accumulators implemented as binary trees.
The leaves of the tree are data items, and the parent nodes are
hashes of that data. The Merkle tree is calculated recursively:
each parent element is the hash of its two children until the root
is obtained. The tree’s root is a succinct vector commitment
to a state at a certain time. Merkle trees allow proving data
inclusion. In particular, to construct a proof, we include all the
nodes along the path needed to allow a recursive hashing up
to the tree root (i.e., hashes of sibling nodes that are not in
the direct path).

Definition 3. Merkle proof. A Merkle proof (proof of inclusion)
is a path between the tree’s root and a leaf node. Given a
vector v of i elements, we have three algorithms [32]:

• root← tree.commit(v).
• (v[i], πi)← tree.proof(v, i).

5

• {0, 1} ← tree.verify(πi, root, v[i]).

The commit algorithm adds an element to the Merkle tree.
The proof algorithm creates a Merkle proof (a path) for the
ith element of v. The verify algorithm verifies the proof.
Appendix B shows the Merkle proof verification algorithm.

D. Light Client Protocol

Ethereum offers a way to verify whether a transaction is in-
cluded in a block using only the block header, avoiding down-
loading the full block. This mechanism is called simplified
payment verification, [4], [22], [42], which evolved into the
concept of light client. A light client is a lightweight version of
a full blockchain node that allows participants to interact with
the network without downloading the entire blockchain. Light
clients can perform queries on the blockchain, e.g., queries
on the balance of an account [43]. Light clients validate the
consensus on the inclusion of transactions on the chain, but
not the validity of the transactions themselves (see Appendix
C-A). This process is done by verifying that a block has
a supermajority of attestations from validators. These light
clients will download light client updates (which we define
formally soon) from Ethereum full nodes using the Beacon
REST API that nodes provide. That way, transaction inclusion
can be proven, e.g., a user can be convinced that the transaction
transferring funds to a certain account was indeed included in
the blockchain.

Formally, we denote the ith block header of a blockchain by
BlockHeaderi and a chain of block headers from i to j by
HeaderChainj

i . We denote the last available, finalized block
header by BlockHeader|HeaderChain|. The light client state
at sync period i is denoted LSi

and contains the current
block header at the beginning of period i, the current sync
committee, the next sync committee, and data.

Definition 4. Light client. A light client L is an algorithm
that has the following primitives [43]:

• INIT(BlockHeaderi) → (LSi , π): The light client
takes as input a bootstrap block (either genesis block or
a pre-agreed block), and initializes the state with an in-
teractive protocol with a full node and receives a proof π
of correct initialization. We assume the bootstrap block is
trusted (either by social consensus or cryptographically).

• QUERY(LSi , data) → (resp, π): a client can read the
global state of the light client (and, indirectly, the global
state of the underlying blockchain). The light client
returns a response resp and a proof π that authenticates
the response or an error ⊥.

• LCU(LSr , data)→ (LSr+1 ,⊥): a light client update LCU
takes as input the current light client state S and auxiliary
data, and outputs the next light client state or an error.

Note that resp and data vary according to the spe-
cific light client protocol. In some cases, data =
{BlockHeaderr+1, ...}.

Definition 5. Secure and Efficient Light Client. A secure and
efficient light client is a client that respects the following
properties:

• Soundness: After INIT, a malicious adversary should not
be able to convince a light client L to accept a forged
transaction. On the other hand, the adversary should not
be able to convince L not to accept a valid transaction.

• Liveness: Valid transactions received by an honest full
node are eventually included in the chain. A light client
protocol eventually includes such transactions in a block
header. This means that QUERY returns up-to-date re-
quests up to a liveness parameter λl.

• Succinctness: For each state update, the light client pro-
tocol takes linear time to synchronize the state. INIT
and LCU computation and communication are sublinear
to the size of the blocks.

E. Altair Hard Fork and the Ethereum Sync Committees

Altair [39] is the first hard fork of Ethereum. This update
brings two major changes to the previous mode of operating:
1) how rewards and penalties are calculated for validators,
and 2) support for light clients, which will in turn add an
additional reward type. This second change introduces a sync
committee as the base layer to implement a light client protocol
called Altair Light Client (ALC). The committee consists of
512 validators, randomly selected every sync committee period
lasting 256 epochs (≈ 27 hours). Nodes are given 512 epochs
of prior notice before they become sync committee members.
A list of the committee members is saved in the state of the
Beacon chain. The sync committee signs new block headers,
so Ethereum light clients can verify Ethereum’s state using a
Merkle proof. This process authenticates more recent block
signatures using the sync committee’s public keys. For more
details on the Altair Hard Fork and the sync committee, please
consult Appendix C

F. SNARKs

Broadly speaking, Succinct Non-Interactive Argument of
Knowledge (SNARKs) are proofs that a statement is true [25],
[44]. In recent years, their popularity increased as several
key applications for blockchain were recognized, namely,
for increasing scalability, interoperability, and privacy (zero-
knowledge proofs [45], [46]). We explore the application of
this technology in the context of blockchain interoperability.
By proving the validity of a block header via a SNARK,
cross-chain logic on a target blockchain (in the form of a
decentralized application/smart contract) can now prove the
state from a source blockchain using Merkle proofs that are
verified against the state root of the validated beacon block
header.

A SNARK is a succinct claim on a predicate. Succinct
means that the size of the proof is smaller than the com-
putational process it represents (typically a few kilobytes);
likewise, the time to verify the proof is sublinear to the size of
the proof (typically a few milliseconds). Non-interactive means
no back-and-forth interactions between the prover (Harmonia

6

↔ relayers, in our case) and the verifier (verifier smart contract
that is part of the light client). This way, the prover can
convince the verifier with a single message that a valid com-
putation (coherent input-output relation) occurred. This allows
offloading costly computation off-chain while preserving the
integrity necessary for a decentralized system.

SNARKs can represent computations over arithmetic cir-
cuits, a model for computing polynomials. Arithmetic circuits,
in turn, are represented as directed acyclic graphs where each
node is an arithmetic operation, and the edges are inputs to that
operation. The circuit consists of addition gates, multiplication
gates, and some constant gates. In the same way, boolean
circuits carry bits in wires, arithmetic circuits carry integers.
The idea is then to represent programs as arithmetic circuits
and to generate SNARKs proving computation over those
circuits. Another way to represent circuits is via an R1CS
(Rank-1 Constraint System), which defines linear constraints
over the vectors representing the program. While explaining
the technical nuances of SNARKs is beyond the scope of this
paper, we provide further details on SNARKs, including a
formalization, trusted setup, generation, verification, and proof
systems, in Appendix D.

Different tools and frameworks exist to create SNARKs.
Those tools allow the definition of programs (typically written
in a domain-specific language) that are compiled into interme-
diary representations (e.g., arithmetic circuits, R1CSs). This is
typically called the frontend of a SNARK system. The frontend
is responsible for circuit definition and witness generation.
The prover generates a proof with the witness and sends it to
the verifier (see Appendix D). These two algorithms and the
setup constitute the backend of a SNARK proving system. The
backend uses a particular proof system. As an example, that
we use in this paper, Groth16 [47], [48] is widely recognized
for its efficiency, making it one of the most popular SNARK
schemes used in blockchain.

G. Cross-chain Transactions / Logic / State

We derive the definitions of cross-chain transactions and
cross-chain state from recent research [1], [12]. A cross-
chain transaction is a set of local transactions (e.g., one
transaction in Ethereum and one transaction in Polkadot),
governed by cross-chain rules. Cross-chain rules (or cross-
chain logic, denoted by ζ) are the dependencies between
local transactions. For example, a transaction with pay-
load p = (lock, amount, destinationaddress, proof) in
Ethereum should have a transaction in Polkadot with payload
p′ = (mint, amount, destinationaddress, proof). Cross-
chain rules may be enforced by off-chain relayers and smart
contracts. We call the state that a set of cross-chain transactions
generate the cross-chain state. A cross-chain state is a key-
value store that spawns across the blockchains that process
cross-chain transactions. This state stores information useful
to execute cross-chain logic. In our bridge example, the state
would be a ledger storing (p, p′, ...) for bookkeeping. This
work showcases the relevance of these concepts for our use
case and how our system plays a role in realizing them.

III. THE HARMONIA FRAMEWORK

In this section, we explain how the Harmonia framework
works and how one can implement interoperable dApps on top
of it. Harmonia is a framework to build reliable cross-chain
applications, realizing the three interoperability modes [2]. At
its core, it uses a light client protocol for the safety of interop-
erability. Our instantiation of Harmonia uses DendrETH as an
on-chain SNARK-based light client that allows proving facts
on the direction Ethereum→ other chains, although Harmonia
can support other combinations.

A. System Model and Components

Harmonia establishes a unidirectional communication chan-
nel between blockchains3, which typically have different con-
sensus mechanisms and trust models. A basilar assumption is
that the underlying blockchains are secure ledgers (cf. Section
II-A), otherwise, it is not possible to provide guarantees about
the security of a mechanism that provides interoperability
between them.

A transaction has achieved finality if, for a block at index
i, the difference between the head of the chain, block j,
and block i is higher than a liveness parameter λl, i.e.,
j − i > λl. The liveness parameter of the source chain
is particularly relevant to the destination blockchain because
cross-chain logic depends on transactions from the source
chain. In practice, the destination chain needs to wait at least
λl

4.
Harmonia includes several agents. The simplified architec-

ture is in Figure 1, and a more detailed version in Figure 2:
• Source and Destination chains (cf. Section C-1): we

assume chains support smart contracts.
• Light Client Verifier Contract: a smart contract de-

ployed on the destination chain that verifies SNARKS
created off-chain. It exposes a list of validated execution
roots, optimistic roots, and finalized header roots that
cross-chain applications can consume.

• Application Verifier Contract: a smart contract de-
ployed on the destination chain that takes as input Merkle
proofs and verifies them against the latest validated block
root made available by the Light Client Verifier Contract.

• Cross-chain Logic Contracts: a pair of smart contracts.
The first one is deployed on the source chain and holds
business logic belonging to that chain. The second con-
tract is deployed on the second chain and enforces cross-
chain rules based on the state of the first contract, having
a dependency on the Application Light Client Verifier
Contract for validating updates.

• SNARK and Application Relayers: relayers read the
global state and require a full node (or blockchain client
access). For a finalized ledger, every client will read
the same state. Two types of relayers are considered.

3one can spawn two Harmonia unidirectional communication channels in
opposite directions, creating a de-facto bi-directional channel.

4Otherwise, proven facts on the source chain could be reverted, jeopardizing
the cross-chain logic [12], [49].

7

The SNARK relayer creates SNARKS from on-chain
information on the source chain and relays it to the
verifier contract on the destination chain. The Application
Relayer creates collects relevant data to perform interop-
eration, accompanied by a proof (e.g., Merkle proof) -
and submits it to the cross-chain logic contracts.

Agents send arbitrary, authenticated messages between one
another, e.g., transaction payloads, ACKS, and encoded API
calls. The system considers two actors: the end user who
interacts with a frontend connected to an interoperable system
and an adversary that tries to steal user funds by attacking the
interoperable solution.

B. Threat and Network Model

The adversary A is a probabilistic polynomial time algo-
rithm that can perform various actions, namely corrupting a
subset of the validators before the protocol execution com-
mences. Adversarial validators on the source blockchain are
denoted by f and the total number of nodes by n (honest
nodes are assumed to be n − f and typically n > 3f + 1,
depending on the specific security threshold necessary for a
chain to be considered secure). We assume the cryptographic
primitives of the source and target blockchains are secure
(hash functions, signing algorithms, communication channels,
public-key infrastructure). We assume the source and target
blockchains are secure (cf. Section C-1). Adversaries are
computationally bounded. We rely on several cryptographic
assumptions, namely the hardness of the discrete logarithm
problem [50], the random oracle model [51], the common ref-
erence string model [52], and the non-falsifiable assumptions
[53]. Under these constraints, sound SNARKs exist for any
NP statement [52]–[54] - including for the high-level statement
“the rules of the light client sync protocol update are correctly
applied.”

Honest nodes from both chains have reliable and secure
communication channels. The adversary controls the message
delivery schedule and observes messages before the intended
recipients. If a client is offline, upon its recovery, it observes
all the messages it missed while offline. The network model
considered is partially synchronous (for every message sent,
an adversary can arbitrarily delay it up to a certain threshold).
This implies no long network partitions, allowing the light
client to have live updates. The threat model of Harmonia is
tied to the security and crypto-economic models of the light
client protocol and, if applicable, its light sync committee.
Finally, we note that the security of our model is tied to the
security of the proof system we use, which may rely on one
or more of the referred cryptographic assumptions.

C. System Goals

Under the system, threat, and network models defined
above, we propose a set of properties that the collective system
actors known as the Harmonia system need to achieve (given
the presented set of assumptions):

• On-chain Safety,G1: no invalid light client updates are
validated.

• On-chain Decentralization,G2: anyone should be able to
run an application relayer and a SNARK relayer. While
bringing the decentralization advantages, it also intro-
duces exploitation vectors, such as the extraction of value
(MEV) [55], which we predict will be enabled for the
cross-chain scenario soon [14], [56]–[58].

• On-chain Finality,G3: once a message has been delivered
and validated, it cannot be reverted.

• On-chain Off-chain Liveness,G4: valid updates are eventually
accepted on-chain.

• On-chain Off-chain Extensibility,G5: refers to supporting exe-
cution environments other than the EVM (e.g., WASM).
The solution should allow cross-chain use cases to ex-
pand seamlessly to other chains and reduce the risks of
integrating new deployments.

• On-chain Off-chain Flexibility,G6: it is possible to integrate
new blockchains, light client protocols, and SNARK
schemes. In the context of SNARK-based bridges, this
property is needed because new protocols will continue
to emerge, while existing protocols might become defunct
or undergo significant changes (e.g., forks).

• Off-chain Safety (Off-Chain),G7: fake proofs of the con-
struction of a block header on a source blockchain are
computationally infeasible (this is given by the specific
SNARK protocol with which we instantiate the light
client).

• Off-chain Censorship-Resistance,G8: no entity should be
able to prevent a valid light client from updating against
our system.

Furthermore, we present two important performance met-
rics:

• On-chain Cost: the system shall minimize transaction fees
and hardware expenses as much as possible, as they are
a significant constraining factor.

• On-chain Off-chain Latency: the system shall be able to prov-
ably verify Ethereum’s state in a reasonable amount of
time.

D. Architecture

Figure 2 presents the architecture of Harmonia. The system
is based on four building blocks:

1) Circuit generation block (steps 1-6): circuit generation
components (steps to create and compile the circuit im-
plementing the light client protocol). The circuit building
block deals with the definition of the light client protocol
as a set of circuits. A trusted setup ceremony is run, and
the respective proving keys and circuits are generated.
This is an expensive process that happens only once per
circuit version.

2) SNARK generation and relaying (steps 7-11): SNARK
generation components (fetching and giving inputs to
the circuit, retrieving SNARK). In these steps, the
SNARK relayer fetches the necessary information from
the blockchain and inputs it into the circuit. This yields
a valid SNARK for a specific input.

8

Off-chain, circuit generation

1. Program definition

On-chain, target blockchain

2. Circuit
implementation

3. Arithmetization

4. R1CS generation 5. Setup phase 6. Circuit instance

Off-chain, SNARK generation and relaying

7. SNARK
Relayer

10. SNARK

22. SNARK
Verifier

11. Submit SNARK

20. Light
Client
Verifier

18.
Cross-chain

dApp

Off-chain, user-facing

13. dApp frontend

14. Application
relayer

12. Transaction submission

 Source blockchain

17. Transaction

15. Transaction

8. get block headers

19. Verify 21. Verify

23. OK
24. OK

16. Cross-chain dApp

...

9. provide input parameters

Fig. 2: Architecture of Harmonia. Off-chain components are represented by . Destination chain components . The
cross-chain contract is represented by .

3) User-facing application (steps 12-16): user-facing side of
the cross-chain dApp (logic on the source chain). Here,
we define the logic of the source chain application. A user
can interact with it through a user interface connected
to the application relayer. The latter transacts against
the source chain and fetches a Merkle proof for that
transaction.

4) Destination chain cross-chain dApp (steps 17-23): cross-
chain logic on the destination chain (logic on the target
chain, based on proven facts on the source chain, via
a SNARK). In the last steps, we prove facts on the
source blockchain (e.g., a transaction on 16 was inserted
in a block). The application relayer provides a Merkle
proof and data in 17 (via a blockchain transaction). Step
20 validates that Merkle proof against a validated block
header (namely, the execution state root that the SNARK
verifier provides). After verification, the logic on 18 can
be executed, with validated input from 17.

Contracts 16, 18,20, and 22 are deployed once per version
(possible to deploy behind a smart contract proxy) by the set
of administrators running those contracts (e.g., via a multisig
address). The proposed architecture provides a reliable means
to authenticate data in Ethereum. The attributes in Ethereum
beacon chain block headers reference a “BeaconState” root
hash, which points to a recent execution layer block header.
The execution layer block header references the root hash of
the execution layer state. Thus, if a chain of proofs is also
supplied and verified against the light client contract state, it
can be used to prove in the targeted blockchain the occurrence
of any event in the Ethereum world starting from a Beacon
block header, allowing users to build cross-chain applications
using Ethereum’s state.

E. Altair Light Client 1.0

This section presents the original Ethereum’s light client
proposal, published in the Altair fork. The Altair Light Client
(ALC) relies on a sync committee mechanism, called Altair
syncing protocol [59], deployed in the Altair hard fork [60].
Altair enables light clients to efficiently and securely construct
the chain of beacon block headers. We discuss the low
overhead for light clients, making the beacon chain light client-
friendly for resource-constrained environments. After that, we
present its limitations.

The algorithm works as follows. Figure 3 presents the
process of a light client tracking the chain of recent beacon
block headers. The process starts at the current block header.
In this figure, a light client has a block header at slot s, with a
well-defined state root 1 in period i. Let us consider current
period i, current slot s, a sync committee at period i formed by
512 nodes (N i

1, N
i
2, ...N

i
512) = N i

[1:512] = C
i. Each node has

a private key KNi

K and public key KNi

P Let the block header
at period i be BlockHeaderi.

The light client stores the current header so that the light
client can authenticate information such as transactions and
balances against the header (via Merkle proofs). The light
client also stores the current and the next sync committees,
obtainable via the state root 2 . Using a Merkle proof, it
verifies the next sync commmittee in the slot s post-state.
This sync committee will sign block headers during period
P + 1. After this, the protocol obtains the public keys of the
light client sync committee 3 . The keys of the nodes that
participated in the aggregate signature of the sync committee
are defined in a participation bit map 4 . More concretely,
this step creates a combined public key KN1,...,N512

P from the
individual public keys of the sync committee subset that par-
ticipated in the aggregate signature σN1,...,N512

. An aggregated
signature σ1−N is calculated from the combined public key.

9

Block Header

Hash State Root

Block Header

...

Current Sync

Committee

P2P Network

Public Keys

Participation

Bitfield

Aggregate

Signature

Net Sync

Committee

1

2

3

4

5* *

* *

Root

Sig

Pub

Fig. 3: Light Client Update algorithm (LCU) in Altair [59]

That signature (pub) is compared with the aggregate signature
downloaded from the block or the peer-to-peer network (sig).
Lastly, the signature is verified against the combined public
key and the newer block header, VERIFYpub(root, sig), in
5 .

If the verification passes, the new block header has been
successfully authenticated. The next sync committee will
become the current sync committee of the next valid period
(and, consequently, block) so that light client updates for the
following block can be done in a chain. Taking advantage of
this property, one can verify that blocks have been validated
retroactively. The light client executes the light client update
algorithm LCU to authenticate a block header in the following
period. We formally define this process in Figure 4.

Nevertheless, critical security issues have been identified
with Altair [61], [62]. We will review two critical issues
with the specification and provide the first solution to this
problem. First, the sync committee is not held accountable
for misbehaving since slashing is not enforced when sync
committee members sign semantically invalid block headers.
This incentivizes signers to blindly sign every block header
(invalid or not) to reap the rewards, resulting in the loss
of safety of the light client. Secondly, a light client sync
committee might receive valid attestations but choose not to
sign them, breaking the light client’s liveness. Therefore, Altair
1.0 does not assure the generated SNARKS are semantically
valid, allowing replay attacks and potential misuse.

F. DendrETH: Strengthening the Security of ALC

DendrETH is a smart contract implementation of ALC,
which allows one to prove Ethereum facts on target
blockchains. To motivate DendrETH, we formalize a new
attack on ALC’s sync committee, which explores its current
lack of accountability, solving technical challenge C3.This
attack is executed by bribing honest nodes and forcing them
to generate valid proof for an invalid checkpoint (set of blocks
up to a certain epoch). Hence, we call this attack Ghost
Checkpoint Attestation Attack.

1) Threat Model: As the size of the sync committee is
fixed for every 256 epochs, the time window for an attack
to corrupt the committee is 512 epochs (54.6 hours). The
economic security threshold k will be bounded, considering
that each validator needs to stake 32 Eth. Since an adversary
needs to control two-thirds of the sync committee to sign block
headers, the number of nodes necessary to control would be
341 (collateral slashed would be approximately 20M USD).
The following inequality can express this: k > 512×32×1850
USD/ETH × 2

3 . At the current market rate, k > 10, 923 ETH
(20, 207, 000 USD). On the other hand, an adversary would
have a time window of 54.6 + 27.3 ≈ 82 hours (nodes
in the sync committee are notified 512 epochs in advance
+ 256 epochs where they operate) to corrupt two-thirds of
this committee, where the capital necessary for it could be
substantially lower. When the sum protected by the bridge
is inferior to k, bribing the committee is not economically
secure (assuming a slashing of 100%). However, the number of
secured assets (ERC-20, NFTs) is often hundreds of millions
of dollars, as we have seen by recently hacked bridges [12].
Note that slashing is proportional to the amount of stake
performing the attack. Therefore, we provide an upper bound
of the capital needed for an attack. A more lenient estimate
shows that if the entire sync committee could be fully slashed
down to 0 ETH, this would still cap the security level to
the whole stake of the sync committee, or 16384 ETH ≈ 32
million USD. We put forward a slashing proposal and a future
research direction that together increase the crypto-economic
security of the system.

2) Ghost Checkpoint Attestation Attack: The idea behind
this attack is that entities in the sync committee can create
multiple valid histories of the Ethereum blockchain, sign
them, and propagate them without being penalized. When the
sync committee creates a valid block and submits it to the
network of the targeted domain, there are no safety violations.
However, a deceptive supermajority within the sync committee
can mislead applications that depend on Ethereum’s light
client synchronization protocol into accepting a non-canonical

10

Altair Light Client (ALC) Specification

One initializes the light client L with the pre-agreed
block at period i, INIT(BlockHeaderi) (details in
[39]) and obtains the current light client state. The
light client state LSi has the following attributes:
LSi=̇(BlockHeaderi, Ci, Ci+1,F-BlockHeaderi).
We omit some variables for brevity, e.g., best
valid update. The process of doing an update
requires the current light client state LSi

and auxiliary
data for a light client update LCU. The light client
update data can be obtained from full nodes (namely
from a Beacon block header). LCUdata is:

1) BlockHeaderi: the attested header.
2) Ci+1: the next sync committee.
3) πCi+1 : the next sync committee branch is the

Merkle path that authenticates the next sync com-
mittee.

4) F-BlockHeaderi: the finality_header is
the header whose signature is being verified.

5) πF-BlockHeaderi+1 : the Merkle proof that authen-
ticates that the finality header is the header
corresponding to the finalized root saved in the
finality header.

6) sync committee bits: a bitmask showing who
participated in the sync committee. Allows to
calculate which keys will be included to create
the aggregated public key.

7) σN[1:512]
: the aggregated signature of the

nodes participating in the sync committee,
sync committee signature.

Light Client Update Algorithm Details

The light client update (LCU) algorithm is in Algorithm
7. The assert keyword evaluates a predicate, and keeps
the execution going if its true, or returns the execution
of the program with ⊥ if the predicate evaluates to
false. There are procedures to update both the attested
header and the optimistic header. We focus on updating
the attested header since both procedures are similar.

Algorithm 1: LCU algorithm in Altair 1.0
Input: LSi , LCUdata

Input: slot s, genesis root r
Output: LSi+1

1 assert ValidUpdate(LSi
,LCUdata, s, r) ▷ Appendix F

2 BestUpdate(LSi
, LCUdata)

3 UpdateOptimisticHeader(LSi , LCUdata)
4 assert 3×

∑
LCUdata.scb ≥ 2× |LCUdata.scb|

5 assert ∄LSi
.Ci+1 ∧ ∃LCUdata.Ci+1

6 LSi+1
← ApplyUpdate(LSi

, LCUdata)
7 return LSi+1

• Step 1 validates the correctness of the light client update (e.g.,
calculates slot, asserts validity of headers, asserts freshness of
slots, etc - see Appendix F for details and a formal description).

• Step 2 checks which is the light client updates is the best (e.g.,
which one has a higher supermajority, finality, slot age). This
accounts for the case we have to force-update to it if the timeout
elapses [39].

• Step 3 updates the optimistic header. It checks that the update
is backed by a significant portion of the committee and that
the light client is progressing (in terms of the slot). This
sets the light client optimistic header to be equal to the up-
date of the attested header, i.e., LSi

.F-BlockHeaderi =
LCUdata.BlockHeader. In other words, the finalized header is
being updated recurrently with what is thought to be the current
finalized header at a given time (but may change until a finalized
header is found).

• Step 4 checks that a supermajority signed the update. This is a
necessary condition for a header to become finalized.

• Step 5 verifies the next sync committee is defined in the update.
Note: a few other checks are done, namely it is determined if an
update not only progresses the finalized checkpoint but might
also finalize the next sync committee.

• Step 6 updates the internal state of the light client based on the
updated information. It increments the sync committee period,
updates the beacon slot, updates the current and next sync
committee, and updates the finalized header [39].

Fig. 4: Altair Protocol (LCU algorithm)

(but valid) finalized header (this is, a proof pointing to a
syntactically valid block header that is not included in the
canonical chain). For instance, this message could be leveraged
to compromise a bridge contract based on the light client sync
protocol, reducing its trustworthiness. We describe a specific
attack on SNARK-based bridges depending on Altair 1.0:

1) a corrupted subset of the sync committee creates an
invalid block.

2) it creates a SNARK for that invalid block.
3) the committee will attempt to delete evidence of their

misbehavior and the invalid block is deleted to prevent
accountability.

4) the (valid) SNARK attesting an invalid block is sent as
proof to the destination chain.

5) arbitrary cross-chain logic is executed based on a non-
canonical state.

Since the destination chain has no observability on the
source chain by design (otherwise, it would not be a light
client), there is no way for it to know the canonical block for
this attack. The malicious sync committee can also perform
an attack on the liveness of the protocol by synchronizing
themselves (à la Flashbots [63]) not to attest block headers,
effectively conducting a Denial of Service attack - this would
have a cost of ≈ 51.2 ETH ≈ 99, 300 USD per sync period.

11

3) Sync Committee Slashing: The core of DendrETH’s
proposal is to make the sync committee accountable by
creating and sharing evidence that can lead to slashing. The
idea is if the sync committee signs and submits an alternative
finalized history, the entire sync committee gets slashed. Only
malicious behavior should be slashable - “but a validator
tricked into syncing to an incorrect checkpoint should not be
slashable even though it is participating on a non-canonical
chain. Note that a slashing must be verifiable even without
access to history, e.g., by a checkpoint synced beacon node”
[64]. DendrETH’s slashing algorithm is defined in Figure
5. The steps of IdenfitySlashing (see figure) are:

• Step 2 asserts that evidence refers to a point in the past.
• Step 3 asserts that the periods in which the conflicting

evidence is provided are sequential. This aims to avoid over-
penalization (e.g., due to operational issues; also, it may
not make sense to penalize validators who misbehaved long
ago). Moreover, it allows a validator synced to a malicious
checkpoint to contribute again in a future period.

• Step 5 shows the first slashing condition: there are conflict-
ing block headers submitted in the same slot, slashing is
applied.

• Step 8 checks that the sync committee did not sign conflict-
ing finalized Ci+1. A few checks are omitted for brevity.

• After that, we check the linearity of the finalized block
history. Validators are not allowed to sign blocks that
suggest a finalized block history that does not follow a linear
progression, i.e., ∃HeaderChaini

j =⇒ ∀k : i ≤ k ≤ j :
∃BlockHeaderk.

• Step 10 outputs a boolean linear[0] (and linear[1]
respectively).

• Step 12 checks that if the evidence lacks finality, then the
recently finalized block root must be the default root.

• Step 14 assumes the finalized history is linear, i.e., a
mismatch between BlockHeader|HeaderChain|.root and
evidence[2].root suggests that a validator might have
signed off on a block that does not belong to the known
finalized chain.

• Step 15 shows a check to discover which evidence follows
the canonical chain. The idea is to show that at least
one of the evidences show the sync committee supports
a valid history, and, at the same time, an invalid history.
The variable linear[0] (similar to linear[1]) checks if
the actual finalized block root for evidence[0] matches
the root of its finalized header. If they match, the finalized
header in that evidence represents a linear history. Alter-
natively, if evidence about non-linearity cannot be obtained
directly from an attack, it can be proven that one of the
BlockHeader is part of the canonical finalized chain of
S.

The steps of EnforceSlashing (Algorithm 3) are:

• Step 3 gets the public keys of each appointed member of
the slash committee to be slashed. Same for evidence[1].

• Step 6 asserts that there is at least one validator to be
slashed.

• Step 8 validates the slashing evidence 0 (and evidence[1]).
It does a set of asserts: 1) it ensures that the
number of participants in the sync committee meets
a minimum threshold, 2) verifies a Merkle proof
B.state.verify(evidence.πevidence.BlockHeader∗ ,
evidence.BlockHeader∗.root,root), 3)
verifies that Ci+1 exists, 4) verifies a Merkle proof
B.state.verify(evidence.πCi+1

,
evidence.root,evidence.Ci+1),
5) verifies the aggregate signature:
VERIFYKS.N

p
(PP,evidence.aggregate.σN[1:512]

) → 1,
where PP are the public keys of the validators to be
slashed (output of ToSlash) in step 3.

• Step 9 slashes the malicious members of the sync committee
reported if they are slashable.

A few steps must be taken to apply these protections to
SNARK-based bridges. The public input of the SNARKS
we use in our construct must be augmented to contain the
information for slashing. However, adding more public inputs
would make the SNARK verification more expensive and
could incur data availability issues because the nodes now need
to access SNARK information on-chain to be able to execute
the slashing protocol. New data availability mechanisms can
expose this data with robust incentives [66]. This scheme can
be generalized to include the entire validator set instead of
solely the sync committee, further increasing the economic
security, which we briefly mention in the discussion section.
We discuss the rationale for this generalization in Section VI.

In conclusion, having two pieces of evidence provides a
way to demonstrate and compare the conflicting actions of a
validator. If a validator provides two contradicting pieces of
information in a context where such a contradiction should not
be possible, then the two pieces of evidence serve as proof of
their wrongdoing, making them eligible for slashing.

G. Building Cross-Chain Applications

To simplify the use of Harmonia in different cross-chain
applications, we adopt a modular design where we separate the
verification logic (Beacon chain light client verifier) from the
application logic (e.g., state sync, bridging). The application
logic can consume a standard interface from the on-chain
verifier that integrates the consumption of verifier block roots
and Merkle trees onto its logic flow. The high-level idea is
to use a SNARK-based light client as the source of truth of
the source blockchain, providing regular, valid block header
updates to an interoperability application. The actors involved
in the process are those defined in the system model (Section
III). In our implementation, we use DendrETH as the light
client protocol and the Ethereum Beacon chain as the source
blockchain (cf. Section III-D).

In greater detail, we define two sub-protocols that govern a
cross-chain application using Harmonia: the SNARK Relayer
protocol (involving steps 3 and 4) and the Application Relayer
Protocol (steps 1, 2, 5), involving A and E. The former is
presented in the Protocol 4 listing.

12

DendrETH Specification

DendrETH is a superset of ALC. Thus, we do not
define again the LCU algorithm, but merely the pro-
posed improvements. We define two data structures to
use in our protocol. First, the slashing evidence, or
evidence. Secondly, we define the slashing action
S. A slashing starts with a beacon state B [65] and a
slashing action. We represent the action of slashing a
set of validators N by S evidence,N−−−−−−−−→ {1}
We define evidence as having several attributes:

1) BlockHeader∗: an attested block header, which
is the contender that originates the slashing.

2) Ci+1: the next sync committee.
3) πCi+1

: the next sync committee branch is the
Merkle path that authenticates the next sync com-
mittee.

4) BlockHeader: the finalized block header.
5) πBlockHeader∗ : a Merkle branch validating the

finalized block header.
6) aggregate: the aggregated signature σN[1:512]

of the nodes participating in the sync committee,
sync committee signature and the bitmap of
the participants bmap.

7) slot: the signature slot.
8) KN1

P , . . . ,KN512

P : the sync committee public keys.
9) root: represents the root hash of a block that the

evidence claims to be finalized.
10) πroot: Merkle proof showing the inclusion of root

in the state tree.
It is worth noting that there are two evidences provided
in a slashing. The purpose of having two distinct shreds
of evidence is to provide proof that a particular valida-
tor (or set of validators) committed an equivocation or
another malicious act. Equivocation essentially means
producing multiple conflicting pieces of information
for the same context.
The slashing action S has:

1) N : a list of validators to be slashed.
2) evidence.
3) BlockHeader|HeaderChain|.root: the recent fi-

nalized block header root.
4) slot: recent finalized slot.

The complete slashing algorithm has two parts:
IdentifySlashing and EnforceSlashing.
The latter should only be called if the former returns 1
(otherwise, it means that the slashing evidence is not
valid).

Algorithm 2: IdenfitySlashing
Input: B,S, evidence[2]
Output: {⊥, 1}

1 slash ← 0 ▷ slash flag
2 assert S.slot > evidence.slot
3 ▷ asserts both evidences are sequential
4 if evidence[0].slot =

evidence[1].slot ∧ evidence[0].BlockHeader∗ =
evidence[1].BlockHeader∗ then

5 slash ← 1
6 end if
7 if evidence[0].Ci+1 ̸= evidence[1].Ci+1 then
8 slash ← 1
9 end if

10 linear[0]← evidence[0].root ==
evidence[0].BlockHeader.root

11 if ¬(final(evidence[0]) ∨ final(evidence[1])) then
12 assert BlockHeader|HeaderChain|.root = ∅
13 end if
14 ▷ Checks to prevent slashing validators

who signed an alternate history
non-maliciously

15 canonical_is_0←
evidence[0].BlockHeader.slot ≥
evidence[1].BlockHeader.slot ∧ slot ==
evidence[0].BlockHeader.slot ∧
BlockHeader|HeaderChain|.root ==
evidence[0].root ∧ linear[0]

16 ▷ Might check B and S
17 if canonical_is_0 ∧ slash then
18 return 1
19 end if

Algorithm 3: EnforceSlashing
Input: B,S, evidence[2]
Output: {⊥, 1}

1 ToSlash← ∅
2 for key in S.evidence[0].KN1

P , . . . ,KN512

P do
3 ToSlash =

ToSlash ∪ GetPublicKey(key,aggregate.bmap)

4 end for
5 for val in S.N do
6 ▷ asserts at least one validator val to

be slashed ∈ B.validators
7 end for
8 assert ValidateSlashingEvidence(evidence[0],
S.BlockHeader|HeaderChain|.root, slot,
B.GenesisRoot)

9 S evidence,N−−−−−−−−→ {1}

Fig. 5: DendrETH specification - Slashing algorithm

13

Protocol 4: SNARK Relayer Protocol
Input: Relayer private key Kr

k

Input: Full node list N , update period ∆proof

Input: Light client verifier contract address addrc
Input: Light client circuit C and Prover algorithm P
Data: Location of the latest block header, addb
Data: Access to the source and target blockchains Bs,

Bt
Result: Sends a SNARK to Bt that validates validity

of a block header from Bs
1 Procedure SendSNARK
2 LCUdata[n]← ∅ ▷ array with n values
3 for every ∆proof do
4 for each n in N do
5 BlockHeader = n.readBs(addb)
6 LCUdata[index] =

GetLCUDataFromBlock(BlockHeader)

7 assert∀i, j : 1 ≤ i ≤ n,LCUdata[i] =
LCUdata[j] ▷ responses from
different nodes are consistent

8 (xC , wC) =
GenerateProofInput(LCUdata)
▷ Generate input and witness

9 πSNARK = P (C, xC , wC) ▷ Appendix D
10 σ ← SIGNKr

k
(πSNARK)

11 storeBt
(addc, (πSNARK , σ))

The SNARK relayer protocol runs every time interval
defined (e.g., every 32 slots/blocks). To maximize resilience
and stemming from the increasing usage of node-as-a-service
companies such as Blockdaemon (maximizing efficiency but
with security risks), the SNARK relayer should query several
sources (line 4). In line 5, the relayer queries a full node and
gets the latest block. The latest block contains the information
necessary to build LCUdata (line 6). In line 7, we assert that
the responses from different node providers are the same.
Otherwise, we abort the protocol.

In line 8, the SNARK relayer generates the necessary input
and witness to be used as input to our light client circuit. In
line 9, we generate the SNARK using the Prover algorithm P.
It takes as input the light client circuit we developed and inputs
a SNARK. The relayer signs the generated data in line 10 for
accountability. Finally, in line 11, the SNARK is submitted to
the Light Client Verifier contract on the target chain5. We note
that any node can perform the role of the relayer, making the
SNARK submission process permissionless and decentralized.
An incentive mechanism can be built to incentivize the good
functioning of the network. Details on the on-chain light client
verifier can be found in the implementation section.

We now explain the Application Relayer Protocol (Protocol
5). First, the application relayer takes as input the cross-chain

5Technically, we send the SNARK and the data we want the smart contract
to record. We explain this process in detail in the implementation section.

Protocol 5: Application Relayer Protocol
Input: Relayer private key Kr

k

Input: Cross-chain logic contract address on the
source and target chains, addrs and addt,
respectively

Input: State Merkle tree on the source chain Bs.tree
Input: Cross-chain logic ζl
Input: Cross-chain current state ζs
Data: Access to the source and target blockchains Bs,

Bt
Result: Executes one step of cross-chain logic verified

by Merkle proofs
1 Procedure UpdateCrossChainContract
2 while true do
3 txs =

GetTransactionForLogicNow(ζs, ζl)
4 storeBs

(addrs, txs)
5 π ← Bs.state.proof(txs) ▷ gets Merkle

proof for transaction
6 ζs ← UpdateCrossChainState(txs, π)
7 txt =

SIGNKr
k
(GetTransactionForLogicNow(ζs, ζl))

8 storeBt
(addrt, (txt, π))

9 π′ ← Bt.state.proof(txt)
10 ζs ← UpdateCrossChainState(txt, π

′)

state (the next step of the cross-chain logic). In line 3, the
relayer creates a transaction that executes the next step on
the source blockchain (this transaction is signed, similarly to
line 10 of Protocol 4, for accountability, but we omit it for
brevity). On line 4, it submits the transaction on the source
blockchain. Line 5 generates a Merkle proof proving the
inclusion of txs in the source blockchain. Line 6 depicts the
relayer updating the cross-chain state. After that, the relayer
creates a transaction according to the cross-chain logic aimed
at the target blockchain. Then, it transacts against the target
blockchain, in line 8. Finally, the relayer updates the cross-
chain state. The next section presents a use case of this
framework.

H. State Migration with Harmonia

This section presents an implementation of an application
using Harmonia and DendrETH. Our proof of concept is based
on SmartSync [67]. SmartSync implements state migration
across EVM-based chains. The migration of state can be
performed by interacting with pairs of smart contracts, one
in each chain, and retrieving Merkle proofs for the updates
on both contracts. Although some preliminary research has
been done on the topic [68], [69], it is still not possible
to automatically migrate decentralized applications state to
blockchains with a different runtime (i.e., migrating state
across heterogeneous chains) [21]. We leave the aspect of
automatic migration for future work and instead focus on

14

migrating state across EVM chains (i.e., homogeneous chains),
in a trustless and decentralized way using DendrETH.

The starting point is a pair of (equal) smart contracts
deployed on two EVM chains. A user or relayer will issue a
transaction to one of the contracts and then reissue that same
transaction to the other contract. The migration is verified
by a third contract upon providing a pair of Merkle proofs
(one for each transaction on each contract) and auxiliary
data. The rationale is the following: consider that the storage
hash is the Merkle root of the storage tree, which encodes
a key-value store for each contract. If the contract updates
on both ends yield the same storage hash and both Merkle
proofs are valid, then both contracts have the exact same
state at the block to which the Merkle proof refers. However,
verifying Merkle proofs relies on a centralized, trusted relayer
to provide the source of truth (block header roots). We remove
this dependency by integrating our fork of SmartSync with
Harmonia, showcasing a use case for interoperability other
than asset transfers. The idea is based on four smart contracts.
A cross-chain logic contract on the source chain, a cross-chain
logic contract on the target chain, an application proof verifier
contract, and a light client verifier contract.

Figure 6 shows the sequence diagram of the use case. In
step 1, an application relayer or an end user interacts with
the source contract, modifying its storage (update value v).
A Merkle proof π for the storage modification is constructed
(step 2). After that, the same transaction is made against the
logic contract on the target chain (step 4), and a proof π′

is generated (step 6). Next, the relayer submits a verification
request that validates the migration. It takes as input the two
generated Merkle proofs and requires the storage hashes of
the contracts to be the same. The application proof verifier
contract will interact with the Light client Verifier contract in
step 8 to get the latest validated execution state root r, which
was validated using a SNARK πSNARK . After that, it will
validate both Merkle proofs using the validated block header
root. Upon verification, the state migration is complete.

Note that the cross-chain logic does not enforce that an
update on the cross-chain logic contract on the target chain
is contingent on the state of the source. A relayer could
update the target contract at will. However, the verification
process would fail if the updates on the target contract do
not correspond to the updates on the source contract, as the
storage roots would be different. We enforce the three cross-
chain rules through the light client and the different application
contracts. Formally, we denote our cross-chain logic ζ [12] that
depends on local transactions E happening on the source chain
and destination chains, denoted by es and ed, respectively. We
will provide implementation details in the next section. Cross-
chain logic is then a function of local events. Formally:

ζ(E) =


ζ1(e) = ∀e : es ∨ ed included chains
ζ2(e) = es ≺ ed 1st transaction is in chain s

ζ3(e) = es.target = ed.target we replicate transactions
(1)

IV. IMPLEMENTATION

In this section, we provide implementation details on the
Harmonia components. We emphasize a variety of technical
challenges for our implementation:

1) Parsing and processing blockchain data: Although
blockchain data is publicly accessible, parsing this data
and extracting the required information is complex. Spe-
cialized tools and techniques are required to handle this
data effectively. For example, the increasing complexity
of the Ethereum blockchain, particularly in its need to
distinguish between the execution and consensus layers of
Ethereum – each presenting unique challenges —- calls
for the separate parsing of each layer before intercon-
necting them. We parse blockchain data from different
sources using Blockdaemon’s Universal API, a wrapper
over RPC nodes of different protocols. This allows us to
retrieve data in a uniform format that we can use for our
use case. This API also enables us to parse data from
other EVM chains effectively.

2) Engineering effort for site reliability engineering in
data collection: we need to account for the relayers
to be fully operational and the blockchain nodes we
use to gather necessary data for proofs and cross-chain
logic execution. Deploying and maintaining nodes in
heterogeneous interfaces is a recognized difficult task,
which is the basis for several companies in the space
[70]–[73]. We leveraged several institutional-grade node
providers to collect data reliably.

3) Handling different data finality models: this issue has
to do with data reliability: on probabilistic consensus
blockchains, forks happen. A challenge is ensuring the
on-chain data collected is up-to-date and final (depending
on the specific cross-chain logic). Therefore, there is a
trade-off between liveness and safety that is not trivial to
optimize. In our proof of concept, we choose safety over
liveness and await transaction finalization. The applica-
tion relayer operates with a delay to provide a safe buffer
waiting for the source chain’s finalization.

4) System Complexity: Harmonia comprises several de-
centralized systems that cooperate asynchronously. In
particular, the developed circuits are based on state-of-
the-art cryptography and technology, more susceptible to
bugs that are hard to identify than stable technologies
[14]. A careful security-first implementation must be
made to minimize risks and attack surfaces. However,
we recognize that our technology must be audited before
production deployment.

A. SNARK Relayer

In this section, we describe the SNARK Relayer (SR)
implementation. The relayer efficiently generates proofs and
publishes updates for all blockchains supported by Harmonia.
We provide up-to-date Docker images and Nix environment
configurations to simplify the process of running a relay.
Our relayer has comprehensive setup instructions and is open

15

Fig. 6: Sequence flow of our fork of SmartSync integrated with DendrETH, using Harmnoia. The components of SmartSync are
the cross-chain logic (source and target). The blue component is a contract deployed on the source chain. Yellow components
are contracts deployed on the target chain. Purple components are off-chain components.

source6. The initial slot for the relayer to start creating
SNARKs is customizable by setting the finalization time
interval SLOTS_JUMP (by default 64, i.e., 12.8 minutes).
This interval will set a trade-off between liveness and cost:
the shorter the interval, the more live the updates are (up
to one update per epoch). However, a higher frequency of
updates requires a higher workload for creating SNARKs
and submitting them on-chain, raising operational costs. The
relayer is implemented in Typescript (using NodeJS as the
runtime environment) and is composed of multiple workers.
Figure 7 illustrates the architecture of the relayer. Workers are
implemented using BullMQ, a queue system built on NodeJS.
The workers are:

• Update Polling Worker: The relayer itself executes a
recurring job that repeats every SLOTS_JUMP and starts
from INITIAL_SLOT. The job targets a specific source
chain supporting Pratter (Goerli) and the Ethereum Main-
net. It retrieves LCUdata from the Beacon REST API
and saves the last downloaded light client update for the
job in a Redis database. The data includes the block
header at slot INITIAL_SLOT and block header at
slot INITIAL_SLOT + SLOT_JUMP, and the necessary

6see the relayer code, https://tinyurl.com/2hnauda6.

parameters for the witness generation consumed by the
next worker.

• Proof Generation Worker: After that, the Proof Gener-
ation Worker puts the update on a queue that is con-
sumed by the Prover Server (a wrapper over a rapidsnark
server7), using input from the Update Polling task. The
generation worker generates a SNARK and public input
to the verifier smart contract and returns the output
to the relayer, which persists the proof. The Prover
Server requires a path to a build folder containing a
light_client.zkey and a light_client.dat
files. The .zkey files are associated with the proving
and verifying keys of the proof system instantiation.
After a circuit is compiled with Circom, a setup phase
is performed where the proving and verifying keys are
created, typically in the form of .zkey files.

The prover server runs SNARKJs [74], where an initializa-
tion procedure occurs. The procedure includes performing a
“Powers of Tau” ceremony8 at, compiling the circuit, conduct-
ing the setup with Groth16 (with the BLS12-381 curve), giving
as input the witness received by the proof generation worker,

7see rapidsnark, https://github.com/iden3/rapidsnark.
8using the public .tau files available in the snarkjs repository,

https://github.com/iden3/snarkjs.

16

https://github.com/metacraft-labs/DendrETH/tree/main/relay
https://github.com/iden3/rapidsnark
https://github.com/iden3/snarkjs

Run Update
Repeat Job

Beacon Rest API

Retrieve 
updates

Get proof

by update

Generate

SNARK

Saves proof

on chain

Notified for

proof

Publish updates +

proofs on chain

Notify for 
proof

Update Polling Worker

Proof Generation Worker

On chain publisher

Chain

Proof Server

Redis Redis

Pub / Sub

Fig. 7: SNARK Relayer architecture.

and creating the proof. Upon completion of proof generation,
the generated proof is saved in Redis. Multiple instances
subscribing to this notification attempt to publish the proof
on-chain to the verifier contract9). Due to the standardized
light client verifier interface, the relay architecture allows
for extensibility and includes different chains and transaction
types. The three workers have been implemented in ≈ 2, 400
lines of code (LOC) of Typescript.

B. Cross-Chain Logic

The cross-chain logic contracts for our PoC are imple-
mented using Solidity: a SimpleStorage contract, a Relay
Contract, a Proxy Contract, and utility contracts. The Sim-
pleStorage contract, along with the Proxy, implements the
cross-chain logic. The Relay contract verifies Merkle proofs
done against the Light Client Verifier contract. We utilized
Foundry, a smart contract framework [75] to implement the
integration with Harmonia instantiated with DendrETH (≈
1,000 LOC of Solidity) and test our contracts (≈ 300 LOC
of Solidity). We have made our open-source implementation
available10.

C. Application Relayer

The application relayer is an off-chain server that has a
dependency on our fork of SmartSync11. It receives calls from
an end-user via a user interface and executes cross-chain logic:
issue transactions to change the state on the source blockchain

9an example of a successful update, https://tinyurl.com/4saa55fx.
10at Github, https://github.com/RafaelAPB/data-transfer-dendreth.
11implementation available here, https://github.com/RafaelAPB/smart-sync.

(e.g., storage of variable “A” of the cross-chain logic con-
tract), fetches recent blocks from the source and destination
chains, adding blocks to the relayer contract, creates Merkle
proofs from on-chain transactions, obtains latest proofs and
input from DendrETH, and conducts the state migration the
overall flow is depicted in Figure 1. It contains an OpenAPI
specification that generates the SDKs in different programming
languages so that different stacks can use the application
relayer. The relayer is parameterized with a wallet (so it can
transact against the source and destination chains), node RPC
endpoints for Ethereum Goerli and Polygon Mumbai and the
addresses of the cross-chain logic contracts, the relay contract,
and DendrETH.The relayer has been implemented in ≈ 2, 150
LOC of Typescript. Our fork of SmartSync has ≈ 1, 500 LOC
of Typescript.

D. Light Client Verifier & Application Proof Verifier Contracts

In this section, we elaborate on the implementation details
of the on-chain contracts for validating SNARKs and imple-
menting the cross-chain logic.

1) Verifiers For EVM-based chains: The light client verifier
contract has been implemented in Solidity for EVM-based
chains (Ethereum Classic, Binance Smart Chain, Polygon,
Avalanche, Celo, Theta, Hedera, Fantom). It is divided into the
Beacon light client contract and the light client update verifier
(SNARK verifier). The light client verifier exposes multiple
public functions that consume the outcome of the verifying
process, e.g., optimistic headers and execution state roots.

The light client verifier calls an auxiliary contract (SNARK
Verifier) generated by SNARKJs, allowing us to verify
SNARKS on-chain. The SNARK verifier uses a pairing library
that provides functions for performing operations on elliptic
curves. It provides functions for addition and scalar multi-
plication of points, the negation of points, and the bilinear
map and pairing operations. The main function of our light
client verifier is called verifyProof. It takes as the input
a SNARK πSNARK (parameters a,b,c that represent points in
an elliptic curve) and the public inputs, that is, the data to be
made available to be consumed by other applications (namely
execution state root, optimistic header root, the attested header
root, and the attested header slot). Listing 1 shows the code
for the verifier contract. The contract computes a commitment
to the input of the SNARK on-chain and passes that along to
the SNARK verifier and SNARK proof.

1 pragma solidity 0.8.9;
2 import ’./Verifier.sol’;
3

4 contract LightClientUpdateVerifier is Verifier {
5 function verifyUpdate(
6 uint256[2] memory a,
7 uint256[2][2] memory b,
8 uint256[2] memory c,
9 bytes32 prevHeaderHash,

10 bytes32 nextHeaderHash,
11 uint256 nextHeaderSlot,
12 bytes32 finalizedHeaderRoot,
13 bytes32 executionStateRoot,
14 bytes32 domain
15) internal view returns (bool) {

17

https://tinyurl.com/4saa55fx
https://github.com/RafaelAPB/data-transfer-dendreth
https://github.com/RafaelAPB/smart-sync

16 bytes memory concatenated = abi.encodePacked(
prevHeaderHash, nextHeaderHash,
finalizedHeaderRoot, executionStateRoot,
nextHeaderSlot, domain);

17 bytes32 commitment = sha256(concatenated);
18

19 uint256[2] memory input;
20

21 input[0] = (uint256(commitment) & (((1 << 253) -
1) << 3)) >> 3;

22 input[1] = (uint256(commitment) & ((1 << 3) - 1)
);

23

24 return verifyProof(a, b, c, input);
25 }
26 }

Listing 1: LightClientUpdateVerifier contract

2) Verifiers for non-EVM-based chains: For blockchains
with a WebAssembly runtime, we developed a direct imple-
mentation of the light client syncing protocol based on the
highly efficient BLS, SSZ, and Light client syncing libraries
developed by Supranational and the Nimbus team. We do
this by compiling Nim code that implements the light client
syncing protocol to C, and then C code to WASM12.

Furthermore, we provide two codebases we believe to be
useful for researchers and practitioners: 1) a direct implemen-
tation of the light client protocol, which we adapted to run
as a CosmWasm smart contract, and 2) a SNARK verifier in
WASM which we also adapted to run as a CosmWasm smart
contract.

E. Circuits

We implemented the circuits for DendrETH (without
slashing), in 3,600 LOC. We used the Circom program-
ming language [76], snarkJS, and the Groth16 proof sys-
tem to generate our SNARKs. We chose Circom because
it is the most production-ready language that compiles cir-
cuit descriptions into arithmetic circuits. The main circuit,
light_client.circom13, uses 12 additional auxiliary
circuits (e.g., to compute the domain, verify a Merkle proof,
calculate a supermajority).

Technically, the circuit is a Circom template that takes
two arguments. The first is the expected number of the light
sync committee (N). The second argument (K) represents
the number of field elements used in the BLS aggregate
signature. These arguments help accommodate committees
of variable sizes and different signature representations. The
circuit receives signals (variables of the circuit), which corre-
spond to LCUdata. The SSZ (simple serialize) representation,
a serialization standard used in Ethereum, is used in some
variables (e.g., prevHeaderFinalizedSlot), to facilitate
its usage in Merkle proof verification. The circuit calculates
the target domain (see Section IV-E1), the BLS aggregate
signature verification, and a commitment. The commitment
includes different pieces of data combined and hashed to
summarize the inputs (previous header hash, next header hash,

12see proof of concept, https://tinyurl.com/bp73sfmr.
13available in the DendrETH repository, https://tinyurl.com/mtzutesj.

finalized header root, execution state root, next header slot bits,
domain). This output commitment is a succinct representation
of the data processed and is used to verify on-chain that the
created SNARK has an associated input. The circuits currently
support generating proofs for a valid light client update.

1) Target Domains: We use the domain variable (derived
from hardcoded metadata from the network it refers to) to
allow the sync committee to identify messages from different
systems and assign a purpose. This prevents a new type of
replay attack where an attacker requests a signature over a
message from an honest user. While that message may have a
particular context in a network, its consequences might differ
in another network - a light client would accept it because the
signature looks correct (domain apart). For example, consider a
transfer transaction signed for chain A but later used in chains
A and B, effectively attempting to steal user funds in chain B.
Setting a domain prevents this attack. The domain definition
depends on the domain sync committee, the fork version, and
the genesis validator’s root.

2) Committment: The idea of our scheme is that when one
validates a SNARK, the data passed along that transaction
is authenticated and can be used. However, a malicious user
can send a valid SNARK to the light client verifier contract
and fake data. The way to mitigate this attack is by using a
commitment. The commitment binds variables that are public
inputs to the circuit. In this way, the light client verifier
contract takes a commitment as input that is validated before
validating input data (see lines 21 and 22 of Listing 1).

F. Trusted Ceremony

We conducted a trusted setup in two phases. The first phase
(“Powers of Tau”) is a multiparty computation protocol that
constructs a public parameter (CRS) for all SNARK proofs
within a certain circuit size. We used the pot25 final.ptau
powers of tau file (which works with circuits up to 225

constraints14 from the snarkjs library and the BLS12 − 381
curve. The second phase needs to be executed for each sub-
circuit. Here, the participants use the Powers of Tau phase
output to generate a structured reference string by calculating
the encrypted evaluation of the Lagrange polynomials at tau. It
takes the beacon ptau file generated in the previous step, and
outputs a final ptau file, which will be used to generate the
circuit proving and verification keys. Together, the two phases
constitute the complete trusted setup ceremony necessary for
secure usage of the Groth16 SNARK protocol. This trusted
setup is meant for testing purposes.

G. SNARK Generation

First, we compile the circom circuits using the circom
compiler. The output is a R1CS representation of the circuit.
Then, we use snarkJS to generate the witnesses for input to
the light client circuits, corresponding to a light client update.
Additionally, snarkJS takes a verification key (generated in the
trusted setup phase) as input to generate a SNARK.

14available via the hermez project, https://tinyurl.com/534vva2x.

18

https://github.com/metacraft-labs/DendrETH/tree/main/proof-of-concept
https://github.com/metacraft-labs/DendrETH/blob/main/beacon-light-client/circom/circuits/light_client.circom
https://hermez.s3-eu-west-1.amazonaws.com/powersOfTau28_hez_final_25.ptau

V. EVALUATION

This section evaluates the latency, throughput, and cost of
the SNARK Relayer, the Application Relayer, the Light Client
Verifier, and the Application Proof Verifier. Let us recall our
performance goals: the system tries to minimize costs as much
as possible, and it should be able to verify Ethereum’s state
in a reasonable amount of time. The exchange rates and gas
prices are as of 14 July 2023.

A. Setup

We have launched several nodes to support connectivity
to the blockchains we connect to. For the consensus layer
of the Goerli/Prater network, we launched a Nimbus Client
[77] paired with Geth v1.11.5 [78] and downloaded the
Prater blockchain (around 60 GB). For Polygon Mumbai, we
launched a node v0.3.7 [79]. The size of the blockchain is 260
GB. Both nodes are located in Amsterdam, Europe. When
connection to other blockchains was needed, we leveraged
the infrastructure provided by Blockdaemon to connect to
Ethereum and Polygon. For the SNARK relayer, we deployed a
server with 384 GB of RAM, 32-core, 1TB NVMe hard drive,
configured with 500GB of swap space and an i9-13900 CPU.
The Application Relayer was deployed on a 16 GB RAM, 1
TB SSD, and a ten-core 3.2GHz laptop.

B. Circuits

Our main circuit (light_client.circom) took 6
hours, 27 minutes, and 47 seconds to compile on the spec-
ified hardware, and the trusted setup phase took 26 hours,
outputting a proving key of 55.6GB. It has 410 template
instances, ≈ 90 million non-linear constraints, ≈ 5 million
linear constraints, 0 public inputs, 2 public outputs, 20,961
private inputs, 0 private outputs, ≈ 93 million wires, and
≈ 470 million labels, being one of the most complex Circom
circuits developed to date. We developed a test suite using
snarkit2 [80] to evaluate the correctness of the sub-circuits
that light_client.circom uses. For example, our tests
for the pow circuit have five cases from which we illustrate
two: 1) on input base: 10, power: 3, the output should
be 1000; 2) on input base: 2, power: 10, the output
should be 1024. Table III (Appendix G) showcases the circuit
test results, namely the number of template instances, non-
linear and linear constraints, public inputs, public outputs,
private inputs, private outputs, wires, and labels.

C. Latency

There are two latencies that we are interested in measuring.
First, the latency of generating a SNARK proof (∆proof)
to be submitted and validated on-chain. An attentive reader
might notice that such a computationally intensive task can
upperbound the total latency of our system, but we show
this is not the case - instead, finality is the main responsible
for latency. Secondly, we want to measure the latency of
executing the cross-chain logic of our use case (represented
by ∆ζ). These two latencies add up to the total latency, or
end-to-end latency (∆total) for a fact to be verified on a

target chain, using Harmonia - this shows how applicable our
proposal is in the real world. This includes measuring both
the SNARK and the Application relayers (∆snark and ∆app,
respectively), issuing transactions against the source chain
(Ethereum) and destination chain (Polygon) (∆Ethereum

store and
∆Polygon
store , respectively, note that this includes accommodating

finalization times, which range from a few minutes to around
twenty minutes). Note that generating a proof is included in the
SNARK relayer operations, i.e., ∆snark ≥ ∆proof . It is impor-
tant to note that some operations depend on others, while some
can be parallelized. In particular, the cross-chain logic rules ζ
define that transactions on Ethereum happen before the ones in
Polygon. Note that in our use case, we have one transaction
in the source chain and two transactions on the destination
chain. Generalizing for arbitrary cross-chain logic, the specific
deltas depend on the numbers of transactions on the source and
destination chains (|tx|s and |tx|d, respectively). The end-to-
end latency is given by ∆total = ∆snark + ∆ζ . The latency
∆slack sums the duration of one slot (12 seconds), which
is the lag the relayer has with regard to the current block.
This is because the current block (head block) aggregates the
claims of the sync committee regarding the previous block: in
the best-case scenario, we can start creating a SNARK of the
penultimate block. Expanding the expression we obtain:

∆total = ∆snark +∆slack +∆txs

+ (|tx|s ×∆source
store)

+ ∆app + (|tx|d ×∆target
store) (2)

Let us calculate ∆snark. Consider a chain of block headers
on the source chain HeaderChainj

i from block i to j. Let ti
be the time block i was finalized. Let tj be the time block j
was finalized. Let the finalization latency of the cross-chain
logic transaction issued by the Application Relayer on the
source chain (defined as txs) be denoted by ∆txs. Let i be the
block at which the SNARK relayer starts building a proof for
block i. Let j± ϵ be the block where the SNARK relayer has
finished building a SNARK for block i (ϵ accounts for small
delays on the SNARK relayer software, for example, doing
API calls and calling internal functions). Let ∆proof be the
time between i and j, i.e., the time the SNARK relayer needs
to build a SNARK.

Figure 8 presents our latency model. In step 1 , the user or
application relayer on behalf of the user submits a transaction
ts to the source chain, following rule ζ2. We have two
possibilities: we either issue ts before (2) or after i (2 ’).
If issued before i, it means that the SNARK relayer will pick
such transaction at block i for when it starts building a proof.
Otherwise, it will be picked in the following block that will
be verified (not every block is verified). The SNARK relayer
picks block i, in step 3 to construct a SNARK. At block
j = i+∆proof±ϵ the txs is finalized, in 4 . After the SNARK
for block i is created, it can be verified in the destination
chain, via tj , in step 5 , and eventually included in a block,
6 . After that, the Application Relayer executes the rest of

19

the cross-chain logic by broadcasting txd (executing rule ζ3,
in step 7). Formally:

∆snark =

{
∆txs +∆proof ts < ti
(∆proof −∆txs

) + ∆proof ts ≥ ti

Typically, blocks are finalized in two to three epochs or
approximately 12.8 to 19.2 minutes [81]. On average, a user
transacts in the middle of an epoch. Thus, the last epoch only
needs 66% of attestations, and thus, a transaction included
there is finalized faster - averaging 14 minutes (16 slots
from the first epoch + a full epoch, or 32 slots, + 66% of
the last epoch, or 22 slots). Therefore, for use cases where
an application on a third-party blockchain requires strong
consistency on the Ethereum state, a safe buffer of around
10.8 to 19.2 minutes (averaging 14 minutes) is expected. Let
us define this time as ∆final. Typically, blocks are finalized
in two to three epochs or approximately 12.8 to 19.2 minutes
[81]. On average, a user transacts in the middle of an epoch.
Thus, the last epoch only needs 66% of attestations, and thus,
a transaction included there is finalized faster - averaging 14
minutes (16 slots from the first epoch + a full epoch, or 32
slots, + 66% of the last epoch, or 22 slots). Therefore, for
use cases where an application on a third-party blockchain
requires strong consistency on the Ethereum state, a safe buffer
of around 10.8 to 19.2 minutes (averaging 14 minutes) is
expected. Let us define the time necessary for the blockchain
to finalize a block by ∆final.

We observed that creating a SNARK proof on our hardware
takes 4 minutes and 25 seconds. That is the current minimum
latency, as one can generate a proof for the next block
transition while generating the previous block proof. However,
we defined the SLOT_JUMPS parameter on the worker to
two epochs, or 64 slots (i.e., we batch transactions spanning
two epochs). Since 64 slots × 12 seconds = 12.8 minutes,
the latency introduced by the batching process supersedes
the proving time. Therefore, ∆proof = 12.8 minutes. We
chose this value to balance operational costs with liveness.
In practice, we could further reduce latency to 6.4 minutes
(32 slot jumps) and even lower to around 4.5 minutes, which
is the time to generate a proof. Indeed, one can reduce latency
by skipping fewer slots, at the peril of collecting transactions
that will not be finalized and thus be included only in the
next proof. It is worth noting that there is a trade-off between
having smaller jumps and the time window for finalization:
if a user submits a transaction in the second slot of the
epoch (admitting the relayer will start creating a SNARK at
the beginning of each epoch), the user will have to wait a
full 31 slots until the prover starts with an input including
that transaction. Conversely, the sooner a transaction is issued
relative to being picked by the relayer, the more the user will
have to wait for transaction finalization. Therefore, in minutes,
∆proof < ∆final+∆txs (minimum finalization time + a delta)
< ∆snark ⪅ 25.6+ ϵ (maximum finalization time + delays on
relayer).

Empirically, for the case of Ethereum to Polygon direction,
this translates into a delay of around 50 blocks relative to the
source chain: we have verified a transaction included at block
i at block i+ 50. The target chain has a 150-180 block delay
(will vary according to the specific destination chain): we can
prove a fact at block header i in the source chain when around
150 blocks have been finalized in the target chain.

The Application Relayer constructs performs two reads
from the blockchain state of the source and destination
chains, creates two Merkle proofs, signs and broadcasts one
transaction on the source chain, and signs and broadcasts
three transactions on the destination chain, among other low-
resource tasks. Since all of those happen concurrently with
the SNARK Relayer, in a few seconds, ∆app is statistically
negligible. However, after the SNARK relayer has made the
newest block execution state root available, the Application
Relayer still needs to finalize the migration process according
to our use case definition. The rest of the end-to-end process
takes the time of one transaction confirmation. Since the
SNARK latency will be the highest and parallel with the
Application relayer and transaction finalization on different
chains, we can approximate the overall latency: ∆total ≈
∆snark + (|tx|s ×∆Ethereum

store +∆app + |tx|d ×∆Polygon
store) ⪅

∆snark + (1×∆Ethereum
store +∆app + 3×∆Polygon

store) ⪅ 25.6.

D. Performance Improvements

There several considerations we can make on performance
improvements. First, one could take advantage of the light
client update steps that do not have dependencies on other
steps. For instance, we can parallelize the different checks
done at ValidUpdate (line 1 of Algorithm 1) by distributing
independent parts of proof generation to different machines
(introduced in [32]). This would make the generation of
SNARKs faster, reducing ∆snark.

Secondly, let us focus on the fact that the previous analysis
does not leverage the optimistic block header at the time of
transaction submission (at time ∆txs). Instead, we wait for
finalization and instead use the finalized block header. We can
improve this process by starting the SNARK generation at
time ∆txs

. Furthermore, we can generate one SNARK per
step in Algorithm 1 and then aggregate them by employing
a recursive SNARK scheme [32], [82], [83]. Depending on
whether all transactions chosen to be part of the current
block at time ∆txs (optimistic block header) get effectively
finalized (finalized block header), we may have substantial
latency reduction (namely ∆proof). This is because we can
now work with the optimistic block header instead of relying
solely on the finalized block header. If the finalized block
header is the same as the finalized block header right before
∆txd

, then our total latency will be the chosen finalization
latency (∆final < ∆final+∆proof), as the proof is calculated
concurrently with the execution of the finalization process.

Since we parallelize our SNARK generation process, we
may have to recompute some SNARK phases (but not all).
Thus, we hypothesize that the total latency would be ∆final+
m×∆proof , where 0 < m ≤ 1 is the multiplier that represents

20

Application Relayer time waiting

∆tx
s

∆proof

t
j

 i-1 i j

k-1 k

 j+1

 k+1

tx
d

Source Chain

Destination Chain

1

t
s

2 t
s

2

3

5

4

6

7

Fig. 8: Overall latency of a system built with Harmonia. It includes the latency to perform cross-chain transactions ∆txs
and

∆txd
, and the latency to generate a proof, ∆proof .

the latency obtained by parallelizing the process. We leave the
exploration of performance optimizations for future work.

E. Storage

A SNARK has a constant size: three points in the BN-
254 curve. The total size is two 254-bit points, and another
point is a bilinear pairing. On-chain, this takes 7× 32 bytes =
224 bytes. Providing five updates per hour would yield a cost
of 9.36 Mb per year (both on-chain and off-chain, ignoring
database metadata). On the other hand, the storage cost for
light clients to track the Ethereum chain is ≈ 25 kB per 27
hours: 24576 bytes for the 512 48-byte public keys in the sync
committee, 96 bytes for the aggregate BLS signature (using
a 381-bit curve), roughly 540 bytes per block header (e.g.,
parentHash is 32 bytes, a nonce is 8 bytes), and a Merkle tree
branch. The storage occupied by the branch depends on the
depth of the tree multiplied by a 32-byte hash. For a tree with
a depth of 10, this would yield 320 bytes. In total, the cost
for light clients to track the Ethereum chain would translate
into ≈ 4.5 Mb per year. This amount of information would
be unfeasible to store on-chain (for Ethereum, the price would
be 50,000 USD per MB). However, two factors alleviate this
problem. First, the light client sync committee works at the
protocol level and thus does not pay gas to track the block
headers. Secondly, storing 9.36 Mb of information in a Layer-
2 blockchain is relatively cheap, as we will show next. Some
alternatives, such as duplicating raw data on the third-party
chain, would require significantly more storage. Therefore,
the SNARKs we transact on-chain considerably reduce on-
chain storage and, consequently, the price of operating an
interoperability mechanism.

F. Hardware

The attractive properties of SNARKS come at a cost: prov-
ing correct even a simple computation is significantly more
expensive in terms of more time and memory than is required
for the computation itself. This overhead arises because the
prover P “arithmetizes” the computation F, which involves
expressing it as an arithmetic circuit C that is much larger
than the description of F [84]. Thus, the hardware needed

is on the high end of available commercial hardware. The
costs of operating the Application Relayer are not significant
because it runs on commodity hardware. We then focus on
evaluating the hardware and transaction costs of the SNARK
relayer. Depending on the cloud provider, the yearly price
can go from ≈ 15K (Google’s n2-standard-32) to 30K USD
(Amazon’s R5d.4xlarge). A bare-metal approach (Ryzen 7800
CPU, 128GB) would reduce the costs to less than 1K USD
per year but requires hardware maintenance.

G. Transaction Fees and Costs

We analyze the transaction costs of the Light Client Verifier
contract (Beacon Light Client), the Application Proof Verifier,
and the cross-chain logic contracts regarding gas. We consider
the costs of deploying the Light Client Verifier (1,399,127
gas) and performing one light client update (279,963 gas). We
calculate the yearly costs in USD for issuing three light client
updates per hour (1 every 20 minutes). This gives an overview
of the transaction costs to operate the light client in several
EVM-based chains (see Table I):

Regarding our cross-chain logic contracts, our integration
adds 7,225 gas (around 40 cents), including one extra call
to DendrETH to retrieve the execution state root. The values
to obtain a storage variable are around 2,400 gas, and to set
the variable, they are 5,400 gas. Deploying the Relay, Proxy,
and simple storage contracts cost 1.6M, 3M, and 140K gas,
respectively. Performing the migration process costs around
950K gas, costing around 0.2 MATIC (17 cents) in Polygon.

In the context of blockchains with a WASM runtime (e.g.,
Polkadot, Cosmos, Elrond, NEAR, EOS, Fantom), the verifi-
cation costs of a SNARK is around 250K gas and over four
times that for the direct verification (i.e., verifying consensus
rules in the smart contract). Table II shows the gas costs for
deployment and updates of our different implementations of
the SNARK verifier.

H. Considerations on Throughput

Throughput depends on the specifics of the use case (i.e.,
cross-chain logic rules), the latency of each transaction, upper-
bounded by the throughput of the underlying chain, and the

21

Price/Gas Rate USD/Native Token Light Client Verifier
Deployment (USD)

Light Client Verifier
Update (USD)

Cost/Year
(USD)

Ethereum 29 Gwei 2010 81.61 16.33 429,152
Polygon 200 Gwei 0.85 0.24 0.05 1,314
Avalanche 26 nAVAX 14.79 0.54 0.11 2,891
EVMOS 30 nEVMOS 0.09 0.004 0.001 26.28
Optimism 0.001 Gwei 1.37 ≈ 0 ≈ 0 0.01
Arbitrum 0.1 Gwei 1.22 0.0002 ≈ 0 0.9

TABLE I: Light Client Verifier deployment and Update costs

Deployment Initialize Update

NIM-WASM Light Client 1,308,702 2,991,395 11,706,455
SNARK Verifier using nim-bncurve 1,302,849 447,436 1,812,337
SNARK Verifier using constantine 1,378,889 391,408 871,846

TABLE II: Deployment, Initialization, and Update Gas Costs

specific block generation rates of the source (s) and target
(t) chains. This is due to the existence of a delay δ from
transaction broadcast that affects the non-deterministic block
generation rate τ , which will affect the liveness of the system.
The ratio between block production in the source and target
chains, τds = τd

τs
, sets the speed at which one can prove facts

on the target chain.
For use cases that require an interdependency of transactions

across chains enforced by on-chain verifier contracts (such as
our PoC), throughput will depend on the latency ∆proof for
the proof verification. In our case, we execute four transactions
in around 25 minutes, translating into a throughput of 1
finalized, irreversible transaction every 6.25 minutes. The
bigger the batch of transactions contained in a single SNARK
proof (which contains attestations for block headers execution
roots), the higher the throughput. We did not optimize our PoC
for throughput, and we leave the study of the performance of
more complex cross-chain use cases for future work.

I. Reproducibility

We provide tools for researchers to set up our project and
reproduce our empirical results easily. First, we make available
our codebase and results under a permissive open source
license15. We provide tests and Docker containers following
recommended engineering practices [85], [86]. Tests are avail-
able for the on-chain smart contracts, direct implementation,
and Circom circuits. To facilitate our testing infrastructure,
we maintain an archive of light client updates for each sync
committee period since Altair, as produced by a fully-synced
Nimbus node, available for the Ethereum mainnet and Prater
16. For Prater/Goerli, the updates start on checkpoint 5601 823.
Pre-generated proofs have been available since that check-
point. Furthermore, to ease setting up the environment, we
leverage Nix, a package management and system configuration
tool that helps us showcase a reproducible, declarative, and

15available at Github, https://github.com/metacraft-labs/DendrETH
16see light client updates, https://tinyurl.com/yampz8re.

reliable system. The deployment addresses of our contracts
are available in our project’s README.md file.

VI. DISCUSSION AND QUALITATIVE ASSESSMENT

In this section, we present the discussion and qualitative
evaluation of our solution.

A. Safety

In this section, we analyze long-range light client sync
attacks in the context of the safety of our system.

Altair 1.0 is vulnerable to bribing. Although individual
action by a small set of validators would be insufficient for a
large-scale attack, the industry has seen centralized platforms
for influencing validator behavior. An example is the Flashbots
platform, which provides auction-based coordination to extract
value from block reorganization [63]. Therefore, cooperation
to exploit Ethereum’s light client protocol could emerge sooner
or later as an obvious first venue for conducting cross-chain
attacks [12].

To harden the system’s safety against these attacks, Den-
drETH is a necessary improvement to the state of the art,
currently being standardized and implemented [87]. However,
this security model might not work for smaller chains with
much smaller total value locked (meaning bribes and colluding
prices would be cheaper). Given that a high volume of traffic of
a popular interoperability solution is non-EVM (order of tens
of billions USD), this indicates the need to study the crypto-
economic attacks possible to do for the light clients of those
infrastructures. An example is the elevated traffic between
layer two solutions, namely Arbitrum and Polygon, where the
users want to transact between chains and not wait the large
waiting queue periods to withdraw their funds from the L2
(typically using an optimistically verified method). Although
this is not easily fixable, one could instead closely monitor
misbehaving, forks, and slashing on these smaller chains using
cross-chain models, and use circuit breakers for cross-chain
logic if some suspicious behavior is detected.

Still, regarding safety, let us discuss long-range attacks on
Ethereum light clients. In Proof of Stake Ethereum, nodes must

22

https://github.com/metacraft-labs/DendrETH
https://github.com/metacraft-labs/eth2-light-client-updates

verify block headers, account states, and balances throughout
the blockchain history or consider the risk of long-range
attacks [43], [88]. The attack involves an adversary taking
over the blockchain by creating an alternative (forked) chain
starting from a point deep in the history of the legitimate chain.
In PoS systems, the ability to create blocks is proportional
to the amount of stake (tokens) one holds. However, in the
past, it is possible that a large amount of stake was held in
addresses that now hold little to no stake. If the private keys of
these old, ‘empty’ addresses are obtained (perhaps they were
discarded, sold, or are no longer secured because the stake was
moved), an attacker could theoretically create a new chain
starting from when those addresses had a significant stake.
Given enough time, this alternative chain could grow longer
than the original chain. In blockchain protocols, the longest
chain is often considered the ‘correct’ one, so this could enable
the attacker to overwrite the blockchain’s history.

A long-range attack could trick light clients as they inher-
ently trust the validity of the blockchain headers they receive
and do not fully validate the entire blockchain. If an attacker
successfully executes a long-range attack and creates an al-
ternate, longer blockchain, they could send the light clients
the headers from this fraudulent chain, and verify false facts
on a destination chain, conducting different types of attacks
on cross-chain logic, because the real blockchain history is
indistinguishable from the forged one. The counter measure
employed by Ethereum is to require all clients always to start
syncing from a trusted recent checkpoint, which guarantees
that the maximum number of exited validators will not be
sufficient for carrying out an attack. This notion is known as
weak subjectivity [89].

We now perform a detailed analysis of weak subjectivity
from the perspective of light clients [90] to calculate the
risk of long-range attacks. We consider the number of active
validators as of 14 July 2023, 664, 205. The light client
software may be pre-configured with a trusted bootstrap state,
and it may rely on SNARK proofs (as developed by the
DendrETH project) to perform one-shot syncing over a long
range. We focus on two evaluation experiments: 1) what is
the ratio of validators that can be malicious without the light
client committee being corrupted? 2) what is the threshold of
exiting nodes such that a malicious supermajority could be
formed and can carry out a long-range sync attack? and 3)
what is the risk profile for our validator pool, with security
parameter = 2

3?

1) Experiment 1 – Malicious Validator Ratio: We define
our security parameter λs as the percentage of the sync
committee that signs a block in order for it to be considered
part of the canonical chain. Figure 9b shows the probability
of corruption of the light sync protocol Pc (i.e., forming a
malicious sync committee M supermajority) as a function
of the percentage of malicious nodes with λs fixed at 2

3
(default). We run an approximation to the binomial cumulative
distribution function (cdf) to calculate the safe percentage of

malicious nodes, expressed in the following inequality:

x∑
k=0

(
n

k

)
pk (1− p)(n−k) ≤ e

Where n is the total number of selected validators (total
512, the light client committee size), from the total set of
Ethereum validators, k is the number of honest validators, e
is the error, and p is the probability we want to calculate.
For the probability of corruption to be 2−80, 2−40, 2−20, 25%
and 50%, the percentage of malicious validators need to be
44.3, 51.3, 56.4, 65.3, and 66.68, respectively. For example, to
calculate a probability of corruption of 50%, the inputs are
n = 512, k = 256, and e = 0.5. Note that for values until
around 60%, the probability of corruption is practically zero
but increases exponentially. Figure 9a represents the variation
of Pc as a function of λs, starting at 2

3 . We can observe that
for λs = 70, 80, 90, M = 47.7, 58.7, and 71.4 respectively.

2) Experiment 2 – Churn Rate Safety Thresholds: Let us
fix %M = 44.3, for which Pc = 2−80. We assume the worst-
case scenario: every validator exiting the validator set will
immediately turn malicious. As discussed previously, long-
range attacks target Ethereum clients who have not synced
with the blockchain for a while. Since they have an outdated
view of the chain, they cannot know which validators have
exited (or got slashed). The malicious actor only needs to
create a single light client update with a super-majority of
the signing keys that correspond to this old state of the light
client in order to lead it into an alternative history where each
next sync committee is also under the control of the attacker.

Considering the churn limit and the percentage of malicious
validators needed to compromise a sync committee (Figure
9), we can calculate exactly how long it would take for
those many validators to exit. First, we define the churn limit
c : N → R, where c(|V|) = max(4,|V|)

216 , where 4 is the
minimum number of validators that can exit an epoch, 216

is the churn limit quotient, and |V| are the number of active
validators. The number of epochs required for a validator to
exit the system ee is given by ee = |V|

c(|V|) × exit, where
exit is the fraction of validators exiting the system. Now
we vary |V| and exit (Figure 10). We conclude that for an
exit percentage of 44.3% (has a probability of 2−80 for that
set to include a supermajority of malicious nodes), validators
would need to wait 129 days. For higher percentages (e.g.,
51.2%, 56.3%), validators would have to wait 149 and 164
days, respectively. Thus, we can conclude that if a light client
seeks a sync committee honest super-majority of at least 2

3 , it
is safe to sync at least once every 129 days. Another way to
increase the robustness of light clients is to increase the ratio
r of honest validators to sign light client updates (see Figure
15 in Appendix E).

3) Experiment 3 – Fine-Grain Risk Assessment: In this
assessment, we use the hypergeometric cumulative distribution
function to compute the probability of forming M given a
fixed λs. Although the results are similar to the binomial
function, the hypergeometric cdf (F (k;N,M,n)) considers

23

0 20 40 60 80 100
Percentage of corrupted nodes % , with s = 2

3

0

20

40

60

80

100

Pr
ob

ab
ilit

y
of

 c
or

ru
pt

io
n

P c

% : 44.27, Pc: 8.27e-25
% : 51.30, Pc: 9.09e-13
% : 56.39, Pc: 9.54e-07
% : 65.27, Pc: 2.50e-01
% : 66.69, Pc: 5.00e-01

(a) Tolerated percentage of M as a function of λs

65 70 75 80 85 90
s

0.0

11.1

22.2

33.3

44.4

55.6

66.7

77.8

88.9

100.0

To
le

ra
te

d
pe

rc
en

ta
ge

 o
f

(b) Probability of malicious majority relative to share of malicious validators

Fig. 9: Sync committee corruption simulations

that once an exited validator is selected for a committee,
it exits the pool of potential validators to be selected. The
formula we use is the following:

F (k;N,M,n) =

k∑
x=0

PMF(i;N,M,n)

PMF(i;N,M,n) =

(
M
i

)(
N−M
n−i

)(
N
n

)
Where i ∈ [23 , 1] (goes from 2

3 of 512 to 512, N is the total
number of validators, rounding it up for the closest multiple
of the churn limit quotient (N = 720896), M represents the
population that has been churned, and n = 512. The risk levels
(exponent of the probability of M (powers) occurring in V)
are the same considered in previous experiments (probability
of corruption = 2−80, 2−40, 2−20). We calculate the risk of
a malicious majority occurring in a validator set (powers
of the corruption probability) as time passes and validators
churn in Figure 11. We notice slight discrepancies relative
to Experiment 1 because the hypergeometric cdf is more
precise than the approximation with the binomial cdf. For
M = 44.3%, we expect to wait approximately 125 days, a
negligible risk operation.

B. Liveness

The liveness of our system is tied to the liveness of the
light client sync committee and the liveness of off-chain
parties. For the liveness of off-chain parties, techniques like
crash-recovery for blockchain clients can be deployed [91],
as well as having multiple instances deployed, mitigating the
probability of unavailability.

We now explore on-chain liveness: let us consider the case
where the light client receives a valid update containing a
finality header with at least two-thirds of the sync com-
mittee participating. However, there might be cases where
part of the sync committee is unavailable (crash or attack).
If the light client sees (no valid updates via the method for a
one-sync committee period), it simply accepts the speculative
header with the most signatures as finalized. This allows the
light client to be live even during periods of extended non-
finality, though at the cost of network latency of a period.
This downtime period is not sufficiently long for long-range
attacks.

Cross-chain protocols are conventionally structured to man-
age such situations efficiently by initiating retries following the
resumption of services. These anomalies are deemed harmless
up to a liveness parameter. Effectively, upon crashing, the

24

0 20 40 60 80 100
% to exit

0

50

100

150

200

250

300

Da
ys

 n
ee

de
d

to
 to

 e
xi

t

Fig. 10: Days needed for a fraction r of validators that form a malicious supermajority to exit Ethereum

25 50 75 100 125 150 175
Days since last sync

300

250

200

150

100

50

0

Ri
sk

 (p
ow

er
s o

f 2
)

 Security Threshold
 44.3%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

Ri
sk

 (%
)

Risk (Log)
Risk (Linear)

Fig. 11: Cumulative probability of M (powers) occurring in V as time passes and validators churn.

relayer keeps track of the last update and submits all late
updates to the chain when it is back online or when the chain
resumes its operations, similarly to the crash fault recovery
protocol of blockchain gateways [7], [91]. Effectively, this has
happened a few times on our testnet deployments, as we can
see in the subsequent transactions after this one 17. The relayer
provided all light client update transactions missing quickly
after the incident.

C. Accountability and Auditability
Light client initialization (via INIT) is done either on the

genesis or pre-agreed blocks. Assuming the genesis block
or the pre-agreed block is valid (which can be done by re-
executing the whole chain or social consensus), incoming light
client updates are valid. One can aggregate light client updates
in a data structure that promotes traceability and auditability
from period i up to period j: LightClientStorej →
(LS[i,j]

). One can run LCU from state i up to j and verify that
the outputs are always valid. Zero-knowledge SNARKs (zk-
SNARKS) enable a prover to convince a verifier that a given

17see PolygonScan, Mumbai network, https://tinyurl.com/d9mtusny

statement is true without revealing any additional information
(unlike SNARKS, which do not have the zero-knowledge
property). Using zkSNARKs does not come with advantages to
our use case because it creates trade-offs between the recorded
evidence on-chain that can be used to slash any corrupted
members of the sync committee (see the specification of
DendrETH, Figure 5).

D. Censorship Resistance

Attackers could attempt to block valid light client updates
passing to the deployed chain, violating censorship resistance,
by performing a denial of service on the off-chain relayers.
A group of validators could attempt a denial of service,
which would depend on the decentralization and security of
the attacked network. Although a decentralized network of
relayers would alleviate the likelihood of traditional denial-
of-service attacks, an attacker could explore an alternative
route. In particular, a denial of service of the whole blockchain
could try to be performed. An attacker could buy the entire
block space for the duration of an attack, which is around 5

25

https://mumbai.polygonscan.com/tx/0xec506bd8faddb2bd5e48a4b9bc555b93f1876981252f2df2250d975b809a5f8f

ETH per block in July 202318. To control the inclusion of
blocks for a day, an attacker must spend at least 580 ETH,
approximately 1 million USD. This would effectively censor
120 light client updates. Since the block space market is very
dynamic and unpredictable [92], it is extremely unlikely that
the adversary can select the gas fees to be higher than in
every other transaction and the attack is economically viable.
The worst-case scenario brings difficulties for an attacker. For
example, the peak of gas price was ≈ 710 Gwei in July 2020,
making a single Eth transfer cost 0.015 Eth. Since the gas limit
in a block is 30 million [93], buying a single block could cost
up to 21.3 Eth (42K USD). Since 7,200 blocks are created
daily, this could account for ≈ 304, 704, 000 USD to censor
the entire network daily.

Note that this value could be considerably lower for weaker
security blockchains. In Polygon, the daily block rewards are
around 40K MATIC, around $26,800 USD. Thus, running a
DoS for the light client where the source chain would be
Polygon would probably cost substantially less (low fees are a
feature of Layer 2 technologies). However, the specifics of an
attack would have to be further investigated, as market forces
could influence the gas fees consumed by a denial-of-service
attack in unexpected ways [94].

E. Upgradeability, Flexibility, and Extensability

A successful dApp has a certain degree of adaptability
(capacity to fix bugs and add features). We can account for
this need for adaptability and hard forks on the Altair protocol
by deploying the verifier contracts behind a proxy contract.
The proxy should only be updated upon a quorum of trusted
validators. However, updating contracts comes as a double-
edged sword, as the upgradeability of contracts is an attack
vector that has led to the loss of hundreds of millions USD
recently [95]. In case the circuits are updated, another trusted
ceremony must be performed. One can explore different proof
systems to circumvent the need for a trusted ceremony (such
as STARKs [96]). However, STARKs produces larger proofs,
which means larger gas consumption by blockchains, which
translates to higher fee costs. STARKs also require more time
to generate and verify the proof.

Harmonia should provide The ability for use cases to adapt
to such protocol changes while minimizing disruptions and
risks to the cross-chain use case. For this, it maintains a well-
defined and documented schema that cross-chain use cases
can consume (API abstraction) and adopts good practices
used in the industry (providing the necessary Flexibility, G5).
With additional engineering effort, we can add more chains
supporting the verification of the source chain’s state by im-
plementing a custom SNARK verifier (satisfying Extensibility,
G5). This satisfies the direction Ethereum −→ other chains.
To provide the direction chain −→ Ethereum, one would need
to implement the light client protocol circuits of the origin
chain for them to be consumed by Ethereum. Working with

18see Etherscan, https://etherscan.io/chart/blocks

both directions would allow us to implement a trustless bi-
directional bridge, which we leave for future work.

F. Security Analyisis

In this section, we prove the security of the Harmonia
system by proving the security and liveness of its components.
Proving these properties provides a contribution to solving
the safety and liveness challenges presented (C1, C4). For this,
we leverage the concept of composability. Composability in
the context of system security refers to the ability to design
and validate a system by combining independently validated
components or subsystems. Proving that a system composed of
multiple subsystems is secure involves demonstrating that the
security properties of the individual subsystems collectively
ensure the security of the entire system under composition.

Let us recall the desired goals: Safety (G1), Decentralization
(G2), Finality (G3), Liveness (G4), Extensibility (G5), Flexi-
bility (G6), Off-chain safety (G7), and Censorship-Resistance
(G8). We prove goals (G1,G2,G3,G4, and G7). Goals G5 and
G6 are achieved, as described in Section VI-E. We consider
a probabilistic polynomial time adversary A. An important
consideration for the security proofs is that we consider a par-
tially synchronous environment, where the global stabilization
time is ≈ 129 days (we deem this model appropriate; see
Experiment 2 from Section VI-A).

Proving these properties hold for Harmonia is proving
they hold for each component, although we might only have
to prove a subset of all the properties, depending on the
component. Let us recall the components: source chain (Cs),
destination chain (Cd), light client verifier contract (SClc),
application verifier contract (SCapp), cross-chain logic contract
on the source chain (SCs), cross-chain logic contract on
the destination chain (SCd), SNARK relayer (Rsnark), and
application relayer (Rapp). The security models for each
component have been presented throughout the paper (mostly
in Section III). The interactions between components have also
been presented (Figures 1 and 2).

The source and target chains are both blockchains, so the
proof is the same:

Theorem 1. Cs and Cd provide safety and liveness.

PROOF: By assumption, 1) both chains have n nodes,
and malicious nodes f are upper bounded f < n−1

3 .; 2)
the properties of consistency, chain quality, and liveness.
Consequently, both chains are secure under our definition.

Corollary 1. Smart contracts SClc, SCapp, SCs, SCd are
correctly executed and live19.

PROOF: The correct execution of smart contracts is tied to
the security and liveness of the underlying infrastructure. For
A to force incorrect execution of any of these contracts, they
would have to break the security of the underlying chains.
Following Theorem 1, this is a contradiction.

19Nonetheless, correct execution does not assure that the contracts correctly
implement the specification. In practice, there may be implementation bugs.

26

https://etherscan.io/chart/blocks

Theorem 2. SNARK relayer Rsnark is safe, live, decentral-
ized, and provides (weak) censorship resistance.

PROOF: Let us first prove the safety of the relayer. The
safety of the relayer is tied to the correctness of the SNARK
proof system generating the SNARKS. In particular, Groth16
is known to be computationally secure under certain hard-
ness assumptions: the knowledge of exponent assumption
and bilinear strong Diffie-Hellman [47]. Generating invalid
proofs for Groth16 involves solving these problems, which
are known to be computationally hard. Therefore, the relayer
cannot generate invalid proofs, and safety is assured. The
SNARK relayer liveness is tied to the liveness of the ALC
(see Section VI-B) and off-chain liveness. Off-chain liveness
is assured by line 3 of Protocol 4, and it can be hardened
by employing crash-recovery capabilities and consuming from
multiple infrastructure providers [8]. Since 1) the light sync
committee (via DendrETH) is live and can support downtime
up to ≈ 129 days, 2) the relayer employs crash-recovery
techniques, we deem our SNARK relayer live. The relayer
is decentralized because anyone can run a SNARK prover,
provided access to the necessary hardware, and submit proofs
on chain (all the code is open-source, the SNARK verifier
is not permissioned), see Protocol 4. Finally, the censorship-
resistance can be decomposed into on-chain and off-chain. For
on-chain censorship resistance, an attacker must spend at least
8,333 USD to censor a single light client update (see Section
VI-D). To censor relayers, A needs to bribe them all not to
publish light client updates. Since relayers will be incentivized
by rewards and reputation and backed by individuals and
enterprises, an attacker is unlikely to censor them all for an
extended period (weak censorship resistance).

Theorem 3. The Application relayer Rapp is safe, live,
decentralized, and provides (weak) censorship resistance.

PROOF: Let us first prove the safety of the relayer. The
safety of the relayer is tied to the correctness of Merkle proofs.
In particular, the correctness of Merkle proofs depends on the
element used as the source of truth: the block header root.
Since the sync committee validates this element, the security of
these proofs is tied to the security of the light client committee.
Generating invalid proofs for DendrETH requires bribing a su-
permajority of the light client sync committee, costing ≈ 20M
USD for a sync period (Section III-B). The liveness is tied to
the liveness of the off-chain infrastructure. Line 2 of Protocol
5 guarantees that the application relayer keeps updating a
cross-chain state. Similarly to the SNARK relayer, liveness
can be hardened by employing crash-recovery capabilities and
consuming from multiple infrastructure providers [8]. The
relayer is decentralized because anyone can generate Merkle
proofs provided access to the source blockchain. and submit
proofs on chain (all the code is open-source, the application
verifier is not permissioned), see Protocol 5. Finally, the
censorship-resistance can be decomposed into on-chain and
off-chain. For on-chain censorship resistance, an attacker must
spend 1M USD to censor all transactions in a block (but it

could be much more; see Section VI-D). To censor relayers,
A needs to bribe them all not to publish Merkle proofs. Since
relayers will be incentivized by rewards and reputation and
backed by individuals and enterprises, an attacker is unlikely
to censor them all for an extended period (weak censorship
resistance).

Let us now compose the previous theorems and provide a
proof for Harmonia:

Theorem 4. Harmonia is a decentralized system providing
safety, liveness, and censorship-resistance.

PROOF: We prove Harmonia satisfies the defined set of
goals. One needs to ensure that:

1) Cs and Cd are live and secure and support smart contracts
(according to Section II-A).

2) Smart contracts SClc, SCapp, SCs, SCd are correctly
executed and live

3) there is at least a safe and live SNARK Relayer Rsnark

4) there is at least a safe and live Application Relayer Rapp

5) the source chain has a sound, succinct, and live light
client protocol (according to Section II-D).

Point 1 follows from Theorem 1. By definition, chains support
smart contracts. Point 2 follows from Corollary 1. Point 3
follows from Theorem 2. Point 4 follows from Theorem 3.
We need to prove that the source chain has a sound-light
client protocol. Harmonia uses DendrETH as its light client
protocol. DendrETH’s succinctness is trivial because the sync
committee provides a small subset of information from the
chain (validated block headers). The liveness of DendrETH
is guaranteed as long as a supermajority of the committee is
online (economic analysis in Section VI-B). Downtimes are
supported for up to 129 days. Finally, the protocol is sound
as 1) a supermajority of malicious nodes belonging to a sync
committee has a negligible probability (see our probabilistic
analysis in Section VI-A); 2) DendrETH punishes malicious
validators who attest to invalid information .

G. Trusted Ceremony and Initialization

Systems built with Harmonia will have to conduct a trusted
ceremony with industry partners to ensure the robustness of the
process. Some operational challenges exist: coordinating the
different parties and eliminating the toxic residues. Typically,
at least two key pairs need to be generated: one for the prover
and one for the verifier. However, the input parameters of
this generator algorithm must be secret, meaning that they
must be hidden for both the prover and verifier; otherwise,
the scheme’s security can be broken. To ensure the operators
do not unfaithfully learn the private parameters, one can
perform the setup process publicly by a set of mutually
untrusted parties. Different technologies, such as multi-party
computation, could eventually be used. In this setup, n parties
engage in a protocol such that each one generates a partial
key. Individuals cannot learn the key without input from other
n − 1 parties. Therefore, the security of this setup relies on
at least one honest participant eliminating their share of the

27

verification key. For an example, see the ZCash blockchain
key generation ceremony [97], [98].

Furthermore, the ceremony should have a plan that is trans-
parent and enforces the publication of all steps, software, and
hardware specifications. Transparent planning should also in-
centivize auditability and accountability (e.g., penalize parties
that leave the ceremony midway). Some other good practices
are promoting public participation of a large and diverse group
of participants, as Ethereum did with the KZG Summoning
Ceremony20, ensuring the privacy of the participants, and the
usage of secure communication channels. After this one-time
ceremony, an arbitrary number of proofs can be generated and
verified for the current circuits.

H. Post-Quantum Considerations

Groth16 relies on discrete logarithms being difficult to
compute, so the particular proving scheme we instantiated Har-
monia with is not post-quantum secure. A quantum computer
can very efficiently factor integers using Shor’s algorithm,
which can be used to break elliptic curve cryptography [99].
Current quantum computers are still incapable of breaking
elliptic curve cryptography, although recent developments pose
a not-too-distant timeline.

Preliminary research into post-quantum zero-knowledge
proofs shows that zk-STARKs (Zero-Knowledge Scalable
Transparent Arguments of Knowledge) [100] and lattice-based
SNARK constructions [101], [102] are quantum resistant. Zk-
STARKs use hash functions and error-correcting codes instead
of elliptic curve pairings and do not need a trusted setup.
However, zk-STARKs are generally more computationally
intensive and generate larger proof sizes compared to zk-
SNARKs, which incurs an extra cost to on-chain proof verifi-
cation21. The performance trade-off is important, considering
the development timeline of quantum cryptography.

I. Incentivization

The system has to use incentives to be able to keep
the different actors performing their functions. First, relayers
have to be incentivized to operate the key infrastructure. In
some cases, relayers can act pro bono, being sponsored by
foundations responsible for the maintenance of the ecosystems.
In other cases, infrastructure companies like Blockdaemon
or individuals can run these relayers for a fee that covers
operational costs. For this scheme to be dependable, the cost
of computing SNARKs off-chain must surpass the cost of
executing the light client protocol on-chain, even at the cost
of running expensive infrastructure. Executing the equivalent
algorithm on-chain is not feasible due to the lack of EVM
precompiles for verifying BLS signatures. Such primitives
have been proposed [104], but this proposal is stagnant.

A prerequisite of any incentive scheme is unstealability,
i.e., the guarantee that one’s work is not stolen, which is
encapsulated by the free rider problem [105]. The free rider

20see ceremony page, https://ceremony.ethereum.org.
21for the interested reader, the following paper provides a walkthrough of

a STARK proof [103].

problem stems where MEV bots could sniff proofs [106] (the
input to the verifier smart contract) encoded in smart contract
calls, present in transactions awaiting block inclusion in the
transaction memory pool. We propose three solutions. The first
and most centralized solution is creating a privileged role in
the smart contract that can be lost if a relayer does not submit
the proofs promptly (in other words, if the operator goes out
of business, any user can step in to become the operator). The
second solution consists of relayers transacting in a round-
robin way, creating a more inclusive network. Finally, one
could use a commit-and-reveal scheme on the verifier contract
that receives the sender’s identity as input. However, this
solution involves an extra transaction (possibly only 32 bytes,
a hash), carrying more on-chain costs.

Different business models based on fees can exist. For
example, the light client may allow applications to consume
the validated information for a fee, building a treasury and
paying the relayers. A detailed crypto economic analysis is
out of the scope of this paper, but one could decentralize the
relayer network with the incentivization mechanism behind
projects such as some state-of-the-art interoperability DeFi
protocols in the industry [107]. For instance, a token can
be introduced to allow voting on the system’s parameters
(including the choice of the relayer) using a decentralized
autonomous organization. Currently, our system is entirely
decentralized and permissionless: any Dendr Harmonia ETH
relayer can freely join the system to relay block headers and
claim rewards.

J. Extending light client security to the whole validator set of
Ethereum

Our system assumes that the price of performing an attack
on Ethereum’s light client surpasses the light client’s economic
security. However, we can increase the economic security of
our system by verifying Ethereum’s finality algorithm [108]
(Casper Finality Gadget) rather than the correctness of the
light client protocol execution. Like DendrETH, this scheme
would allow us to prove facts happening on Ethereum using a
SNARK. However, now the threat model shifts from a subset
of the Ethereum validators to the entire validator set, greatly
improving the security of cross-chain operations.

On a high level, this update could be realized by implement-
ing a circuit that verifies Casper: 1) the prover obtains a list of
aggregated attestations by monitoring the gossip network and
the history of proposed blocks, 2) the attestations are grouped
according to their sub-committee and their signing root, 3) a
circuit verifies that the signatures in the collected aggregated
attestations match the aggregated public keys of the validators
participating in the particular sub-committee, 4) another circuit
aggregates proofs generated by the first circuit to obtain tuples
in the form (source, target, attesting balance), and 5) a final
circuit implements the Casper finality conditions, as defined
by the latest version of the Ethereum consensus specs. This
boils down to demonstrating that two consecutive epochs have
attesting balance above two-thirds of the total active balance of

28

https://ceremony.ethereum.org/

the beacon chain. We published a more detailed specification
here [109].

VII. RELATED WORK

In this section, we present the related work. We highlight
a recent survey on the security and privacy of blockchain
interoperability mechanisms, which this work is closely related
to [14].

A. Blockchain interoperability

The interoperability design space is increasingly diverse
[1], [2], [4], [14], [110]–[112]. To better navigate the various
classification frameworks available, one can aggregate the
interoperability solutions by interoperability mode: data trans-
fers, asset transfers, or asset exchanges. Data transfers allow
for arbitrary cross-chain use cases [113] and typically use light
clients to verify facts on the source chains. Asset transfers fol-
low the burn-mint or lock-unlock model and are implemented
by cross-chain bridges [114] and blockchain gateways [7]–[9].
Asset exchanges use time locks and hash locks to perform
a set of locally verified transactions that implement cross-
chain asset transfers. Popular implementations include HTLC-
based systems [115], [116], which can be used as underlying
primitive adaptor signatures, hashes, or other mechanisms. In
our paper, the PoC we showcased performed data transfers
based on a trustless light client, showcasing how one can
build oracles using SNARK technology. Asset transfers are
also implementable with Harmonia, where a relayer constructs
a proof for a lock/burn mechanism in Ethereum and feeds
that proof into a target chain. For a recent overview of the
interoperability area, see [1]. For comprehensive surveys, see
[4], [14].

B. Light Client Protocols

There has been extensive work on light client protocols for
different types of blockchains. In [117], the authors propose
smart-contract-based light clients. In [118], the authors pro-
pose fraud proofs to enhance light clients. Other optimizations
have been proposed, e.g., using probabilistic block sampling
[22]. For a comprehensive theoretical overview of this area,
refer to [43], [119].

In the industry, there are a few popular light client protocols.
Cosmos uses the Tendermint BFT Proof of Stake consen-
sus. The InterBlockchain Communication (IBC) protocol is
a protocol providing interoperability for many Cosmos-based
chains. It works with an underlying set of light clients [120].
It allows Cosmos zones, which are sovereign application-
specific blockchains to send messages via an IBC channel.
A receiver zone verifies messages in a third-party zone by
verifying Merkle proofs rooted in validated block headers
provided by a light client of the sender zone [121]. The BTC
Relay is a Bitcoin light client on Ethereum. It is used to store
Bitcoin block headers that can be used as a source of truth for
proving facts (transactions, state) about Bitcoin, on Ethereum.
It is now deprecated. Different variations exist, including
the BTC Relay for Polkadot [122]. A use case is enabling

the creation of vaults containing cryptocurrency-backed assets
(enabling asset transfers from Bitcoin to Polkadot) [122].
For Byzantine fault tolerant-based consensus (e.g., Elastico,
Omniledger, Algorand) [123] or crash-fault tolerant consensus
(e.g., Hyperledger Fabric [124]), a light client needs to verify
validator signatures and keep track of validator rotation. For
private blockchains (e.g., Hyperledger Fabric with privacy
settings on), the techniques rely on a trusted quorum that
operates the private blockchain, blockchain views, and the
usage of a decentralized public bulletin [27], [125], [126].

C. Comparison with other interoperability approaches

DendrETH can be classified as a natively verified state-
of-the-art system [127], where the “destination chain inde-
pendently verifies that the received state is valid and final
according to the source network’s state transition and con-
sensus rule.” [1]. Compared to other approaches, this provides
a higher level of security, since the security model is based
on the sound cryptography of SNARK technology and not
on external systems. Locally verified approaches often require
a trusted off-chain coordinator (which has been consistently
exploited [12], [16], [128], incurring in a loss of around
$2 billion), suffer from capital inefficiency (because assets
need to be locked), and are vulnerable to sore loser attacks
[129]. Optimistically verified systems imply a large latency for
moving capital in the order of several days. Externally verified
systems, the most centralized ones, are especially vulnerable to
collusion and standard cybersecurity attacks targeting bridge
operators, which are often centralized [130]. Our system
provides a new security model based on the soundness of
the underlying SNARK protocol and crypto-economics, with
minimal assumptions (liveness of the relayer network).

D. SNARK-based cross-chain bridges

A primer was proposed by Westerkamp and Eberhardt
[131], where the authors designed a SNARK-based verifier
for Bitcoin, that yields validated block headers that can be
consumed in Ethereum. However, this work focused solely on
Bitcoin, and relied on a network of known peers. Recently,
some projects have appeared to validate the consensus of
more complex blockchains such as Ethereum. The following
validate Ethereum’s light client protocol[32], [132], [133], but
these currently only work for EVM-based chains (except for
zkBridge). While some of these have lower latency on the
proof generation time, there is no practical benefit in reducing
the latency beyond an Ethereum transaction’s finalization time
for a client application to consume a finalized root. We have
not found code for relayers or on-chain verifier contracts
for these projects. Furthermore, we have not found details
on cross-chain applications built on top of these solutions,
making it difficult for us to assess and compare these works
systematically. Some circuit implementations prove other light
client sync protocols (e.g., Bitcoin [134], ZCash [135]).

Indirectly related work includes solutions like Webb [136],
that utilize zero-knowledge proofs to attest the validity of
proofs used in the interoperability system (e.g., Merkle proofs

29

on Ethereum or a hash of an unspent transaction output in
Bitcoin). While a promising venue for private cross-chain
interoperability, zero-knowledge proofs are not used to vali-
date the correctness of light client updates. If used naively,
performance-wise, it is cheaper to validate Merkle proofs
rooted on an SNARK-verified block header than to validate
Merkle proofs with an SNARK. Recent work proposes an ef-
ficient commitment scheme to be used in creating accountable
light client systems [137].

E. Rollups

Rollups are sidechains [4] that batch transactions from a
source chain and execute them in an external chain. Rollups
are categorized as optimistic rollups (e.g., Arbitrum, Opti-
misim) and ZK-rollups (ZkSync, Aztec, Loopring). At the
same time, optimistic rollups incur delays in transaction
finality due to potential fraud challenges (up to a week).
On the other hand, ZK-rollups generate proofs via a more
computationally expensive method.

Typically, rollups are funded via a native bridge (e.g.,
Polygon proof of stake bridge, Polygon’s zkEVM bridge)
[138]. These bridges serve as on-ramps for layer-two technolo-
gies such as Starkware and ZkSync [139]. The latter works
by parallelizing instances of a circuit implementation of the
EVM, increasing the scalability of layer one blockchains. Our
project would allow for on-ramping assets to sidechains with
a SNARK. Our Groth16 implementation shows itself to be
able to respond to the throughput necessities of bridging assets
across blockchains running the EVM.

VIII. CONCLUSION

In this paper, we propose a strong candidate for the next-
generation interoperability mechanisms: Harmonia, a frame-
work to robustly build decentralized applications using zero-
knowledge proofs. Our framework defines the existence of a
set of relayers, cross-chain logic contracts, and proof verifiers.
Designed with extensibility and scalability in mind, our frame-
work does not rely on a single blockchain implementation;
instead, it proves block header generation correctness on any
blockchain with a light client protocol. This way, state (e.g.,
transaction inclusion, storage variables) on a source blockchain
can be proven correct and consumed by third-party chains,
allowing the realization of arbitrary cross-chain logic use
cases.

As Harmonia’s core, we propose DendrETH, a decen-
tralized, secure, and efficient light client that implements
Ethereum’s light client sync protocol. To implement Den-
drETH, we leverage Circom, a circuit meta-programming
language that allows us to define the light sync protocol
as an arithmetic circuit. From this circuit, we create zero-
knowledge proofs that attest the correct execution of the
light client protocol. Our implementations are compatible with
EVM-based chains and some non-EVM chains, namely chains
supporting CosmWasm, and EOS. During the development
of our solution, we have proposed several extensions to the
light client sync protocol that 1) guarantee accountability and

slashing for misbehaving parties and 2) increase the crypto-
economic security of the light client.

Harmonia was thoroughly evaluated. We show that the
circuit size of DendrETH translates into an acceptable through-
put and latency for applications to consume: a proof can be
generated in around 4 minutes. Performing updates to systems
built with Harmonia costs in the order of a few thousand US
dollars per year in transaction fees, a small cost to poten-
tially host an indefinite number of cross-chain applications
consuming Ethereum’s state. We show that the overall latency
is upper-bounded at around 25 minutes for a full end-to-end
state sync. Storage-wise, storing SNARKs on-chain would
accrue to around 10Mb per annum, yielding relatively low
fees for popular Layer-2. We perform simulations on long-
range attacks for light clients, yielding safety thresholds that
the community can leverage. To further validate our approach,
we have developed a cross-chain application that implements
data transfer, using Harmonia instantiated with DendrETH.

Finally, we compiled a set of future research directions in
the interoperability space, in the Appendix of this paper, that
can help guide the community towards more optimal solutions,
e.g., privacy-preserving bridges and cross-chain monitoring. In
conclusion, Harmonia allows to design of secure, scalable, and
simple cross-chain applications, hardened by the cryptography
underlying SNARK technology.

ACKNOWLEDGMENTS

We thank the open-source community for contributing to the
software we used in our system. We warmly thank our colleagues
in the IETF’s working group Secure Asset Transfer Protocol (SATP)
for fruitful discussions on interoperability security. We thank André
Augusto, Guillaume Lethuillier, Freddy Zwanzger, Jan Süßenguth,
Qi Feng, Peter Robinson, and Chris Spannos for providing comments
that improved our paper. We thank Metacraft Labs’ team, that helped
implement DendrETH. We thank Dom Martinez and Iulia Mihaiu
for their help in the graphical design of this paper. We thank the
Nimbus team for contributing to the slashing proposal. This work
was supported by the European Commission under project BIG ERA
Chair (grant agreement 952226). Rafael was supported by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UIDB/50021/2020 (INESC-ID) and 2020.06837.BD.

REFERENCES

[1] R. Belchior, J. Süßenguth, Q. Feng, T. Hardjono, A. Vasconcelos,
and M. Correia, “A Brief History of Blockchain Interoperability,” 6
2023. [Online]. Available: https://www.techrxiv.org/doi/full/10.36227/
techrxiv.23418677.v3

[2] R. Belchior, L. Riley, T. Hardjono, A. Vasconcelos, and M. Correia,
“Do you need a distributed ledger technology interoperability solu-
tion?” Distributed Ledger Technologies: Research and Practice, vol. 2,
no. 1, pp. 1–37, 2023.

[3] R. Belchior, I. Mihaiu, S. Scuri, N. Nunes, and T. Hardjono,
“Towards a common standard framework for blockchain
interoperability - a position paper,” Tech. Rep., 2023,
citation Key: belchiorrafaelCommonStandardFramework2023.
[Online]. Available: https://www.techrxiv.org/users/679023/articles/
678178-towards-a-common-standard-framework-for-blockchain-interoperability-a-position-paper

[4] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey
on blockchain interoperability: Past, present, and future trends,” ACM
Computing Surveys (CSUR), vol. 54, no. 8, pp. 1–41, 2021.

30

https://www.techrxiv.org/doi/full/10.36227/techrxiv.23418677.v3
https://www.techrxiv.org/doi/full/10.36227/techrxiv.23418677.v3
https://www.techrxiv.org/users/679023/articles/678178-towards-a-common-standard-framework-for-blockchain-interoperability-a-position-paper
https://www.techrxiv.org/users/679023/articles/678178-towards-a-common-standard-framework-for-blockchain-interoperability-a-position-paper

[5] G. Caldarelli, “Understanding the blockchain oracle problem: A call
for action,” Information, vol. 11, no. 11, p. 509, Oct 2020. [Online].
Available: http://dx.doi.org/10.3390/info11110509

[6] ——, “Before ethereum. the origin and evolution of blockchain ora-
cles,” IEEE Access, vol. 11, pp. 50 899–50 917, 2023.

[7] M. Hargreaves, T. Hardjono, and R. Belchior, “Secure Asset Transfer
Protocol (SATP),” Internet Engineering Task Force, Internet Draft
draft-hargreaves-sat-core-02. [Online]. Available: https://datatracker.
ietf.org/doc/draft-hargreaves-sat-core

[8] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono, “Hermes:
Fault-tolerant middleware for blockchain interoperability,” Future Gen-
eration Computer Systems, vol. 129, pp. 236–251, 2022.

[9] T. Hardjono, A. Lipton, and A. Pentland, “Toward an Interoperability
Architecture for Blockchain Autonomous Systems,” IEEE Transactions
on Engineering Management, vol. 67, no. 4, pp. 1298–1309, 11 2020.

[10] S.-S. Lee, A. Murashkin, M. Derka, and J. Gorzny, “Sok: Not quite
water under the bridge: Review of cross-chain bridge hacks,” arXiv
preprint arXiv:2210.16209, 2022.

[11] N. Kannengießer, M. Pfister, M. Greulich, S. Lins, and A. Sunyaev,
“Bridges between islands: Cross-chain technology for distributed ledger
technology.”

[12] R. Belchior, P. Somogyvari, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Hephaestus: Modelling, analysis, and performance eval-
uation of cross-chain transactions,” TechRxiv preprint, 2023, available
at: https://tinyurl.com/muk64ve7.

[13] The Straits Times, “Cryptocurrency-bridge hacks top $1.36
billion in little over a year,” The Straits Times, Apr. 2022.
[Online]. Available: https://www.straitstimes.com/tech/tech-news/
cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year

[14] A. Augusto, R. Belchior, M. Correia, A. Vascon-
celos, L. Zhang, and T. Hardjono, SoK: Secu-
rity and Privacy of Blockchain Interoperability, 2023.
[Online]. Available: https://www.techrxiv.org/users/687326/articles/
691934-sok-security-and-privacy-of-blockchain-interoperability(more

[15] R. Browne, “$100 million worth of crypto has been stolen
in another major hack,” https://www.cnbc.com/2022/06/24/
hackers-steal-100-million-in-crypto-from-harmonys-horizon-bridge.
html, 2022, accessed: 21-June-2023.

[16] Rekt, “Rekt - Ronin Network,” 2022. [Online]. Available: https:
//www.rekt.news/

[17] P. KidBold, “The Wormhole Bridge Attack Explained,”
Feb. 2022. [Online]. Available: https://kaicho.substack.com/p/
the-wormhole-bridge-attack-explained

[18] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“Sok: Layer-two blockchain protocols,” in Financial Cryptography
and Data Security: 24th International Conference, FC 2020, Kota
Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers
24. Springer, 2020, pp. 201–226.

[19] LiFi. (2023, Oct) LiFi’s Declassified Bridge Survival
Guide. Online Blog. Available online: https://lifi.substack.
com/p/lifis-declassified-bridge-survival, last accessed on 8
October 2023. [Online]. Available: https://lifi.substack.com/p/
lifis-declassified-bridge-survival

[20] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias,
P. Moreno-Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: Com-
munication across distributed ledgers,” in Financial Cryptography and
Data Security: 25th International Conference, FC 2021, Virtual Event,
March 1–5, 2021, Revised Selected Papers, Part II 25. Springer, 2021,
pp. 3–36.

[21] R. Belchior, “Phd thesis proposal - blockchain interoperability,”
Instituto Superior Técnico, Departamento de Engenharia Informática,
Tech. Rep., Sep 2021, available online: https://web.ist.utl.pt/
∼ist180970/papers/phd cat rafael belchior.pdf. [Online]. Available:
https://web.ist.utl.pt/∼ist180970/papers/phd cat rafael belchior.pdf

[22] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light
clients for cryptocurrencies,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 928–946.

[23] E. Foundation, “The merge,” https://ethereum.org/en/roadmap/merge/,
2023, accessed: 21-June-2023.

[24] E. Burger, B. Chiang, S. Chokshi, E. Lazzarin, J. Thaler, and
A. Yahya, “The zero knowledge canon,” https://a16zcrypto.com/posts/
article/zero-knowledge-canon/, 2023, accessed: 6-July-2023.

[25] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Providing Sound Foundations for

Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
2019, pp. 203–225.

[26] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, 2012, pp. 326–349.

[27] R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Can we share the same perspective? blockchain
interoperability with views,” Oct 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is My Perspective Better
Than Yours Blockchain Interoperability with Views/20025857/3

[28] H. Liu, X. Luo, H. Liu, and X. Xia, “Merkle tree: A fundamental
component of blockchains,” in 2021 International Conference on
Electronic Information Engineering and Computer Science (EIECS).
IEEE, 2021, pp. 556–561.

[29] M. Borkowski, C. Ritzer, D. McDonald, and S. Schulte. (2018)
Caught in chains: Claim-first transactions for cross-blockchain
asset transfers. Technische Universität Wien. Available online:
https://www.researchgate.net/profile/Michael-Borkowski/publication/
327364072 Caught in Chains Claim-First Transactions for
Cross-Blockchain Asset Transfers/links/5c656f3a92851c48a9d3b929/
Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.
pdf (Accessed on 16 October 2023). [Online]. Available:
https://www.researchgate.net/profile/Michael-Borkowski/publication/
327364072 Caught in Chains Claim-First Transactions for
Cross-Blockchain Asset Transfers/links/5c656f3a92851c48a9d3b929/
Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.
pdf

[30] A. A. Domenech, J. Heiss, and S. Tai, “Servicifying zk-snarks execu-
tion for verifiable off-chain computations,” 2024.

[31] M. Graf, R. Küsters, and D. Rausch, “Accountability in a permissioned
blockchain: Formal analysis of hyperledger fabric,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2020, pp. 236–255.

[32] T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh,
and D. Song, “zkbridge: Trustless cross-chain bridges made practical,”
arXiv preprint arXiv:2210.00264, 2022.

[33] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[34] M. Iqbal and R. Matulevičius, “Exploring sybil and double-spending
risks in blockchain systems,” IEEE Access, vol. 9, pp. 76 153–76 177,
2021.

[35] R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Can We Share the Same Perspective? Blockchain
Interoperability with Views,” 10 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is My Perspective Better
Than Yours Blockchain Interoperability with Views/20025857

[36] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk et al., “Cryptographic hash
functions: A survey,” Citeseer, Tech. Rep., 1995.

[37] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances in
Cryptology—EUROCRYPT 2003: International Conference on the The-
ory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4–8, 2003 Proceedings 22. Springer, 2003, pp. 416–432.

[38] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 514–532.

[39] Eth2Book, “Altair: Part 2 - building blocks - signatures,” https://
eth2book.info/altair/part2/building blocks/signatures/, 2023, accessed:
27-June-2023.

[40] I. Ozcelik, S. Medury, J. Broaddus, and A. Skjellum, “An overview of
cryptographic accumulators,” arXiv preprint arXiv:2103.04330, 2021.

[41] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya,
L. Reyzin, K. Samelin, and S. Yakoubov, “Accumulators with appli-
cations to anonymity-preserving revocation,” in 2017 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2017, pp.
301–315.

[42] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008, accessed: 21-June-2023.

[43] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “Sok: Blockchain
light clients,” in Financial Cryptography and Data Security: 26th
International Conference, FC 2022, Grenada, May 2–6, 2022, Revised
Selected Papers. Springer, 2022, pp. 615–641.

31

http://dx.doi.org/10.3390/info11110509
https://datatracker.ietf.org/doc/draft-hargreaves-sat-core
https://datatracker.ietf.org/doc/draft-hargreaves-sat-core
https://www.straitstimes.com/tech/tech-news/cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year
https://www.straitstimes.com/tech/tech-news/cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year
https://www.techrxiv.org/users/687326/articles/691934-sok-security-and-privacy-of-blockchain-interoperability(more
https://www.techrxiv.org/users/687326/articles/691934-sok-security-and-privacy-of-blockchain-interoperability(more
https://www.cnbc.com/2022/06/24/hackers-steal-100-million-in-crypto-from-harmonys-horizon-bridge.html
https://www.cnbc.com/2022/06/24/hackers-steal-100-million-in-crypto-from-harmonys-horizon-bridge.html
https://www.cnbc.com/2022/06/24/hackers-steal-100-million-in-crypto-from-harmonys-horizon-bridge.html
https://www.rekt.news/
https://www.rekt.news/
https://kaicho.substack.com/p/the-wormhole-bridge-attack-explained
https://kaicho.substack.com/p/the-wormhole-bridge-attack-explained
https://lifi.substack.com/p/lifis-declassified-bridge-survival
https://lifi.substack.com/p/lifis-declassified-bridge-survival
https://lifi.substack.com/p/lifis-declassified-bridge-survival
https://lifi.substack.com/p/lifis-declassified-bridge-survival
https://web.ist.utl.pt/~ist180970/papers/phd_cat_rafael_belchior.pdf
https://web.ist.utl.pt/~ist180970/papers/phd_cat_rafael_belchior.pdf
https://web.ist.utl.pt/~ist180970/papers/phd_cat_rafael_belchior.pdf
https://ethereum.org/en/roadmap/merge/
https://a16zcrypto.com/posts/article/zero-knowledge-canon/
https://a16zcrypto.com/posts/article/zero-knowledge-canon/
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/3
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/3
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.researchgate.net/profile/Michael-Borkowski/publication/327364072_Caught_in_Chains_Claim-First_Transactions_for_Cross-Blockchain_Asset_Transfers/links/5c656f3a92851c48a9d3b929/Caught-in-Chains-Claim-First-Transactions-for-Cross-Blockchain-Asset-Transfers.pdf
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857
https://eth2book.info/altair/part2/building_blocks/signatures/
https://eth2book.info/altair/part2/building_blocks/signatures/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[44] M. Bellare and O. Goldreich, “On defining proofs of knowledge,” in
Annual International Cryptology Conference. Springer, 1992, pp. 390–
420.

[45] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short Proofs for Confidential Transactions and More,”
Proceedings - IEEE Symposium on Security and Privacy, vol. 2018-
May, pp. 315–334, 2018, iSBN: 9781538643525.

[46] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE network, vol. 35, no. 4,
pp. 198–205, 2021.

[47] J. Groth, “On the size of pairing-based non-interactive arguments,”
in Advances in Cryptology–EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35.
Springer, 2016, pp. 305–326.

[48] ——, “Simulation-sound nizk proofs for a practical language and con-
stant size group signatures,” in Advances in Cryptology–ASIACRYPT
2006: 12th International Conference on the Theory and Application of
Cryptology and Information Security, Shanghai, China, December 3-7,
2006. Proceedings 12. Springer, 2006, pp. 444–459.

[49] S. Hu, M. Li, J. Weng, J.-N. Liu, J. Weng, and Z. Li, “Ivyredaction:
Enabling atomic, consistent and accountable cross-chain rewriting,”
IEEE Transactions on Dependable and Secure Computing, pp. 1–18,
2023.

[50] A. Odlyzko, “Discrete logarithms: The past and the future,” Towards
a Quarter-Century of Public Key Cryptography: A Special Issue of
DESIGNS, CODES AND CRYPTOGRAPHY An International Journal.
Volume 19, No. 2/3 (2000), pp. 59–75, 2000.

[51] G. Leurent and P. Q. Nguyen, “How risky is the random-oracle model?”
in Annual International Cryptology Conference. Springer, 2009, pp.
445–464.

[52] M. Petkus. (2019) Why and how zk-snark works. Available online:
https://arxiv.org/pdf/1906.07221.pdf, Accessed on 16 October 2023.

[53] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubin-
stein, and E. Tromer, “The hunting of the snark,” Journal of Cryptology,
vol. 30, no. 4, pp. 989–1066, 2017.

[54] A. Nitulescu. (2020) zk-snarks: a gentle introduction. Available
online: https://www.di.ens.fr/∼nitulesc/files/Survey-SNARKs.pdf, Ac-
cessed on 16 October 2023.

[55] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2022, pp. 198–214.

[56] C. McMenamin, “Sok: Cross-domain mev,” arXiv preprint
arXiv:2308.04159, 2023.

[57] A. Obadia, A. Salles, L. Sankar, T. Chitra, V. Chellani, and P. Da-
ian, “Unity is strength: A formalization of cross-domain maximal
extractable value,” arXiv preprint arXiv:2112.01472, 2021.

[58] R. Belchior. (2023, Sep) Dlt interoperability and
more 28 — sok: Cross-domain mev. Accessed
on 13 September 2023. [Online]. Available: https:
//rafaelbelchior.medium.com/dlt-interoperability-and-more-%EF%
B8%8F-28-sok-cross-domain-mev-%EF%B8%8F-477971a4887e

[59] Ethereum, “Altair sync protocol - annotated spec,” https://github.com/
ethereum/annotated-spec/blob/master/altair/sync-protocol.md, 2023,
accessed: 30-June-2023.

[60] D. H. Staff, “What does altair bring to ethereum 2.0?” https://dailyhodl.
com/2021/11/04/what-does-altair-bring-to-ethereum-2-0/, 2021, ac-
cessed: 27-June-2023.

[61] t3rn, “Exploring Eth’s Altair Light Client Pro-
tocol,” 2023, available online: https://www.t3rn.io/blog/
exploring-eths-altair-light-client-protocol-t3rns-vision, last accessed
on 2023-09-18. [Online]. Available: https://www.t3rn.io/blog/
exploring-eths-altair-light-client-protocol-t3rns-vision

[62] J. Prestwich, “Altair,” https://prestwich.substack.com/p/altair, 2023, ac-
cessed: 29-July-2023.

[63] Flashbots, “Flashbots documentation,” https://docs.flashbots.net/, 2023,
accessed: 29-July-2023.

[64] Nimbus team. (2023) Sync committee slashing · Issue
#3321 · ethereum/consensus-specs. Available online: https:
//github.com/ethereum/consensus-specs/issues/3321, last accessed on
[your-access-date]. [Online]. Available: https://github.com/ethereum/
consensus-specs/issues/3321

[65] Ethereum Foundation. (2023) Beacon Chain Specification.
Available online: https://github.com/ethereum/consensus-specs/blob/

dev/specs/altair/beacon-chain.md, last accessed on 2023-09-18.
[Online]. Available: https://github.com/ethereum/consensus-specs/blob/
dev/specs/altair/beacon-chain.md

[66] E. N. Tas and D. Boneh, “Cryptoeconomic security for data availability
committees,” no. arXiv:2208.02999, Jun 2023, arXiv:2208.02999 [cs].
[Online]. Available: http://arxiv.org/abs/2208.02999

[67] M. Westerkamp and A. Küpper, “Smartsync: Cross-blockchain smart
contract interaction and synchronization,” in 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), May 2022, p.
1–9.

[68] E. Fynn, A. Bessani, and F. Pedone, “Smart contracts on the move,” in
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2020, pp. 233–244.

[69] H. D. Bandara, X. Xu, and I. Weber, “Patterns for blockchain data
migration,” in Proceedings of the European Conference on Pattern
Languages of Programs 2020, 2020, pp. 1–19.

[70] Infura, “Blockchain infrastructure for the new internet,” https://www.
infura.io/, 2023, accessed: 10-July-2023.

[71] Alchemy, “The web3 development platform,” https://www.alchemy.
com/, 2023, accessed: 10-July-2023.

[72] Blockdaemon, “Powerful access to indexed multi-chain data in sec-
onds,” https://www.blockdaemon.com/nodes/universal-api, 2023, ac-
cessed: 10-July-2023.

[73] Figment, “Figment: Simplified blockchain infrastructure and tools,”
https://figment.io/, 2023, accessed: 10-July-2023.

[74] iden3, “snarkjs: a pure javascript zksnark library,” https://github.com/
iden3/snarkjs, 2023, accessed: 27-June-2023.

[75] Contributors. (2023) Foundry: A toolkit for ethereum application
development. Accessed: 13 September 2023. [Online]. Available:
https://github.com/foundry-rs

[76] (2023, Sep) Circom documentation. Accessed on 15 September 2023.
[Online]. Available: https://docs.circom.io/

[77] “The nimbus guide,” Sep 2023, accessed on 15 September 2023.
[Online]. Available: https://nimbus.guide/

[78] “Documentation for the go-ethereum client,” Sep 2023, accessed on 15
September 2023. [Online]. Available: https://geth.ethereum.org/docs

[79] (2023, Mar) Bor v0.3.7 - mainnet and mumbai release.
Polygon Community Forum. Accessed on 15 September
2023. [Online]. Available: https://forum.polygon.technology/t/
bor-v0-3-7-mainnet-and-mumbai-release/11559

[80] FluiDex. (2023, Apr) snarkit2: A toolkit to compile and debug circom
circuit. GitHub repository. Accessed on 13 September 2023. [Online].
Available: https://github.com/fluidex/snarkit2

[81] E. Foundation, “Explanation of single slot finality,” https://ethereum.
org, 2023, accessed: 21-June-2023.

[82] M. Straka, “Recursive zero-knowledge proofs: A
comprehensive primer,” https://www.michaelstraka.com/
recursive-zero-knowledge-proofs, 2023, accessed: 2024-05-28.

[83] 0xPARC, “Groth16 recursion,” https://0xparc.org/blog/
groth16-recursion, 2023, accessed: 2024-05-28.

[84] A. Chiesa, R. Lehmkuhl, P. Mishra, and Y. Zhang, “Eos: Efficient
private delegation of zksnark provers,” in USENIX Security Symposium.
USENIX Association, 2023.

[85] J. R. F. Cacho and K. Taghva, “The state of reproducible research in
computer science,” in 17th International Conference on Information
Technology–New Generations (ITNG 2020). Springer, 2020, pp. 519–
524.

[86] J. Cito and H. C. Gall, “Using docker containers to improve repro-
ducibility in software engineering research,” in Proceedings of the 38th
international conference on software engineering companion, 2016, pp.
906–907.

[87] M. Labs, “Issue 3321 from ethereum proof-of-stake consensus spec-
ifications,” https://github.com/ethereum/consensus-specs/issues/3321,
2023, accessed: 29-July-2023.

[88] V. Buterin, “Proof of stake: How i learned to love
weak subjectivity,” https://blog.ethereum.org/2014/11/25/
proof-stake-learned-love-weak-subjectivity/, 2014, accessed: 27-
June-2023.

[89] A. Asgaonkar. (2020) Weak subjectivity in eth2.0. Available
online: https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2, last
accessed on [your-access-date]. [Online]. Available: https://notes.
ethereum.org/@adiasg/weak-subjectvity-eth2

[90] M. Labs. (2023) Safety considerations for long-
range ethereum light client syncing. Available

32

https://arxiv.org/pdf/1906.07221.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://rafaelbelchior.medium.com/dlt-interoperability-and-more-%EF%B8%8F-28-sok-cross-domain-mev-%EF%B8%8F-477971a4887e
https://rafaelbelchior.medium.com/dlt-interoperability-and-more-%EF%B8%8F-28-sok-cross-domain-mev-%EF%B8%8F-477971a4887e
https://rafaelbelchior.medium.com/dlt-interoperability-and-more-%EF%B8%8F-28-sok-cross-domain-mev-%EF%B8%8F-477971a4887e
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://github.com/ethereum/annotated-spec/blob/master/altair/sync-protocol.md
https://dailyhodl.com/2021/11/04/what-does-altair-bring-to-ethereum-2-0/
https://dailyhodl.com/2021/11/04/what-does-altair-bring-to-ethereum-2-0/
https://www.t3rn.io/blog/exploring-eths-altair-light-client-protocol-t3rns-vision
https://www.t3rn.io/blog/exploring-eths-altair-light-client-protocol-t3rns-vision
https://www.t3rn.io/blog/exploring-eths-altair-light-client-protocol-t3rns-vision
https://www.t3rn.io/blog/exploring-eths-altair-light-client-protocol-t3rns-vision
https://prestwich.substack.com/p/altair
https://docs.flashbots.net/
https://github.com/ethereum/consensus-specs/issues/3321
https://github.com/ethereum/consensus-specs/issues/3321
https://github.com/ethereum/consensus-specs/issues/3321
https://github.com/ethereum/consensus-specs/issues/3321
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md
http://arxiv.org/abs/2208.02999
https://www.infura.io/
https://www.infura.io/
https://www.alchemy.com/
https://www.alchemy.com/
https://www.blockdaemon.com/nodes/universal-api
https://figment.io/
https://github.com/iden3/snarkjs
https://github.com/iden3/snarkjs
https://github.com/foundry-rs
https://docs.circom.io/
https://nimbus.guide/
https://geth.ethereum.org/docs
https://forum.polygon.technology/t/bor-v0-3-7-mainnet-and-mumbai-release/11559
https://forum.polygon.technology/t/bor-v0-3-7-mainnet-and-mumbai-release/11559
https://github.com/fluidex/snarkit2
https://ethereum.org
https://ethereum.org
https://www.michaelstraka.com/recursive-zero-knowledge-proofs
https://www.michaelstraka.com/recursive-zero-knowledge-proofs
https://0xparc.org/blog/groth16-recursion
https://0xparc.org/blog/groth16-recursion
https://github.com/ethereum/consensus-specs/issues/3321
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2
https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2
https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2

online: https://github.com/metacraft-labs/DendrETH/tree/main/
docs/long-range-syncing#sync committee slashing-proposal,
last accessed on 2023-09-18. [Online]. Available:
https://github.com/metacraft-labs/DendrETH/tree/main/docs/
long-range-syncing#sync committee slashing-proposal

[91] R. Belchior, M. Correia, A. Augusto, and T. Hardjono, “Satp
gateway crash recovery mechanism,” IETF, Technical Report, 2023,
accessed: 29-July-2023. [Online]. Available: https://datatracker.ietf.
org/doc/draft-belchior-satp-gateway-recovery/

[92] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Brei-
denbach, and A. Juels, “Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges,” arXiv
preprint arXiv:1904.05234, 2019.

[93] Etherscan. Ethereum blocks on etherscan. Accessed on 5th October
2023. [Online]. Available: https://etherscan.io/blocks

[94] M. Vasek, M. Thornton, and T. Moore, “Empirical analysis of denial-
of-service attacks in the bitcoin ecosystem,” in Financial Cryptography
and Data Security, R. Böhme, M. Brenner, T. Moore, and M. Smith,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 57–71.

[95] T. Verge, “Nomad bridge chaotic hack leads to $200 million in
cryptocurrency losses,” https://www.theverge.com/2022/8/2/23288785/
nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency,
2022, accessed: 29-July-2023.

[96] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,” IACR
Cryptology ePrint Archive, vol. 2018, p. 046, 2018.

[97] T. Z. Team, “Multi-party computation for zcash,” 2017, accessed:
2023-06-21. [Online]. Available: https://github.com/zcash/mpc/blob/
master/whitepaper.pdf

[98] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party computation
for zk-snark parameters in the random beacon model,” Cryptology
ePrint Archive, Paper 2017/1050, 2017, https://eprint.iacr.org/2017/
1050. [Online]. Available: https://eprint.iacr.org/2017/1050

[99] Y. Yu and X. Xie, “Privacy-preserving computation in the post-quantum
era,” National Science Review, vol. 8, no. 9, p. nwab115, 2021.

[100] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity,” Cryptology
ePrint Archive, 2018.

[101] R. Steinfeld, “Post-quantum zero-knowledge proofs and applications,”
in Proceedings of the 10th ACM Asia Public-Key Cryptography
Workshop, ser. APKC ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1. [Online]. Available: https:
//doi.org/10.1145/3591866.3593075

[102] Y. Ishai, H. Su, and D. J. Wu, “Shorter and faster post-
quantum designated-verifier zksnarks from lattices,” Cryptology
ePrint Archive, Paper 2021/977, 2021, https://eprint.iacr.org/2021/977.
[Online]. Available: https://eprint.iacr.org/2021/977

[103] A. Berentsen, J. Lenzi, and R. Nyffenegger, “A walk-through of a
simple zk-stark proof,” no. 4308637, Dec 2022. [Online]. Available:
https://papers.ssrn.com/abstract=4308637

[104] A. Vlasov, K. Olson, and A. Stokes. (2020) Eip-2537: Precompile for
bls12-381 curve operations. Available online: https://eips.ethereum.
org/EIPS/eip-2537, last accessed on 2023-09-21. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-2537

[105] T. Groves and J. Ledyard, “Optimal allocation of public goods: A
solution to the” free rider” problem,” Econometrica: Journal of the
Econometric Society, pp. 783–809, 1977.

[106] ConsenSys, “Frontrunning,” https://consensys.github.io/
smart-contract-best-practices/attacks/frontrunning/, 2023, accessed:
10-July-2023.

[107] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 193–210.

[108] V. Buterin and V. Griffith, “Casper the friendly finality gadget,”
no. arXiv:1710.09437, Jan. 2019, arXiv:1710.09437 [cs]. [Online].
Available: http://arxiv.org/abs/1710.09437

[109] M. Labs, “Dendreth casper finality proofs,” Sep
2023, available online: https://hackmd.io/@metacraft-labs/
DendrETH-Casper-Finality-Proofs, last accessed on 29 September
2023. [Online]. Available: https://hackmd.io/@metacraft-labs/
DendrETH-Casper-Finality-Proofs

[110] Bhuptani, Arjun, “The Interoperability Trilemma: AKA
Why Bridging Ethereum Domains is So Damn Dif-

ficult,” 2021, available online: https://blog.connext.network/
the-interoperability-trilemma-657c2cf69f17, last accessed on
2023-05-21. [Online]. Available: https://blog.connext.network/
the-interoperability-trilemma-657c2cf69f17

[111] G. Caldarelli and J. Ellul, “The blockchain oracle problem in decentral-
ized finance—A multivocal approach,” Applied Sciences (Switzerland),
vol. 11, no. 16, 2021.

[112] Zarick, Ryan and Pellegrino, Bryan and Banister, Caleb, “LayerZero:
Trustless Omnichain Interoperability Protocol,” 2021, available online:
https://layerzero.network/pdf/LayerZero Whitepaper Release.pdf, last
accessed on 2023-05-22. [Online]. Available: https://layerzero.network/
pdf/LayerZero Whitepaper Release.pdf

[113] B. ONeill, D. Hyland-Wood, E. Abebe, J. Bedi, K. Adams,
M. Quintyne-Collins, P. Robinson, R. Chen, and S. Casey,
“Bridge assessment report,” https://uniswap.notion.site/
Bridge-Assessment-Report-0c8477afadce425abac9c0bd175ca382,
2023, accessed: 21-June-2023.

[114] L2Beat, “L2beat: Bridges overview,” https://l2beat.com/bridges/
summary, 2023, accessed: 29-July-2023.

[115] S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez, “Universal
atomic swaps: Secure exchange of coins across all blockchains,” in
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 1299–1316.

[116] R. Belchior, A. Castaño, and P. Somogyvari, “Htlcs in hyper-
ledger cacti,” https://github.com/hyperledger/cacti/tree/main/packages/
cactus-plugin-htlc-eth-besu, 2023, accessed: 29-July-2023.

[117] D. Gruber, W. Li, and G. Karame, “Unifying lightweight blockchain
client implementations,” in Proc. NDSS workshop decentralized IoT
security stand, 2018, pp. 1–7.

[118] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs: Maximising
light client security and scaling blockchains with dishonest majorities,”
arXiv preprint arXiv:1809.09044, vol. 160, 2018.

[119] S. Paavolainen and C. Carr, “Security properties of light clients on
the ethereum blockchain,” IEEE Access, vol. 8, pp. 124 339–124 358,
2020.

[120] S. Braithwaite, E. Buchman, I. Khoffi, I. Konnov, Z. Milosevic,
R. Ruetschi, and J. Widder, “A tendermint light client,” no.
arXiv:2010.07031, Oct 2020, arXiv:2010.07031 [cs]. [Online].
Available: http://arxiv.org/abs/2010.07031

[121] C. Goes, “The interblockchain communication protocol: An overview,”
no. arXiv:2006.15918, Jun 2020, arXiv:2006.15918 [cs]. [Online].
Available: http://arxiv.org/abs/2006.15918

[122] I. Team, “Btc-relay specification,” https://spec.interlay.io/spec/
btc-relay/index.html, 2023, accessed: 27-June-2023.

[123] X. Wang, S. Duan, J. Clavin, and H. Zhang, “Bft in blockchains: From
protocols to use cases,” ACM Computing Surveys (CSUR), vol. 54, no.
10s, pp. 1–37, 2022.

[124] E. Androulaki, A. Barger, V. Bortnikov, S. Muralidharan, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Murthy, C. Ferris, G. Lavent-
man, Y. Manevich, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and
J. Yellick, “Hyperledger fabric: A distributed operating system for
permissioned blockchains,” in Proceedings of the 13th EuroSys Con-
ference, EuroSys 2018, vol. 2018-Janua. New York, New York, USA:
Association for Computing Machinery, Inc, Apr 2018, p. 1–15, citation
Key: fabric.

[125] C. Pedreira, R. Belchior, M. Matos, and A. Vasconcelos, “Securing
asset transfers on permissioned blockchains,” in Proceedings
of the BlockTEE 2022 Workshop, 2022, accessed: 27-June-
2023. [Online]. Available: https://www.techrxiv.org/articles/preprint/
Trustable Blockchain Interoperability Securing Asset Transfers on
Permissioned Blockchains/19651248

[126] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakr-
ishna, and J. Yu, “Verifiable observation of permissioned ledgers,” in
2021 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC). IEEE, 2021, pp. 1–9.

[127] Chand, Arjun, “What Are Blockchain Bridges And How Can We
Classify Them? Classifying Bridges As We Know Them,” 2022.
[Online]. Available: https://tinyurl.com/bdfn4x4s

[128] Bloomberg, “Hackers steal about 600 million in one of the
biggest crypto heists,” Bloomberg.com, Mar 2022. [Online].
Available: https://www.bloomberg.com/news/articles/2022-03-29/
hackers-steal-590-million-from-ronin-in-latest-bridge-attack

33

https://github.com/metacraft-labs/DendrETH/tree/main/docs/long-range-syncing#sync_committee_slashing-proposal
https://github.com/metacraft-labs/DendrETH/tree/main/docs/long-range-syncing#sync_committee_slashing-proposal
https://github.com/metacraft-labs/DendrETH/tree/main/docs/long-range-syncing#sync_committee_slashing-proposal
https://github.com/metacraft-labs/DendrETH/tree/main/docs/long-range-syncing#sync_committee_slashing-proposal
https://datatracker.ietf.org/doc/draft-belchior-satp-gateway-recovery/
https://datatracker.ietf.org/doc/draft-belchior-satp-gateway-recovery/
https://etherscan.io/blocks
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
https://github.com/zcash/mpc/blob/master/whitepaper.pdf
https://github.com/zcash/mpc/blob/master/whitepaper.pdf
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://doi.org/10.1145/3591866.3593075
https://doi.org/10.1145/3591866.3593075
https://eprint.iacr.org/2021/977
https://eprint.iacr.org/2021/977
https://papers.ssrn.com/abstract=4308637
https://eips.ethereum.org/EIPS/eip-2537
https://eips.ethereum.org/EIPS/eip-2537
https://eips.ethereum.org/EIPS/eip-2537
https://consensys.github.io/smart-contract-best-practices/attacks/frontrunning/
https://consensys.github.io/smart-contract-best-practices/attacks/frontrunning/
http://arxiv.org/abs/1710.09437
https://hackmd.io/@metacraft-labs/DendrETH-Casper-Finality-Proofs
https://hackmd.io/@metacraft-labs/DendrETH-Casper-Finality-Proofs
https://hackmd.io/@metacraft-labs/DendrETH-Casper-Finality-Proofs
https://hackmd.io/@metacraft-labs/DendrETH-Casper-Finality-Proofs
https://blog.connext.network/the-interoperability-trilemma-657c2cf69f17
https://blog.connext.network/the-interoperability-trilemma-657c2cf69f17
https://blog.connext.network/the-interoperability-trilemma-657c2cf69f17
https://blog.connext.network/the-interoperability-trilemma-657c2cf69f17
https://layerzero.network/pdf/LayerZero_Whitepaper_Release.pdf
https://layerzero.network/pdf/LayerZero_Whitepaper_Release.pdf
https://layerzero.network/pdf/LayerZero_Whitepaper_Release.pdf
https://uniswap.notion.site/Bridge-Assessment-Report-0c8477afadce425abac9c0bd175ca382
https://uniswap.notion.site/Bridge-Assessment-Report-0c8477afadce425abac9c0bd175ca382
https://l2beat.com/bridges/summary
https://l2beat.com/bridges/summary
https://github.com/hyperledger/cacti/tree/main/packages/cactus-plugin-htlc-eth-besu
https://github.com/hyperledger/cacti/tree/main/packages/cactus-plugin-htlc-eth-besu
http://arxiv.org/abs/2010.07031
http://arxiv.org/abs/2006.15918
https://spec.interlay.io/spec/btc-relay/index.html
https://spec.interlay.io/spec/btc-relay/index.html
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248
https://tinyurl.com/bdfn4x4s
https://www.bloomberg.com/news/articles/2022-03-29/hackers-steal-590-million-from-ronin-in-latest-bridge-attack
https://www.bloomberg.com/news/articles/2022-03-29/hackers-steal-590-million-from-ronin-in-latest-bridge-attack

[129] Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-
chain transactions,” in Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, 2021, pp. 155–164.

[130] C. Faife, “Explaining crypto’s billion-dollar bridge problem,”
Apr 2022. [Online]. Available: https://www.theverge.com/23017107/
crypto-billion-dollar-bridge-hack-decentralized-finance

[131] M. Westerkamp and J. Eberhardt, “zkrelay: Facilitating sidechains
using zksnark-based chain-relays,” in 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroSPW), Sep. 2020, p. 378–386,
citation Key: westerkamp zkrelay 2020.

[132] S. Labs, “Telepathy documentation,” https://docs.telepathy.xyz/, 2023,
accessed: 29-July-2023.

[133] (2023) Herodotus documentation. Available online: https://docs.
herodotus.dev/herodotus-docs/, last accessed on 2023-09-18. [Online].
Available: https://docs.herodotus.dev/herodotus-docs/

[134] M. Westerkamp and J. Eberhardt, “zkrelay: Facilitating sidechains
using zksnark-based chain-relays,” in 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), 2020, pp. 378–386.

[135] bunny sleepy, “private-bridge-zcash-ethereum,” Jun
2023. [Online]. Available: https://github.com/bunny-sleepy/
private-bridge-zcash-ethereum

[136] Webb, “Overview - anchor system,” 2023, accessed: 29-July-
2023. [Online]. Available: https://docs.webb.tools/docs/concepts/
anchor-system/overview/

[137] O. Ciobotaru, F. Shirazi, A. Stewart, and S. Vasilyev, “Accountable light
client systems for pos blockchains,” no. 2022/1205, 2022, publication
info: Preprint. [Online]. Available: https://eprint.iacr.org/2022/1205

[138] P. p. a. team, “Polygon bridge: Bridge assets from ethereum to polygon
zkevm.” [Online]. Available: https://wallet.polygon.technology/

[139] u. family=labs.io, prefix=https://matter. Welcome to our Docs —
zkSync Era. Welcome to our Docs — zkSync Era Docs. [Online].
Available: https://era.zksync.io/docs/

[140] V. Buterin, “Ethereum whitepaper: A next-generation smart con-
tract and decentralized application platform,” https://ethereum.org/en/
whitepaper/, 2013, accessed: 21-June-2023.

[141] F. M. Benčić and I. P. Žarko, “Distributed ledger technology:
Blockchain compared to directed acyclic graph,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2018, pp. 1569–1570.

[142] W. Al-Saqaf and N. Seidler, “Blockchain technology for social impact:
opportunities and challenges ahead,” Journal of Cyber Policy, vol. 2,
no. 3, pp. 338–354, 2017.

[143] R. Belchior, A. Vasconcelos, and M. Correia, “Towards secure, decen-
tralized, and automatic audits with blockchain,” in European Confer-
ence on Information Systems, 2020, citation Key: Belchior2020ecis.

[144] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono, “Enabling
cross-jurisdiction digital asset transfer,” in IEEE International Confer-
ence on Services Computing. IEEE, 2021, citation Key: belchior-
hermes-ieeescc.

[145] D. A. Zetzsche, D. W. Arner, and R. P. Buckley, “Decentralized finance
(defi),” Journal of Financial Regulation, vol. 6, pp. 172–203, 2020.

[146] K. Qin, L. Zhou, Y. Afonin, L. Lazzaretti, and A. Gervais, “Cefi vs.
defi–comparing centralized to decentralized finance,” arXiv preprint
arXiv:2106.08157, 2021.

[147] R. Belchior, B. Putz, G. Pernul, M. Correia, A. Vasconcelos, and
S. Guerreiro, “Ssibac: self-sovereign identity based access control,”
in 2020 IEEE 19th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). IEEE, 2020,
pp. 1935–1943.

[148] J. Ernstberger, J. Lauinger, F. Elsheimy, L. Zhou, S. Steinhorst,
R. Canetti, A. Miller, A. Gervais, and D. Song, “Sok: Data sovereignty,”
Cryptology ePrint Archive, 2023.

[149] P. Dutta, T.-M. Choi, S. Somani, and R. Butala, “Blockchain technology
in supply chain operations: Applications, challenges and research
opportunities,” Transportation research part e: Logistics and trans-
portation review, vol. 142, p. 102067, 2020.

[150] B. Putz, M. Dietz, P. Empl, and G. Pernul, “Ethertwin: Blockchain-
based secure digital twin information management,” Information Pro-
cessing & Management, vol. 58, no. 1, p. 102425, 2021, citation Key:
PUTZ2021102425.

[151] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart con-
tract and use cases in blockchain technology,” in 2018 9th international
conference on computing, communication and networking technologies
(ICCCNT). IEEE, 2018, pp. 1–4.

[152] M. Correia, “From Byzantine Consensus to Blockchain Consensus,”
Essentials of Blockchain Technology, p. 41, 2019.

[153] M. Raikwar, D. Gligoroski, and K. Kralevska, “Sok of used cryptogra-
phy in blockchain,” IEEE Access, vol. 7, pp. 148 550–148 575, 2019.

[154] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman,
P. Somogyvari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior,
“Hyperledger cactus whitepaper,” Hyperledger, Tech. Rep. 2.
[Online]. Available: https://github.com/hyperledger/cactus/blob/main/
docs/whitepaper/whitepaper.md

[155] E. Foundation, “Introduction to merkle patricia trie,” https://ethereum.
org, 2023, accessed: 21-June-2023.

[156] J. Chiang. (2023) The beacon chain ethereum 2.0 explainer you need
to read first. [Online]. Available: https://ethos.dev/beacon-chain

[157] bitfly gmbh, “Beacon chain: Ethereum 2.0 block explorer,” https:
//www.beaconcha.in/, 2023, accessed: 21-June-2023.

[158] “Simplified Active Validator Cap and Rotation Proposal -
Proof-of-Stake,” Mar 2021, available online: https://ethresear.
ch/t/simplified-active-validator-cap-and-rotation-proposal/9022, last
accessed on 8 October 2023. [Online]. Available: https://ethresear.ch/
t/simplified-active-validator-cap-and-rotation-proposal/9022

[159] P. Gaži, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in
2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 139–156.

[160] S. Agrawal, J. Neu, E. N. Tas, and D. Zindros, “Proofs of proof-of-stake
with sublinear complexity,” arXiv preprint arXiv:2209.08673, 2022.

[161] A. Berentsen, J. Lenzi, and R. Nyffenegger, “An introduction to zero-
knowledge proofs in blockchains and economics,” Federal Reserve
Bank of St. Louis Review, 2023.

[162] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky, “Succinct
non-interactive arguments via linear interactive proofs,” in Theory of
Cryptography: 10th Theory of Cryptography Conference, TCC 2013,
Tokyo, Japan, March 3-6, 2013. Proceedings. Springer, 2013, pp.
315–333.

[163] A. Chiesa, R. Lehmkuhl, P. Mishra, and Y. Zhang, “Eos: Efficient
private delegation of zksnark provers.”

[164] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” Cryptology ePrint Archive, 2019.

[165] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size com-
mitments to polynomials and their applications,” in Advances in
Cryptology-ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings 16. Springer, 2010, pp.
177–194.

[166] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Advances in Cryptol-
ogy—CRYPTO’86: Proceedings 6. Springer, 1987, pp. 186–194.

[167] zkSecurity, “The nova attack,” https://www.zksecurity.xyz/blog/posts/
nova-attack/, 2023, accessed: 29-July-2023.

[168] B. O’Neill, D. Hyland-Wood, E. Abebe, J. Bedi, K. Adams,
M. Quintyne-Collins, P. Robinson, R. Chen, and S. Casey.
(2023, Sep) Bridge assessment report. Accessed on 15
September 2023. [Online]. Available: https://uniswap.notion.site/
Bridge-Assessment-Report-0c8477afadce425abac9c0bd175ca382

[169] ConsenSys, “Consensys announces the beta release of metamask
bridges in the portfolio dapp,” https://tinyurl.com/3y5the44, 2023,
accessed: 29-July-2023.

[170] OpenIBC. (2023) Openibc. Available online: https://www.openibc.
com/, last accessed on 2023-09-18. [Online]. Available: https:
//www.openibc.com/

[171] Cosmos. (2023) Inter-blockchain communication protocol (ibc) by
cosmos. Available online: https://github.com/cosmos/ibc, last accessed
on 2023-09-18. [Online]. Available: https://github.com/cosmos/ibc

[172] B. Asselstine, P. Turelier, and C. Whinfrey. (2022) Eip-5164. Available
online: https://eips.ethereum.org/EIPS/eip-5164, last accessed on 2023-
09-18. [Online]. Available: https://eips.ethereum.org/EIPS/eip-5164

[173] G. Karame and S. Capkun, “Blockchain security and privacy,” IEEE
Security & Privacy, vol. 16, no. 04, pp. 11–12, 2018.

[174] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[175] R. Zhang, R. Xue, and L. Liu, “Security and privacy on blockchain,”
ACM Computing Surveys (CSUR), vol. 52, no. 3, pp. 1–34, 2019.

34

https://www.theverge.com/23017107/crypto-billion-dollar-bridge-hack-decentralized-finance
https://www.theverge.com/23017107/crypto-billion-dollar-bridge-hack-decentralized-finance
https://docs.telepathy.xyz/
https://docs.herodotus.dev/herodotus-docs/
https://docs.herodotus.dev/herodotus-docs/
https://docs.herodotus.dev/herodotus-docs/
https://github.com/bunny-sleepy/private-bridge-zcash-ethereum
https://github.com/bunny-sleepy/private-bridge-zcash-ethereum
https://docs.webb.tools/docs/concepts/anchor-system/overview/
https://docs.webb.tools/docs/concepts/anchor-system/overview/
https://eprint.iacr.org/2022/1205
https://wallet.polygon.technology/
https://era.zksync.io/docs/
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://github.com/hyperledger/cactus/blob/main/docs/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/main/docs/whitepaper/whitepaper.md
https://ethereum.org
https://ethereum.org
https://ethos.dev/beacon-chain
https://www.beaconcha.in/
https://www.beaconcha.in/
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022
https://ethresear.ch/t/simplified-active-validator-cap-and-rotation-proposal/9022
https://www.zksecurity.xyz/blog/posts/nova-attack/
https://www.zksecurity.xyz/blog/posts/nova-attack/
https://uniswap.notion.site/Bridge-Assessment-Report-0c8477afadce425abac9c0bd175ca382
https://uniswap.notion.site/Bridge-Assessment-Report-0c8477afadce425abac9c0bd175ca382
https://tinyurl.com/3y5the44
https://www.openibc.com/
https://www.openibc.com/
https://www.openibc.com/
https://www.openibc.com/
https://github.com/cosmos/ibc
https://github.com/cosmos/ibc
https://eips.ethereum.org/EIPS/eip-5164
https://eips.ethereum.org/EIPS/eip-5164

[176] Y. Gai, L. Zhou, K. Qin, D. Song, and A. Gervais, “Blockchain large
language models,” arXiv preprint arXiv:2304.12749, 2023.

APPENDIX A
ADDITIONAL CONTEXT

The past years have seen significant advances in the art
of decentralized storage and computation, foundations for
blockchains, and distributed ledger technology (DTL) [42],
[124], [140], [141]. DLTs are networks of peers that maintain
a replicated database and achieve consensus on that database
(so-called ledger) without any trusted intermediary. In 2023,
blockchain technology remains paramount, its value clearly
demonstrated by the market capitalization of cryptocurrencies,
which stands around US$835 billion, even after a significant
decline from its peak at the end of 2021. This significant
market value underscores the global acceptance and reliance
on blockchain technology, underpinning the operation of cryp-
tocurrencies and other relevant use cases, such as social impact
[142], [143], decentralized finance [144]–[146], decentralized
identity [147], [148], process optimization [149], [150], and
many more [151]. Indeed, the development of blockchain
technologies gave back to traditional distributed systems [152]
and cryptography research [153], highlighting the importance
of this new discipline.

Counting with hundreds of DLTs and thousands of cryp-
tocurrencies, with their own design decisions (privacy vs.
solubility vs. decentralization vs. security), security models
(crash fault-tolerant vs. Byzantine fault-tolerant), consensus
algorithms (proof of work, proof of stake, proof of X), and
specific implementations, different technologies are inherently
and inevitably heterogeneous, leading to a service market that
is diverse in features and trade-offs. The field of blockchain
interoperability became a hot topic when researchers and
practitioners alike began to explore the qualities of different
infrastructures and use them together [2]. Thus, there are
attempts to answer the question: how can a process in a source
domain realize a business workflow that is separated across
different centralized and decentralized systems, such that there
is a unified view of the state over these different systems
[35]. Cross-chain logic defines the rules that guide a set of
local transactions in different systems, given variables such as
transaction inclusion in a certain system, timestamps of such
transactions, and so on. For example, the cross-chain logic of
a simple bridge definition would be only mint tokens on the
target blockchain for the user if the user locked an equivalent
amount of tokens on the source blockchain [12].

The case for the need for blockchain interoperability is
not new. Indeed, one can interpret the problem of blockchain
interoperability as achieving ACID properties (atomicity, con-
sistency, isolation, and durability) for transactions taking place
on an abstract distributed database with a centralized or
decentralized controller [8]. Several cross-chain use cases
emerge, enabled by tools and monitoring frameworks [12], and
supporting processes, such as blockchain migration [154], state
migration [67], and cross-jurisdiction asset transfers [144].

APPENDIX B
MERKLE PROOF VERIFICATION

The validity of the proof can be computed (algorithm
verify) in the following way (hash is a secure cryptographic
hash that is preimage and collision-resistant, and j is a flag
to decide on the order of concatenation, depending if the next
node is a left or right child):

Algorithm 6: Merkle Tree Proof Verification (algo-
rithm verify)
Input: πi, root, v[i]
Output: {0, 1}

1 currentHash = Hash(v[i])
2 foreach πi,j in πi do
3 if j is even then
4 currentHash = Hash(πi,j + currentHash)
5 end if
6 else
7 currentHash = Hash(currentHash+ πi,j)
8 end if
9 end foreach

10 if currentHash == root then
11 return 1
12 else
13 return 0
14 end if

To verify the proof, the verifier recomputes the hashes along
the path from the root of the tree to the leaf node (or the other
way around), using the provided nodes in the proof. If the
computed hash of the leaf node matches the expected hash,
the proof is valid, and the key-value pair represented by a leaf
node exists in the Merkle tree. Otherwise, the proof is invalid
(badly constructed proof or the data is not included in the
tree). The verifier time and proof size and logarithmic in the
number of elements of the tree. One can prove non-inclusion
of an element by supplying merkle proofs for the closest keys
that enclose the missing one (cf. Figure 12).

APPENDIX C
THE ETHEREUM BLOCKCHAIN

Ethereum, launched in 2015, is the first blockchain de-
signed to enable smart contracts and decentralized applications
(DApps). As of June 2023, Ethereum is the second biggest
blockchain in terms of market capitalization, and the biggest
blockchain with support for Turing complete smart contracts.

1) System Actors: Ethereum has three types of nodes: full
nodes, archival nodes, and light nodes. Full nodes verify
the state of the blockchain, namely its accounts, but prune
accounts state trees that are older than 1024 blocks. Archival
nodes do not prune any account trees and keep the whole
history of the blockchain. Light nodes only store block headers
and are ideal to be run in resource-constrained environments.
Validators are nodes that contribute to the consensus of the
network and earn rewards, by staking a certain amount of Eth

35

H ABCD H EFGH

H abcdEFGH

H AB H cd H EF H gh

H A H b H c H d H E H f H g H h

a b c d e f g h

Fig. 12: Merkle proof example. Proof of inclusion for data item
E needs HF , HGH , and HABCD. The verification algorithm
would hash E and concatenate it with HF , concatenate HEF

with HGH and hash the result; concatenate HEFGH with
HABCD, hash it, and compare it with the root.

that can be slashed in case of misbehaviour. For Ethereum
nodes to become validators on the network (full nodes or
archival nodes), they need to stake 32 Eth (approximately
59,200 USD at the time of writing). Ethereum node software
implementations include client and wallet functionalities (used
interchangeably), allowing users to sign transactions that are
then picked by a node and broadcasted to the network. We
are specifically interested in the light clients implemented as
smart contracts for interoperability.

2) State: Ethereum is an account-based blockchain.
Externally-owned accounts are controlled by anyone with the
private keys referring to that account. On the other hand,
contract accounts are smart contracts that contain business
logic that is callable by transactions (either from externally
owned accounts or other smart contracts). The state of all
accounts is represented with a Merkle tree, where its root
(also called state root, which is stored in each block header)
is updated for every transaction (one can see the state root
being changed at every block using a block explorer 22). This
Merkle tree maps between addresses to account states and is
called the world state tree (cf. Figure 13).

In more detail, Ethereum uses a version of the Merkle tree
called Merkle Patricia Tree (MPT) [155] to store the world
state. MPTs are hexary tree, and have some some performance
optimizations versus Merkle trees (i.e., extension nodes for
path compression). The mechanism to generate Merkle proofs
in a Patricia tree is equivalent to the mechanism to generate
binary trees. Instead of hashing pairs of nodes, the algorithm
hashes the nodes included in the path, which could be a
variable number.

Each account in Ethereum has a few attributes, e.g., nonce,
balance, storage root, and storage. The storage root is the hash

22for example, see Etherscan.

account state

nonce

balance

storageRoot

codeHash

account storage Tie

Root Node

* *

* ** ** ** *

Fig. 13: Account state encoding in Ethereum

of the root node of a Merkle Patricia tree that encodes the
storage contents of the account (which is a mapping between
32-byte keys and 32-byte values; where each pair is called a
storage slot). This is only used in contract accounts and not
in EOAs. Each storage modification in a contract updates this
hash. The storage, on its hand, has a Merkle Patricia Tree that
stores the contract state (the mappings referred above).

The root hash of this storage tree is what gets included
in the account state as the storage root. A change to the
storage will change the storage tree root, which in turn will
change the account’s Merkle root. Consequently, this causes
a change to the state root. Essentially, this process assures all
state transitions are valid and that the entire blockchain state
is tamper-evident.

Knowing the data structure of Ethereum is stored as a set
of Merkle trees, meaning that we can prove anything from the
global state using one or more Merkle proofs. In practice, to
prove an account exists (or it has a certain nonce, or balance),
one can construct a Merkle (Patricia) proof that consists of
the path that includes all the tree nodes from the state root to
the leaf node that stores the account state. Similarly, to prove
the storage of an account, one can provide a merkle proof
that accounts for a storage key, i.e., the Merkle proof path
between the storage key and the storage hash; and the Merkle
proof that the account which the storage hash refers to exists
(above proof). Finally, to prove a transaction is included in a
block, one can create a Merkle proof against the transactions
tree that is a path from the leaf containing the transaction to
the transaction root; and a Merkle proof that the transactions
root is included in the block (using the block root).

A. Consensus

Ethereum has moved away from the classical proof of
work consensus, where each validator executed an expensive
algorithm, Ethash. Solving an iteration of Ethash would grant
the right to propose the next block. In the current Ethereum
specification, the consensus is proof of stake. In proof of stake,
block proposers are validators randomly chosen to build a
block, proportional to the amount of the currency they hold in
the blockchain (namely Eth; therefore, block proposers have
a stake in the network).

Currently, there are around 21 million ETH staked23 (around

23as per the source stakingrewards.com.

36

https://etherscan.io/block/17567541
https://www.stakingrewards.com/earn/ethereum-2-0/metrics/

40B USD), making Ethereum a very secure blockchain from a
cryptoeconomics perspective. To stake ETH and earn rewards,
validators lock 32 ETH, which will be unavailable. For val-
idators to withdraw their assets, they must enter an exit queue
(after serving at least 2,048 epochs, around nine days [156]).
The queue implements a churn limit [65] (the minimum rate is
four validators entering plus leaving per epoch) that specifies
the maximum number of validators that can join or exit the
validator set at any epoch- The churn rate aims to prevent
a large portion of malicious validators from performing some
malicious action and then immediately leaving to escape being
slashed.

Ethereum’s global clock uses the notion of slots and epochs.
Each slot is 12 seconds, and an epoch of 32 slots is 6.4
minutes. At every epoch, validators are evenly divided across
slots and then subdivided into committees of appropriate size.
Each slot has committees of at least 128 validators. All
of the validators from that slot attest to the Beacon Chain
head. An attacker has a negligible probability of controlling a
supermajority of a committee (considering that 128 validators
are randomly picked from hundreds of thousands of nodes).
This security comes from the fact that an attacker cannot
predict which validators will be chosen for each slot (and thus
be able to bribe them beforehand). To solve this problem,
at the beginning of every epoch, a pseudorandom process
called RANDAO selects proposers for each slot, and shuffles
validators to committees, in a way that each committee has at
least 128 validators.

Validators can create attestations that stand up for the
validity of blocks. The votes, proportional to the validators’
balance, are recorded on the beacon chain. Votes attest that the
head of the beacon chain is the block at slot X, and are called
LMD GHOST votes. If a proposer receives enough votes from
other validators (attesters), namely a supermajority (more than
2
3 of the total validator stake), the block is considered justified,
and the proposer receives a reward. The entire validator set
has around half a million validators [157] and is capped at
219 validators [158]. The consensus algorithm also incentivizes
validators to report other validators that make conflicting votes
(for example voting yes and no) or propose multiple blocks in
the same slot (called slashing). When the first two blocks from
two consecutive epochs are justified, we say that the previous
block is finalized.

This process implies that validators are relatively synced
with each other. The Beacon chain provides a global clock
used for this synchronization. Each slot is defined as 12
seconds, and an epoch has 32 slots (6.4 minutes). A block
is added to the blockchain for every slot, although these
can be empty. Validators then have the incentive to attest to
receive awards, and do it timely and be online (otherwise,
the rewards will be minimized). Dishonest validators are
disincentivized by the slashing caused by honest validators
that accuse them. Validators are executed by validator clients
(execution layer) connected to a beacon chain node (consensus
layer). Consensus is done on the transactions to be recorded
on the ledger. Transactions are included in blocks containing

a block header and a list of transactions. Block headers in
Ethereum contain several attributes, e.g.24, previous header
finalized slot, next header slot, signature slot, sync committee
period slot signature, sync committee finalized header slot,
previous header finalized state root, previous finalized state
root branch, execution state root, and execution state root
branch.

B. Sync Committee

In more detail, sync committees are composed of a fixed-
size subset of the validators of the blockchain [159], [160],
that are agreed upon by all honest validators. The next
epoch committee is calculated in the current epoch. This way,
the current sync committee can sign attestations about the
following epoch (including the set of validator public keys
that will form the next committee). Ideally, the sampled sync
committee should retain an honest majority in each epoch:
sampling depends on the implementation, but it could be done
by sampling uniformly at random from the underlying stake
distribution. The sync committee members receive a reward of
around 0.1 Eth for every set of attestations in a sync period.

Light clients rely on block headers to make decisions
without processing the entire blockchain. There are two types
of headers: attested headers provide light clients with the
most recent information (still not finalized), while the finalized
header gives them a secure point of reference known to be
irreversible (finalized). The attested header represents a beacon
block that has reached finality, meaning it has passed the
conditions set by the consensus algorithm to be considered
irreversible.

APPENDIX D
A GENTLE INTRODUCTION TO SNARKS

Formally, SNARKS are cryptographic tools that enable a
prover P to convince a (computational weak) verifier V of
statements25 of the form “given a function f that can be
reduced to an efficiently computable boolean circuit C and
an input xC , there exists a private witness wC such that
f(xC , wC) = 1. We call (xC , wC) an instance-witness pair.
We define the index relation RC = {x,w}. The relation is an
interactive protocol between a prover and a verifier such that
the former can convince the latter that it knows a witness such
that (x,w) ∈ R. The prover does so by sending polynomial
oracles. The verifier can query these points of their choice. The
more points queried and verified, the higher the confidence
of the verifier that the prover indeed holds a valid witness
belonging to R. A SNARK consists of a triple of probabilistic
polynomial time algorithms (G, P, V) as follows [48], [162]:

• G is a generator that upon receiving a security parameter
input λ, generates a reference string σ and a verification
state τ .

• P (C, xC , wC) that outputs a proof π for input xC and
witness wC on circuit C

24see the block header definition here.
25for a high-level introduction, see [161].

37

https://github.com/ethereum/go-ethereum/blob/16cd1a7561155a264b1a1a2a5850b11c47dc18d4/core/types/block.go#L66

• V, is the verifier. It takes the verification state, instance,
and proof and returns 1 if the proof is valid and 0
otherwise, i.e., V (τ, xC , π)→ 1 if a proof is valid.

SNARKs have the following properties:
• Correctness: A valid proof π is always accepted by an

honest verifier V .
• Soundness: A proof π generated with an invalid witness

(i.e., invalid proof) will not be accepted by an honest
verifier with a high probability.

• succinctness: the cryptographic proof is small (few kilo-
bytes) and easy to verify (few milliseconds, verifiable in
polynomial time), regardless of the complexity of f . This
proves useful for our specific real-world application.

In addition, zero-knowledge SNARKs (zkSNARKs) are a
subset of SNARKS with the additional property:

• zero-knowledge property, which states that the interaction
between the prover and the verifier does not reveal
information about the witness.

Proving computation (i.e., creating a SNARK) comes with
considerable overhead (in terms of time and memory) because
the prover needs to express f as a Boolean circuit C that is
much larger than the description of f , and the prover must
perform expensive operations (time and memory) that grow at
least in the size of C.

The pipeline from ideation to SNARK verification has
several steps. In the first place, an idea is implemented as a
program. However, typical high-level programming languages
can not deal with SNARKs , and hence several domain-specific
languages were developed. These domain-specific languages
compile a program description into an R1CS. Then the circuit
is fed into a proof system algorithm, that generates public
parameters. Those parameters can be used to create proofs
and later, do verification. One of the popular DSLs used for
generating R1CS is circom, a hardware description language
(meaning it is used to describe the arithmetic circuit directly).

1) Trusted Setup: Before SNARK is constructed and eval-
uated, a setup phase can exist (depending on the specific
protocol). The setup phase improves the efficiency of the
verification phase, by summarizing a circuit and outputting
public parameters (common reference string, aka CRS). The
circuit verifier uses the CRS to check for proof validity.
The setup takes as input a set of parameters and a common
reference string (CRS), which are r random bits, that must
be kept secret from the prover and destroyer after the setup
(otherwise, false statements can be proven). Groth16 [47], the
SNARK proof construction protocol we use in this paper, uses
a trusted setup.

2) Generating SNARKS: Although it is out of our scope
for us to provide an in-depth explanation how SNARKS are
constructed, we specify it informally: According to [163],
a SNARK is obtained from a polynomial interactive oracle
proof (PIOP) [164] and polynomial commitment schemes (PC
schemes) [165]. In a PIOP, the verifier asks the prover to open
all commitments at various points of their choosing using
polynomial commitment scheme. The committment scheme

allows a party to commit to a polynomial (typically a string)
that can be used a posteriori by a verifier to confirm claimed
evaluations of the committed polynomial. First, an interactive
argument is constructed. The prover P invokes the prover
algorithm P and the verifier invokes the verifier algorithm V .
P commits the polynomial oracles output using a polynomial
committment and sends the results to V . Verifier algorithm V
declares the queries to the committed polynomials and then P
replies with the polyonomials evaluations (a set of points),
along with an evaluation proof (simplified). To turn this
interactive protocol into a non-interactive protocol (suitable
for our use case), one can use the Fiat-Shamir transform
[166]. This works by having the prover generate randomness
(used for the hidden challenge) on behalf of the verifier
using a cryptographic hash function (random oracle model).
The prover can then send a single message along with the
randomness to the verifier, who then verifies the proof.

3) Verifying SNARKS: The evaluation process depends
heavily on the protocol and implementation 26 (e.g., Groth16
[47], PLONK [164]), its implementation, and underlying
cryptographic primitives (bilinear pairings, elliptic curve). For
Groth16, it is roughly the following: Consider consider the
common reference string (CRS) and the proof from the prover
as (a, b, c), where a, b, and c are points on an elliptic curve.
The public inputs are denoted by x. The verifier does the
following:

1) Compute h(x) using the public inputs x. This is done
by evaluating the polynomial h at x, where h is the
polynomial in the Quadratic Arithmetic Program that
represents the public inputs.

2) The verifier checks a bilinear pairing equation such
that the proof (a, b, c) satisfies the Quadratic Arithmetic
Program represented by the CRS and the public inputs x
27.

3) The verifier accepts the proof if and only if the bilinear
equation holds true.

4) Groth16: In this paper, we use the Groth16 construction
to create SNARKS. Introduced by Jens Groth in 2016, the
Groth16 SNARK construction stands as an efficient instantia-
tion of zero-knowledge SNARK protocols, due to using elliptic
curve pairings. The generated proofs are around 192 bytes.
Groth16 uses a trusted setup phase.

APPENDIX E
EVALUATION PLOTS

Here, we showcase some plots supporting Experiment 2
from Section VI.

A theoretically safe approach for outdated devices to in-
crease their safe syncing range requires a greater sync com-
mittee majority, i.e., greater than 2

3 . Such a greater majority
would require more validators to turn malicious before the
sync committee can be corrupted, thus increasing the required

26There are diverse tools and libraries allowing to verify SNARKS on-chain,
most notably snarkjs [74].

27we omit technical details that can be consulted here, for example.

38

https://www.rareskills.io/post/groth16

Fig. 14: Days needed for a fraction r of validators to exit Ethereum as a function of |V|

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Sync committee majority

140

160

180

200

220

240

260

Sa
fe

 n
um

be
r o

f d
ay

s

Fig. 15: Number of days for a malicious fraction of the validators to exit the system as a function of the honest sync committee
ratio r

time for the sufficient number of validators to have exited.
This means that in practice if the light client is presented with
a chain of light client updates with higher sync committee par-
ticipation, it can adjust its accepted syncing range accordingly.
Let us s say a light client is outdated by 230 days. For the
next 22 days of catching up it might require blocks, signed by
at least 95% of respective sync committees. When the client
is just 208 days behind, it might relax that requirement to
just 90%. That dynamic adjustment keeps on until the client
is ¡128.93 days behind when it falls back to the standard 2

3 .
An analysis of all light client updates from the Altair fork (at
slot 2375680) up to slot 4731420 shows that the minimal sync
committee participation so far is 97%. Therefore, it would be
safe for light clients to sync at least once every 230.5 days.

APPENDIX F
ALTAIR FORMAL SPECIFICATION

Figure 16 shows the definition of the ValidateUpdate
algorithm for Altair.

APPENDIX G
CIRCOM TEST RESULTS

Table III shows the results of running our Circom tests with
snarkit2.

APPENDIX H
DETAILED FUTURE WORK DIRECTIONS

This section illustrates future work and open challenges for
SNARK-based bridges. We showcase use cases that can be
built with Harmonia. We identify multiple trends:

39

Algorithm 7: ALC ValidUpdate

Input: LSi ,LCUdata, s, r
Data: Access to blockchain B
Result: true if validated header, otherwise ⊥

1 assert
∑

LCUdata.aggregate ≥ 1
2 assert s ≥ LCUdata.signature slot > LCUdata.BlockHeader.slot ≥ LCUdata.F-BlockHeader.slot
3 storep = SlotToPeriod(LCUdata.BlockHeader.slot)
4 sigp = SlotToPeriod(LCUdata.signature slot
5 sigp = storep ▷ if there is LSi+1

, assert sigp = storep + 1
6 ▷ verify that the updated attested slot is higher than the one stored in the

finalized header or that there is not a defined LSi+1

7 B.state.verify(LCUdata.πF-BlockHeaderi+1
, LCUdata.BlockHeader.root, LCUdata.F-BlockHeader.root)

▷ verify πCi+1 authenticates F-BlockHeader
8 B.state.verify(LCUdata.πCi+1 , LCUdata.BlockHeader.root, LCUdata.Ci+1) ▷ verify
Ci+1 = BlockHeader.Ci+1

9 Ci = LCi
▷ if update signature period = store period

10 pubkey ← AggregateToPubKey(L.aggregate)
11 ▷ calculates d = domain
12 m← ComputeRoot(LCUdata.BlockHeader, d)
13 σ ← L.aggregate.σN[1:512]

14 assertVERIFYpubkey(m,σ)
15 return true

Description

In the Light Client Update LCU (Algorithm 7), we take as input the current state of the light client LSi , the light client update
data LCUdata, a slot s and a root r. It returns true upon success. The procedure is as follows:

• In line 1 we check that the sync committee has sufficient participants
• In line 2, we verify the update does not skip a sync committee period
• Lines 3 and 4 calculate the updated signature and store periods from their slots
• Line 7 authenticates the finalized header via a Merkle proof
• Line 8 authenticates the next sync committee via a Merkle proof
• Line 10 calculates the public key that will verify the aggregate signature in line 14.
• We return true if all checks pass (line 15). If any check fails, we return ⊥.

Fig. 16: ValidateUpdate in ALC

• Continuous security improvements: engineering efforts
and implementation complexity bring about risks that are
often unexpected. Even if the light client protocol specifi-
cation and implementation are secure, and the underlying
blockchains are secure, the SNARK frameworks and
applications built on top of the light client still may have
protocol and implementation bugs [167]. Using novel
technologies and a complex codebase is an aggravating
factor that can introduce attack vectors. Therefore, good
practices and risk assessment in cross-chain technologies
should be done for every cross-chain use case (see the
good example of Uniswap [113]). In the unlikely scenario
that the light client is compromised, the latency period we
defined provides reaction time for various circuit breakers
to be activated (e.g., emergency stop [12]). This would
stop the cross-chain application and allow cybersecurity
professionals to do the due diligence. In fact, systems
like Hephaestus are fundamental to prevent propagation

of safety failures (challenge C2).
• Bridge aggregator rising popularity: As the cross-chain

market matures, bridge aggregator companies emerge,
trying to build dependable and efficient swap routes on
top of bridges. Bridge aggregators attempt to inherit the
strengths of individual bridges and limit their weaknesses
by tuning a balance between safety and liveness and
each security model and assumption. Aggregators do a
market study on bridges that meet a security threshold, for
example, following the frameworks [2], [113]. Recently,
Uniswap has shown interest in closely examining bridge
aggregator development [168].

• Standardization efforts catching momentum: diverse stan-
dards are being developed with applications on permis-
sioned and permissionless blockchains. An example that
links the permission and permissionless worlds is IETF’s
SATP [7], [91], counting with the support of companies
like Blockdaemon, Quant, and diverse research institu-

40

Template
Instances

Non-Linear
Constraints

Linear
Constraints

Public
Inputs

Public
Outputs

Private
Inputs

Private
Outputs Wires Labels

light client 410 89,687,265 5,093,393 0 2 20,961 0 93,965,192 472,858,554

aggregate bitmask N1 48 11,664 0 0 14 15 0 11,592 13,509

aggregate bitmask N3 50 35,452 0 0 14 45 0 35,226 40,619

compress 9 809 2 0 384 14 0 812 1323

compute domain 101 58,854 0 0 256 320 0 58,551 411,153

compute signing root 101 59,281 0 0 256 512 0 59,170 411,089

division by 6 757 0 0 2 2 0 758 1279

expand message 102 559,346 0 0 2048 256 0 553,668 3,884,336

hash to field 121 573,506 0 0 28 256 0 567,632 3,904,808

hash tree root 101 177,843 0 0 256 1024 0 176,996 1,231,473

hash tree root beacon header 102 413,348 0 0 256 1,280 0 410,261 2,875,313

hash two 100 59,281 0 0 256 512 0 59,170 410,065

is equal arrays 3 8 0 0 1 6 0 15 35

is first 4 5 0 0 1 4 0 10 24

is supermajority 4 252 0 0 0 1000 0 1,252 1,262

is valid merkle branch 106 299,493 0 0 0 1,793 0 298,166 2,056,242

less than bits check 4 97 0 0 1 2 0 97 171

less than eq bits check 5 97 0 0 1 2 0 97 174

numbersTo256Bits 3 256 0 0 256 2 0 257 773

pow 4 1021 0 0 1 2 0 1,024 2,311

range check 5 195 0 0 1 3 0 193 347

selector 3 24 0 0 1 9 0 34 68

ssz num 2 32 224 0 256 1 0 257 323

sync commitee hash tree root 103 531,769 0 0 256 1,920 0 528,074 3,688,785

TABLE III: Circom test results

tions. In the permissionless world, a relevant standard is
MMA, a standard for building a quorum of approvals
from different bridges that propagates to a smart contract
on a target blockchain. Nonetheless, they currently focus
on token transfers, finding an optimal route between
chains (i.e., the cheapest bridge that can transfer token X
from A to B). This is not an easy challenge, as the routing
algorithms combine gas estimation, slippage, liquidity
pool monitoring, and synchronizing different blockchains.
Recent research showcases an aggregator of bridge aggre-
gators [169]. LiFi is one of the companies implementing
MMA. The development of technologies like Harmonia
can feed back on standards development, and vice-versa.
Moreover, ecosystem-dependent standards are also being
developed, for example for IBC [170], [171] and EVM
[172]

• Privacy-preserving bridges: in this work, we presented
Harmonia, which leaks all information to the adversary.
While achieving desired security properties, one might
want to provide privacy, as it is increasingly more im-
portant [173]. Privacy-preserving applications built on
top of Harmonia, such as bridges, could eventually be

implemented [135], but the correct privacy model is still
not clear: what are the ideal functionalities (in terms
of the UC framework [174]) that can guarantee that
different privacy models co-exist? For instance, can asset
transfers between a private and a public blockchain not
leak any information according to a set of defined privacy
policies? What are the functionalities of each combination
blockchain pair-bridge that need to be assured?

• Cross-chain monitoring: there is a large literature on
blockchain security [175], and more recently, some works
appeared on the security of cross-chain technologies.
Although a few initial monitoring tools look promising
to the field [12], [176], applicability and efficacy in
real-world products such as Chainalysis still need to be
assessed. Furthermore, large-scale empirical studies on
cross-chain attacks do not exist.

• More efficient on-chain proofs: to prove state from the
Ethereum blockchain, to be used by third-party chains,
we provided a SNARK attesting for the correct execution
of the light client rules. This SNARK will originate block
roots that can be consumed by Merkle proof verifiers to
verify Merkle proofs. There could be a more efficient so-

41

lution. In the future, where volume is substantially higher,
we could use a SNARK to aggregate a chain of Merkle
proofs, instead of providing a SNARK proving that a light
client protocol update was correctly executed. This way,
the bridge consumes SNARKs to validate cross-chain
logic and will not depend on validated block headers.
More research is needed to understand when starting
to compress Merkle proofs as a SNARK versus using
a SNARK per a range of blocks will be economically
viable.

42

	Introduction
	Problem and Solution Overviews
	Problem Definition
	Technical Challenges
	Contributions
	Outline

	Preliminaries
	Blockchain
	Cryptographic Building Blocks
	Cryptographic Keys
	Hash Functions
	Signatures
	Accumulators

	Merkle Trees and Merkle Proofs
	Light Client Protocol
	Altair Hard Fork and the Ethereum Sync Committees
	SNARKs
	Cross-chain Transactions / Logic / State

	The Harmonia Framework
	System Model and Components
	Threat and Network Model
	System Goals
	Architecture
	Altair Light Client 1.0
	DendrETH: Strengthening the Security of ALC
	Threat Model
	Ghost Checkpoint Attestation Attack
	Sync Committee Slashing

	Building Cross-Chain Applications
	State Migration with Harmonia

	Implementation
	SNARK Relayer
	Cross-Chain Logic
	Application Relayer
	Light Client Verifier & Application Proof Verifier Contracts
	Verifiers For EVM-based chains
	Verifiers for non-EVM-based chains

	Circuits
	Target Domains
	Committment

	Trusted Ceremony
	SNARK Generation

	Evaluation
	Setup
	Circuits
	Latency
	Performance Improvements
	Storage
	Hardware
	Transaction Fees and Costs
	Considerations on Throughput
	Reproducibility

	Discussion and Qualitative Assessment
	Safety
	Experiment 1 – Malicious Validator Ratio
	Experiment 2 – Churn Rate Safety Thresholds
	Experiment 3 – Fine-Grain Risk Assessment

	Liveness
	Accountability and Auditability
	Censorship Resistance
	Upgradeability, Flexibility, and Extensability
	Security Analyisis
	Trusted Ceremony and Initialization
	Post-Quantum Considerations
	Incentivization
	Extending light client security to the whole validator set of Ethereum

	Related Work
	Blockchain interoperability
	Light Client Protocols
	Comparison with other interoperability approaches
	SNARK-based cross-chain bridges
	Rollups

	Conclusion
	References
	Appendix A: Additional Context
	Appendix B: Merkle Proof Verification
	Appendix C: The Ethereum Blockchain
	System Actors
	State

	Consensus
	Sync Committee

	Appendix D: A Gentle Introduction To SNARKs
	Trusted Setup
	Generating SNARKS
	Verifying SNARKS
	Groth16

	Appendix E: Evaluation Plots
	Appendix F: Altair Formal Specification
	Appendix G: Circom Test Results
	Appendix H: Detailed Future Work Directions

