References
Appelhans, B. M., & Luecken, L. J. (2006). Heart Rate Variability as an
Index of Regulated Emotional Responding. Review of General Psychology,
10(3), 229–240. https://doi.org/10.1037/1089-2680.10.3.229
Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017).
Cardiac vagal control as a marker of emotion regulation in healthy
adults: A review. Biological Psychology, 130, 54–66.
https://doi.org/10.1016/j.biopsycho.2017.10.008
Benarroch, E. E. (1993). The central autonomic network: Functional
organization, dysfunction, and perspective. Mayo Clinic Proceedings,
68(10), 988–1001. https://doi.org/10.1016/s0025-6196(12)62272-1
Caulfield, K. A., Fleischmann, H. H., Cox, C. E., Wolf, J. P., George,
M. S., & McTeague, L. M. (2022). Neuronavigation maximizes accuracy and
precision in TMS positioning: Evidence from 11,230 distance, angle, and
electric field modeling measurements. Brain stimulation, 15(5),
1192–1205. https://doi.org/10.1016/j.brs.2022.08.013
Chung, S. W., Sullivan, C. M., Rogasch, N. C., Hoy, K. E., Bailey, N.
W., Cash, R. F. H., & Fitzgerald, P. B. (2019). The effects of
individualised intermittent theta burst stimulation in the prefrontal
cortex: A TMS-EEG study. Human Brain Mapping, 40(2), 608–627.
https://doi.org/10.1002/hbm.24398
Cornwell, B. R., Garrido, M. I., Overstreet, C., Pine, D. S., &
Grillon, C. (2017). The Unpredictive Brain Under Threat: A
Neurocomputational Account of Anxious Hypervigilance. Biological
Psychiatry, 82(6), 447–454.
https://doi.org/10.1016/j.biopsych.2017.06.031
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the
prefrontal cortex during working memory. Trends in Cognitive Sciences,
7(9), 415–423. https://doi.org/10.1016/S1364-6613(03)00197-9
Era, V., Carnevali, L., Thayer, J. F., Candidi, M., & Ottaviani, C.
(2021). Dissociating cognitive, behavioral and physiological
stress-related responses through dorsolateral prefrontal cortex
inhibition. Psychoneuroendocrinology, 124, 105070.
https://doi.org/10.1016/j.psyneuen.2020.105070
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in
anterior cingulate and medial prefrontal cortex. Trends in Cognitive
Sciences, 15(2), 85–93. https://doi.org/10.1016/j.tics.2010.11.004
Hamada, M., Galea, J. M., Di Lazzaro, V., Mazzone, P., Ziemann, U., &
Rothwell, J. C. (2014). Two distinct interneuron circuits in human motor
cortex are linked to different subsets of physiological and behavioral
plasticity. The Journal of Neuroscience : The Official Journal of the
Society for Neuroscience, 34(38), 12837–12849.
https://doi.org/10.1523/JNEUROSCI.1960-14.2014
Hildebrandt, L. K., McCall, C., Engen, H. G., & Singer, T. (2016).
Cognitive flexibility, heart rate variability, and resilience predict
fine-grained regulation of arousal during prolonged threat.
Psychophysiology, 53(6), 880–890. https://doi.org/10.1111/psyp.12632
Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability
indices as bio-markers of top-down self-regulatory mechanisms: A
meta-analytic review. Neuroscience & Biobehavioral Reviews, 74,
233–255. https://doi.org/10.1016/j.neubiorev.2016.12.032
Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J.
C. (2005). Theta burst stimulation of the human motor cortex. Neuron,
45(2), 201–206. https://doi.org/10.1016/j.neuron.2004.12.033
Iseger, T. A., Arns, M., Downar, J., Blumberger, D. M., Daskalakis, Z.
J., & Vila-Rodriguez, F. (2020). Cardiovascular differences between
sham and active iTBS related to treatment response in MDD. Brain
Stimulation, 13(1), 167–174. https://doi.org/10.1016/j.brs.2019.09.016
Kirkovski, M., Donaldson, P. H., Do, M., Speranza, B. E., Albein-Urios,
N., Oberman, L. M., & Enticott, P. G. (2023). A systematic review of
the neurobiological effects of theta-burst stimulation (TBS) as measured
using functional magnetic resonance imaging (fMRI). Brain Structure &
Function, 228(3–4), 717–749.
https://doi.org/10.1007/s00429-023-02634-x
Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal Tank Theory: The
Three Rs of Cardiac Vagal Control Functioning – Resting, Reactivity,
and Recovery. Frontiers in Neuroscience, 12.
https://www.frontiersin.org/articles/10.3389/fnins.2018.00458
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability
and Cardiac Vagal Tone in Psychophysiological Research—Recommendations
for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in
Psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213
Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., &
Thayer, J. F. (2009). Neural correlates of heart rate variability during
emotion. NeuroImage, 44(1), 213–222.
https://doi.org/10.1016/j.neuroimage.2008.07.056
Lane, R. D., Weidenbacher, H., Smith, R., Fort, C., Thayer, J. F., &
Allen, J. J. B. (2013). Subgenual anterior cingulate cortex activity
covariation with cardiac vagal control is altered in depression. Journal
of Affective Disorders, 150(2), 565–570.
https://doi.org/10.1016/j.jad.2013.02.005
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought
and action: A theory of an act of control. Psychological Review, 91(3),
295–327. https://doi.org/10.1037/0033-295X.91.3.295
López-Alonso, V., Cheeran, B., Río-Rodríguez, D., & Fernández-Del-Olmo,
M. (2014). Inter-individual variability in response to non-invasive
brain stimulation paradigms. Brain Stimulation, 7(3), 372–380.
https://doi.org/10.1016/j.brs.2014.02.004
Luber, B., & Lisanby, S. H. (2014). Enhancement of human cognitive
performance using transcranial magnetic stimulation (TMS). NeuroImage,
85, 961–970. https://doi.org/10.1016/j.neuroimage.2013.06.007
Magnon, V., Vallet, G. T., Benson, A., Mermillod, M., Chausse, P.,
Lacroix, A., Bouillon-Minois, J.-B., & Dutheil, F. (2022). Does heart
rate variability predict better executive functioning? A systematic
review and meta-analysis. Cortex, 155, 218–236.
https://doi.org/10.1016/j.cortex.2022.07.008
Maier, S. U., & Hare, T. A. (2017). Higher Heart-Rate Variability Is
Associated with Ventromedial Prefrontal Cortex Activity and Increased
Resistance to Temptation in Dietary Self-Control Challenges. Journal of
Neuroscience, 37(2), 446–455.
https://doi.org/10.1523/JNEUROSCI.2815-16.2016
Makovac, E., Thayer, J. F., & Ottaviani, C. (2017). A meta-analysis of
non-invasive brain stimulation and autonomic functioning: Implications
for brain-heart pathways to cardiovascular disease. NEUROSCIENCE AND
BIOBEHAVIORAL REVIEWS, 74(B, SI), 330–341.
https://doi.org/10.1016/j.neubiorev.2016.05.001
McIntosh, R. C., Hoshi, R., Nomi, J. S., Di Bello, M., Goodman, Z. T.,
Kornfeld, S., Uddin, L. Q., & Ottaviani, C. (2020). Neurovisceral
integration in the executive control network: A resting state analysis.
Biological Psychology, 157, 107986.
https://doi.org/10.1016/j.biopsycho.2020.107986
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of
prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.
https://doi.org/10.1146/annurev.neuro.24.1.167
Neacsiu, A. D., Beynel, L., Graner, J. L., Szabo, S. T., Appelbaum, L.
G., Smoski, M. J., & LaBar, K. S. (2022). Enhancing cognitive
restructuring with concurrent fMRI-guided neurostimulation for emotional
dysregulation–A randomized controlled trial. Journal of Affective
Disorders, 301, 378–389. https://doi.org/10.1016/j.jad.2022.01.053
Ngetich, R., Zhou, J., Zhang, J., Jin, Z., & Li, L. (2020). Assessing
the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral
Prefrontal Cortex on Human Cognition: A Systematic Review. Frontiers in
Integrative Neuroscience, 14, 35.
https://doi.org/10.3389/fnint.2020.00035
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of
emotion. Trends in Cognitive Sciences, 9(5), 242–249.
https://doi.org/10.1016/j.tics.2005.03.010
Pabst, A., Proksch, S., Médé, B., Comstock, D. C., Ross, J. M., &
Balasubramaniam, R. (2022). A systematic review and meta-analysis of the
efficacy of intermittent theta burst stimulation (iTBS) on cognitive
enhancement. Neuroscience and Biobehavioral Reviews, 135, 104587.
https://doi.org/10.1016/j.neubiorev.2022.104587
Poppa, T., de Witte, S., Vanderhasselt, M.-A., Bechara, A., & Baeken,
C. (2020). Theta-burst stimulation and frontotemporal regulation of
cardiovascular autonomic outputs: The role of state anxiety.
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 149, 25–34.
https://doi.org/10.1016/j.ijpsycho.2019.12.011
Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmöller,
J., Carpenter, L. L., Cincotta, M., Chen, R., Daskalakis, J. D., Di
Lazzaro, V., Fox, M. D., George, M. S., Gilbert, D., Kimiskidis, V. K.,
Koch, G., Ilmoniemi, R. J., Lefaucheur, J. P., Leocani, L., …
basis of this article began with a Consensus Statement from the IFCN
Workshop on „Present, Future of TMS: Safety, Ethical Guidelines“,
Siena, October 17-20, 2018, updating through April 2020. (2021). Safety
and recommendations for TMS use in healthy subjects and patient
populations, with updates on training, ethical and regulatory issues:
Expert Guidelines. Clinical Neurophysiology: Official Journal of the
International Federation of Clinical Neurophysiology, 132(1), 269–306.
https://doi.org/10.1016/j.clinph.2020.10.003
Rusjan, P. M., Barr, M. S., Farzan, F., Arenovich, T., Maller, J. J.,
Fitzgerald, P. B., & Daskalakis, Z. J. (2010). Optimal transcranial
magnetic stimulation coil placement for targeting the dorsolateral
prefrontal cortex using novel magnetic resonance image-guided
neuronavigation. Human Brain Mapping, 31(11), 1643–1652.
https://doi.org/10.1002/hbm.20964
Schmaußer, M., Hoffmann, S., Raab, M., & Laborde, S. (2022). The
effects of noninvasive brain stimulation on heart rate and heart rate
variability: A systematic review and meta-analysis. Journal of
Neuroscience Research, 100(9), 1664–1694.
https://doi.org/10.1002/jnr.25062
Schmaußer, M., & Laborde, S. (2023). Tonic and phasic cardiac vagal
activity predict cognitive-affective processing in an emotional
stop-signal task. International Journal of Psychophysiology: Official
Journal of the International Organization of Psychophysiology, 191,
9–18. https://doi.org/10.1016/j.ijpsycho.2023.06.008
Shackman, A. J., Maxwell, J. S., McMenamin, B. W., Greischar, L. L., &
Davidson, R. J. (2011). Stress Potentiates Early and Attenuates Late
Stages of Visual Processing. The Journal of Neuroscience, 31(3),
1156–1161. https://doi.org/10.1523/JNEUROSCI.3384-10.2011
Smith, R., Allen, J. J. B., Thayer, J. F., Fort, C., & Lane, R. D.
(2014). Increased association over time between regional frontal lobe
BOLD change magnitude and cardiac vagal control with sertraline
treatment for major depression. PSYCHIATRY RESEARCH-NEUROIMAGING,
224(3), 225–233. https://doi.org/10.1016/j.pscychresns.2014.08.015
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The
hierarchical basis of neurovisceral integration. Neuroscience and
Biobehavioral Reviews, 75, 274–296.
https://doi.org/10.1016/j.neubiorev.2017.02.003
Spangler, D. P., & McGinley, J. J. (2020). Vagal Flexibility Mediates
the Association Between Resting Vagal Activity and Cognitive Performance
Stability Across Varying Socioemotional Demands. Frontiers in
Psychology, 11.
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02093
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D.
(2012). A meta-analysis of heart rate variability and neuroimaging
studies: Implications for heart rate variability as a marker of stress
and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.
https://doi.org/10.1016/j.neubiorev.2011.11.009
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009).
Heart rate variability, prefrontal neural function, and cognitive
performance: The neurovisceral integration perspective on
self-regulation, adaptation, and health. Annals of Behavioral Medicine:
A Publication of the Society of Behavioral Medicine, 37(2), 141–153.
https://doi.org/10.1007/s12160-009-9101-z
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral
integration in emotion regulation and dysregulation. Journal of
Affective Disorders, 61(3), 201–216.
https://doi.org/10.1016/S0165-0327(00)00338-4
van Marle, H. J. F., Hermans, E. J., Qin, S., & Fernández, G. (2009).
From specificity to sensitivity: How acute stress affects amygdala
processing of biologically salient stimuli. Biological Psychiatry,
66(7), 649–655. https://doi.org/10.1016/j.biopsych.2009.05.014
Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, P. G.,
Brockett, A. T., Brown, J. W., Chamberlain, S. R., Chambers, C. D.,
Colonius, H., Colzato, L. S., Corneil, B. D., Coxon, J. P., Dupuis, A.,
Eagle, D. M., Garavan, H., Greenhouse, I., Heathcote, A., Huster, R. J.,
… Boehler, C. N. (2019). A consensus guide to capturing the
ability to inhibit actions and impulsive behaviors in the stop-signal
task. eLife, 8. https://doi.org/10.7554/eLife.46323
Figure 1. Experimental Design
Figure 2. Scatter plots depicting the results of simple slope
analysis showing the relationship between vmHRV reactivity and SSRTs in
subjects with low (- 1 SD), medium (mean), and high (+ 1 SD) tonic CVA
Figure 3. Violin plot depicting the effects of theta burst
stimulation on resting vmHRV
Figure 4. Violin plot depicting the effects of theta burst
stimulation on on-task vmHRV
Figure 5. Violin plot depicting the effects of theta burst
stimulation on vmHRV reactivity
Figure 6. Violin plot depicting the effects of theta burst
stimulation on SSRTs
Table 1. Summary of sample descriptive data
Table 2 . Results of linear regression model regarding the effects
of vmHRV on SSRT (pre stimulation)
Table 3 . Results of linear regression model regarding the effects
of vmHRV on SSRT (post stimulation)
Table 4 . Simple effects of vmHRV reactivity (post stimulation)