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The previous point cloud compression methods only consider reducing
the amount of data. However, in applications such as autonomous
driving, the compression methods not only require smooth transmission,
but also improve the efficiency of downstream tasks. To this end, we
propose a task-driven sampling network based on graph convolution to
achieve point cloud compression and recovery. First, we present a task-
driven downsampling network based on graph convolution to compress
the point cloud. Then, we present an upsampling network based on
graph convolution to enhance and recover the point cloud. In order to
optimize the compressed point cloud for task, we add the task loss to
loss function for end-to-end training. Experiments for point cloud
classification task on ModelNet40 dataset show that the compressed
point cloud obtained through our network can achieve higher
classification accuracy compared to other similar methods, and the
reconstructed point cloud can further improve classification accuracy.

Introduction: 3D point clouds can provide rich geometric and shape
information. They are widely used in fields such as autonomous driving,
virtual/augmented reality, and robotics. However, their large data
volume, irregular structure, and sparsity make transmission and
processing complex. Point cloud compression is necessary to save
storage space, reduce the transmission bandwidth and communication
load.
Currently, the Moving Picture Experts Group (MPEG) has proposed

and developed the point cloud compression standard, named Geometry-
based Point Cloud Compression (G-PCC) and Video-based Point Cloud
Compression (V-PCC) [1]. The former processes static point clouds,
representing unstructured point cloud data in an octree structure. The
latter processes dynamic point clouds, mapping 3D point cloud into a
2D data format and then applying the 2D High Efficiency Video
Coding(HEVC) to encode the projection plane. In addition, Google has
developed the Draco [2] based on a k-d tree structure to compress point
cloud. Since these methods mostly rely on hand-crafted coding
strategies and cannot be implicitly optimized end-to-end, despite their
excellent compression performance, there is still a large amount of
redundant information.
With the great success of deep learning in point cloud, deep learning-

based compression methods have the potential as a new compression
standard. They can better adapt to the complex structure of point cloud,
and obtain non-linear transforms at the encoder and decoder. As [3]
used autoencoder to improve performance significantly compared with
MPEG standard algorithms. According to the organization and
representation of point cloud, deep learning-based compression methods
are classified into point-based [4-5] and voxel-based methods [6-7].
Point-based methods have low computational complexity but poor
reconstruction quality. They are affected by the sparsity of point cloud,
and cannot handle large-scale LiDAR point cloud scenes. The voxel-
based methods divide the point cloud into a voxel grid, ignoring the
sparsity of the point cloud and allowing the use of a variety of
geometric and spatial information, but they also leading to high
computational and memory costs that grow cubically as the resolution
increases.
The above traditional and deep learning-based point cloud

compression methods only consider compression metrics such as bitrate
and distortion. They do not combine downstream tasks, thus reducing
the practical application efficiency of the methods.
To address these issues, this paper proposes a task-driven sampling

method for point cloud, using a downsampling network for compression
and an upsampling network for enhancement and recovery. Due to the
graph structure is more suitable for processing unstructured non-
Euclidean data, so our network will combine graph convolution to
represent and learn 3D point cloud.

Method: We proposed a task-driven sampling method for point cloud
compression and reconstruction, as shown in Fig.1.

Fig. 1 The structure of task-driven sampling method for 3D point cloud
compression

This model consisted of three networks: downsampling, upsampling,
and application tasks. Given a 3D point cloud P containing N points, the
task-driven downsampling network achieved simplification and
compression of point cloud. The compressed point cloud Q can be
optimized for the application task by introducing a task loss in the joint
loss function. After storage and transmission, the upsampling network
enhanced and recovered the point cloud. Finally, the reconstructed point
cloud Q was applied to various point cloud tasks. Where r is the
sampling rate and M = N/r is the number of compressed point cloud, M
< N.
As we know, Graph is a data structure for modeling objects (nodes)

and their relationships (edges). Its powerful representational capabilities
have led to widely uesd in social networks, biomolecules and other
fields. In addition, its unique non-Euclidean data structure is well suited
for sparse, irregular 3D point cloud. Convolutional Neural Network
(CNN) can effectively extract spatial features, but it can only be used in
regular data structures. The Graph Convolution Network (GCN) [8],
which combines the graph and CNN, is now widely used in various
point cloud learning networks. In this paper, we use graph convolution
to construct the downsampling and upsampling networks.
As shown in Fig.2, the task-driven downsampling network based on

graph convolution consisted of feature extraction unit and soft sampling
unit.

Fig. 2 The structure of task-drived downsampling network based on
graph convolution network

In Feature extraction unit, we used a densely connected GCN module
to learn the features of point cloud. As shown in the green part of Fig.2,
a local graph structure G was constructed for each point according to
the K Nearest Neighbor (KNN) algorithm firstly. Secondly, the point
cloud features were extracted by multiple stacked GCNs. Finally, the
features learned by the densely connected GCNs were summed to
obtain the d-dimensional multi-scale point cloud features F.
Next, the sampling process for point cloud can be expressed by Eq.1:

'Q S P  (1)

Where P is the original point cloud, S is the sampling matrix, andQ is
the compressed point cloud obtained by downsampling. The ideal
sampling matrix S contains only 0 and 1, however this discrete non-
differentiable matrix cannot be trained end-to-end in a deep neural
network. We proposed to use a soft sampling matrix to approximate the
ideal sampling matrix, where each element in the soft sampling matrix
is not 0 or 1, but a number between 0 and 1, and the closer it is to 0 or 1,
the better. As shown in the blue section of Fig.2, the soft sampling
matrix was learned using the MLP and the Gumbel-Softmax module.
First, given the number of compressed point clouds M, the features F
obtained by the feature extraction unit are passed through the MLP to
get a correlation matrix 'S . In order to make the elements in (0,1), we
need to normalize it. As shown in Eq.2, it was implemented using the
Gumbel-Softmax[9].
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Gumbel-Softmax is a Softmax function with parameter control. The
higher the t, the 0-1 distribution is smoother, and the lower the t, the
distribution is closer to a discrete one-hot. The soft sampling matrix can
be approximated to the ideal sampling matrix in the training process by
gradually decreasing the parameter t. Finally, the original point cloud P
was multiplied by the learned soft sampling matrix S to obtain the
downsampled compressed point cloud.

In the task-driven downsampling network, we designed a joint loss
function consisting of the task loss, the sampling loss, and the soft
sampling constraint loss, as shown in Eq.3.

int intdown task task samping sampling constra constraL L L L     (3)

where is the parameter for balancing each item.
The compressed point cloud was stored, transmitted, and then

enhanced for recovery by an upsampling network. As shown in Fig.3,
this network contained feature extraction unit, feature expansion unit,
and coordinate regression unit.

Fig. 3 The structure of upsampling network based on graph convolution
network

In Feature extraction unit, we still used the graph convolution
network. The densely connected graph convolutional layer can learn the
point cloud's local and global geometric information from different
levels of detail.
Since points and features are interchangeable, we can regardM points

with rd-dimensional features as rM points with d-dimensional features.
As shown in the orange part of Fig.3, the Feature expansion unit can
increase the number of points. We used MLP to get features F1 of M
points and then copy r times to obtain the d1-dimensional features of rM
points. However, such simple convolution and replication will make the
generated points too similar to get a uniform and dense point cloud.
Therefore, we used the 2D grid mechanism in the FoldingNet [10] to
generate a unique 2D vector for each feature, which was then added to
the features of each point to obtain different features. It increased the
diversity of the point cloud features and thus made the individual points
subtly different.
The coordinate regression unit regressed the d+2 dimensional feature

F2 of rM points into 3D coordinates and obtained the reconstructed
point cloud Q. Since absolute coordinates vary more than relative
offsets in 3D space, and the residuals can highlight slight variations, we
proposed using a residual correction module to obtain accurate point
cloud coordinates. As shown in the purple part of Fig.3, F2 was
transformed into the 3D coordinates of rM points through a fully
connected layer. To reduce the effect of noise and generate a dense
point cloud, we added a residual correction unit consisting of a
Convolution layer, a Batch Normalization layer, and a Rectified
Linear Unit, which regresseed the residual offset of each point's position.
Finally, add the offsets obtained by refinement to the coarse coordinates
to get the precise 3D coordinates.
The loss function of the upsampling network consisted of the

sampling loss and the regularization loss. The sampling loss included
the reconstruction loss and the repulsion loss, as shown in Eq.4.

up rec rec rep rep reg regL L L L     (4)

where is the parameter for balancing each item.

Experimental results: We used a computer equipped with a RTX8000
GPU to conduct experiments. For simple implementation, we chose the
point cloud classification as downstream task and PointNet [11] as the
classification task network. The task evaluation metric is classification

accuracy. We used the modelNet40 [12] as the dataset for point cloud
classification, which contains 12311 3D objects in 40 categories, of
which 9843 were used for training and 2468 for testing. Each object
was first uniformly sampled to 1024 points before training. When
training the task-driven downsampling network, the parameter settings
were kept consistent with S-Net. When training the upsampling network,
the parameter settings were kept the same as those of PU-GCN.
First, we compared three task-oriented methods, S-Net [13],

SampleNet [14], MOPS-Net [15] with our network proposed in this
paper. r is the downsampling rate. When r=1, the original point cloud
with 1024 points, and when r=2, 4, 8, 16, 32, 64, 128, the corresponding
number of the compressed point clouds are 512, 256, 128, 64, 16 and 8
respectively. The classification accuracy of the different methods at
each sampling rate is shown in Fig.4.
As seen from Fig.4, our downsampling network can achieve higher

classification accuracy at all sampling rates, especially when the
sampling rate is large, the advantage is more prominent. In addition,
when the number of point cloud is compressed to 1/32 of the original
size, our downsampling network can still achieve more than 80%
classification accuracy, which can get better classification results and
satisfy most application scenarios. This is very friendly to lightweight
tasks and facilitates the transmission and storage of the point cloud.

Fig. 4 The classification accuracy of different methods at each sampling
rate r

To further improve the performance of the task, we used an
upsampling network to enhance and recover the compressed point cloud.
we used the graph convolution-based upsampling network to obtain a
reconstructed point cloud for the classification task. Fig.5 shows the
classification accuracy of the compressed point cloud after random
downsampling, and the reconstructed point cloud using different
upsampling methods such as PU-Net [16]、PU-GAN [17]、PU-GCN
[18] to recover the compressed point cloud. The black dashed line
shows the classification accuracy of the compressed point cloud after
random sampling, while the rest of the colored lines show the
classification accuracy of the reconstructed point cloud after the
different upsampling methods.

Fig. 5 The classification accuracy of random downsampled point cloud
and different upsampling reconstructed point cloud at each sampling
rate

It can be seen that the classification accuracy of the compressed point
cloud after random sampling gradually decreases as the sampling rate
becomes larger, and after the enhancement and recovery by upsampling,
the classification accuracy is improved.The larger the sampling rate, the
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more pronounced the improvement, and our upsampling network is the
most improved. What draws attention is that the classification accuracy
of the reconstructed point cloud enhanced with PU-Net is even lower
than that of the compressed point cloud when the sampling rate is larger.
This is because the fact that the recovery of the point cloud from fewer
points amplifies the detail defects, which affects the overall point cloud
quality and application task’s performance.
The above experiment results show that the upsampling network

proposed in this paper can effectively improve the quality of
compressed point cloud, and at the same time, can further improve the
performance of subsequent application tasks.
Previous results have demonstrated the effectiveness of our task-

driven downsampling network and our upsampling network, both of
which are combined to form a task-driven compression and
reconstruction model for point cloud. Compared with the non-task-
driven compression and reconstruction, the results were shown in
Table.1. The second column was the classification accuracy of the
compressed point cloud after traditional random downsampling, and the
third column was the classification accuracy of the reconstructed point
cloud after upsampling. The fourth column shown the classification
accuracy of the compressed point cloud after task-driven downsampling,
and the fifth column shown the classification accuracy of the
reconstructed point cloud after upsampling to recover.

Table 1: The classification accuracy of compressed and reconstructed
point cloud with non-task-driven and task-driven model at each
sampling rate

Sampling
rate RS Upsampling Task-driven

downsampling Upsampling

2 85.06 85.76 89.31 89.44
4 80.54 84.92 85.80 96.76
8 57.38 82.65 84.27 86.18
16 33.35 79.68 83.93 85.55
32 20.13 62.93 81.76 83.24

We can see that the task-driven downsampling network proposed in
this paper dramatically improves the classification accuracy compared
to the traditional downsampling compression method with the same
sampling rate. In addition, the reconstructed point cloud's classification
accuracy after upsampling is further improved, and the improvement is
more pronounced when the sampling rate is larger.
These experimental results show that the task-driven downsampling

network proposed in this paper can achieve compression of the point
cloud, which not only reduces the amount of point cloud but also
guarantees the performance of task. At the same time, the upsampling
network proposed in this paper can enhance and recover of compressed
point cloud, further improving point cloud quality and task performance.
The whole task-driven point cloud compression and reconstruction
model is practical and feasible.

Conclusion: This paper proposes a task-driven sampling network based
on graph convolution for the compression and reconstruction of 3D
point cloud. The task-driven downsampling network containing a graph
feature extraction unit and a soft sampling unit to generate the
compressed point cloud. The graph-based upsampling network with a
residual correction unit enhances and recovers these compressed point
cloud. We construct a joint loss function with the task loss for end-to-
end training to ensure that the sampled point cloud can be optimized for
the downstream task. Experiments on the ModelNet40 dataset show that
the proposed method not only reduces data volume but also ensures
high classification accuracy, without affecting the performance of
subsequent applications. Moreover, the reconstructed point cloud after
enhancement and recovery can further improve the performance of the
task. In the future, we will combine more efficient methods for point
cloud learning, such as Transformer, while the proposed network will
be applied to other point cloud tasks, such as segmentation and object
detection.

Acknowledgments: This work was supported by the National Natural
Science Foundation of China (No.62072325), The University Science and
Technology Innovation Project of Shanxi(No.2022L326).

References
1. Schwarz, Sebastian., et al.: 'Emerging MPEG standards for point
cloud compression'. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2018, 9(1), pp.133-148.
2. 'Google Draco 3D graphics compression[EB/OL]'.
https://google.github.io/draco/. (2018)
3. Quach, Maurice., Giuseppe, Valenzise., and Frederic, Dufaux.:
'Learning convolutional transforms for lossy point cloud geometry
compression'. Proceedings of IEEE international conference on image
processing. Piscataway:IEEE Press, 2019, pp.4320-4324.
4. Huang, Tianxin., and Liu, Yong.: '3d point cloud geometry
compression on deep learning'. Proceedings of the 27th ACM
international conference on multimedia. Piscataway:IEEE Press, 2019,
pp.890-898.
5. Wiesmann, Louis., et al.: 'Deep compression for dense point cloud
maps'. IEEE Robotics and Automation Letters, 2021, 6(2), pp.2060-
2067.
6. Wang, Jianqiang., et al.: 'Lossy point cloud geometry compression
via end-to-end learning'. IEEE Transactions on Circuits and Systems for
Video Technology, 2021, 31(12), pp.4909-4923.
7. Que, Zizheng., Guo, Lu., and Dong, Xu.: 'Voxelcontext-net: An
octree based framework for point cloud compression'. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway:IEEE Press, 2021, pp.6042-6051.
8. Lin, Zhihao., Huang, Shengyu., and Yu-Chiang Frank Wang.:
'Learning of 3d graph convolution networks for point cloud analysis'.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,
44(8), pp.4212-4224.
9. Yang, Jiancheng., et al.: 'Modeling point clouds with self-attention
and gumbel subset sampling'. Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. Piscataway:IEEE Press,
2019, pp.3323-3332.
10. Yang, Yaoqing., et al.: 'Foldingnet: Point cloud auto-encoder via
deep grid deformation'. Proceedings of the IEEE conference on
computer vision and pattern recognition. Piscataway:IEEE Press, 2018,
pp.206-215.
11. Qi, Charles R., et al.: 'Pointnet: Deep learning on point sets for 3d
classification and segmentation'. Proceedings of the IEEE conference on
computer vision and pattern recognition. Piscataway:IEEE Press, 2017,
pp.652-660.
12. Wu, Zhirong., et al.: '3d shapenets: A deep representation for
volumetric shapes'. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. Piscataway:IEEE Press, 2015, pp.1912-
1920.
13. Dovrat, Oren., Itai, Lang., and Shai, Avidan.: 'Learning to sample'.
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Piscataway:IEEE Press, 2019, pp.2760-2769.
14. Itai, Lang., Asaf, Manor., and Shai, Avidan.: 'Samplenet:
Differentiable point cloud sampling'. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Piscataway:IEEE Press, 2020, pp.7578-7588.
15. QIAN Y, HOU J, ZHANG Q, et al. MOPS-Net: A matrix
optimization-driven network fortask-oriented 3D point cloud
downsampling[J]. arXiv preprint arXiv:2005.00383, 2020.
16. Yu, Lequan., et al.: 'Pu-net: Point cloud upsampling network'.
Proceedings of the IEEE conference on computer vision and pattern
recognition. Piscataway:IEEE Press, 2018, pp.2790-2799.
17. Li, Ruihui., et al.: 'Pu-gan: a point cloud upsampling adversarial
network'. Proceedings of the IEEE/CVF International Conference on
Computer Vision. Piscataway:IEEE Press, 2019, pp.7203-7212.
18. Qian, Guocheng., et al.: 'Pu-gcn: Point cloud upsampling using
graph convolutional networks'. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Piscataway:IEEE Press, 2021, pp.11683-11692.

https://google.github.io/draco/.

