References
Appelhans, B. M., & Luecken, L. J. (2006). Heart Rate Variability as an Index of Regulated Emotional Responding. Review of General Psychology, 10(3), 229–240. https://doi.org/10.1037/1089-2680.10.3.229
Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biological Psychology, 130, 54–66. https://doi.org/10.1016/j.biopsycho.2017.10.008
Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988–1001. https://doi.org/10.1016/s0025-6196(12)62272-1
Caulfield, K. A., Fleischmann, H. H., Cox, C. E., Wolf, J. P., George, M. S., & McTeague, L. M. (2022). Neuronavigation maximizes accuracy and precision in TMS positioning: Evidence from 11,230 distance, angle, and electric field modeling measurements. Brain stimulation, 15(5), 1192–1205. https://doi.org/10.1016/j.brs.2022.08.013
Chung, S. W., Sullivan, C. M., Rogasch, N. C., Hoy, K. E., Bailey, N. W., Cash, R. F. H., & Fitzgerald, P. B. (2019). The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Human Brain Mapping, 40(2), 608–627. https://doi.org/10.1002/hbm.24398
Cornwell, B. R., Garrido, M. I., Overstreet, C., Pine, D. S., & Grillon, C. (2017). The Unpredictive Brain Under Threat: A Neurocomputational Account of Anxious Hypervigilance. Biological Psychiatry, 82(6), 447–454. https://doi.org/10.1016/j.biopsych.2017.06.031
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423. https://doi.org/10.1016/S1364-6613(03)00197-9
Era, V., Carnevali, L., Thayer, J. F., Candidi, M., & Ottaviani, C. (2021). Dissociating cognitive, behavioral and physiological stress-related responses through dorsolateral prefrontal cortex inhibition. Psychoneuroendocrinology, 124, 105070. https://doi.org/10.1016/j.psyneuen.2020.105070
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. https://doi.org/10.1016/j.tics.2010.11.004
Hamada, M., Galea, J. M., Di Lazzaro, V., Mazzone, P., Ziemann, U., & Rothwell, J. C. (2014). Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(38), 12837–12849. https://doi.org/10.1523/JNEUROSCI.1960-14.2014
Hildebrandt, L. K., McCall, C., Engen, H. G., & Singer, T. (2016). Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology, 53(6), 880–890. https://doi.org/10.1111/psyp.12632
Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 74, 233–255. https://doi.org/10.1016/j.neubiorev.2016.12.032
Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201–206. https://doi.org/10.1016/j.neuron.2004.12.033
Iseger, T. A., Arns, M., Downar, J., Blumberger, D. M., Daskalakis, Z. J., & Vila-Rodriguez, F. (2020). Cardiovascular differences between sham and active iTBS related to treatment response in MDD. Brain Stimulation, 13(1), 167–174. https://doi.org/10.1016/j.brs.2019.09.016
Kirkovski, M., Donaldson, P. H., Do, M., Speranza, B. E., Albein-Urios, N., Oberman, L. M., & Enticott, P. G. (2023). A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain Structure & Function, 228(3–4), 717–749. https://doi.org/10.1007/s00429-023-02634-x
Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning – Resting, Reactivity, and Recovery. Frontiers in Neuroscience, 12. https://www.frontiersin.org/articles/10.3389/fnins.2018.00458
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in Psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213
Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. NeuroImage, 44(1), 213–222. https://doi.org/10.1016/j.neuroimage.2008.07.056
Lane, R. D., Weidenbacher, H., Smith, R., Fort, C., Thayer, J. F., & Allen, J. J. B. (2013). Subgenual anterior cingulate cortex activity covariation with cardiac vagal control is altered in depression. Journal of Affective Disorders, 150(2), 565–570. https://doi.org/10.1016/j.jad.2013.02.005
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295–327. https://doi.org/10.1037/0033-295X.91.3.295
López-Alonso, V., Cheeran, B., Río-Rodríguez, D., & Fernández-Del-Olmo, M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulation, 7(3), 372–380. https://doi.org/10.1016/j.brs.2014.02.004
Luber, B., & Lisanby, S. H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage, 85, 961–970. https://doi.org/10.1016/j.neuroimage.2013.06.007
Magnon, V., Vallet, G. T., Benson, A., Mermillod, M., Chausse, P., Lacroix, A., Bouillon-Minois, J.-B., & Dutheil, F. (2022). Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex, 155, 218–236. https://doi.org/10.1016/j.cortex.2022.07.008
Maier, S. U., & Hare, T. A. (2017). Higher Heart-Rate Variability Is Associated with Ventromedial Prefrontal Cortex Activity and Increased Resistance to Temptation in Dietary Self-Control Challenges. Journal of Neuroscience, 37(2), 446–455. https://doi.org/10.1523/JNEUROSCI.2815-16.2016
Makovac, E., Thayer, J. F., & Ottaviani, C. (2017). A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 74(B, SI), 330–341. https://doi.org/10.1016/j.neubiorev.2016.05.001
McIntosh, R. C., Hoshi, R., Nomi, J. S., Di Bello, M., Goodman, Z. T., Kornfeld, S., Uddin, L. Q., & Ottaviani, C. (2020). Neurovisceral integration in the executive control network: A resting state analysis. Biological Psychology, 157, 107986. https://doi.org/10.1016/j.biopsycho.2020.107986
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
Neacsiu, A. D., Beynel, L., Graner, J. L., Szabo, S. T., Appelbaum, L. G., Smoski, M. J., & LaBar, K. S. (2022). Enhancing cognitive restructuring with concurrent fMRI-guided neurostimulation for emotional dysregulation–A randomized controlled trial. Journal of Affective Disorders, 301, 378–389. https://doi.org/10.1016/j.jad.2022.01.053
Ngetich, R., Zhou, J., Zhang, J., Jin, Z., & Li, L. (2020). Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Frontiers in Integrative Neuroscience, 14, 35. https://doi.org/10.3389/fnint.2020.00035
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249. https://doi.org/10.1016/j.tics.2005.03.010
Pabst, A., Proksch, S., Médé, B., Comstock, D. C., Ross, J. M., & Balasubramaniam, R. (2022). A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neuroscience and Biobehavioral Reviews, 135, 104587. https://doi.org/10.1016/j.neubiorev.2022.104587
Poppa, T., de Witte, S., Vanderhasselt, M.-A., Bechara, A., & Baeken, C. (2020). Theta-burst stimulation and frontotemporal regulation of cardiovascular autonomic outputs: The role of state anxiety. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 149, 25–34. https://doi.org/10.1016/j.ijpsycho.2019.12.011
Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmöller, J., Carpenter, L. L., Cincotta, M., Chen, R., Daskalakis, J. D., Di Lazzaro, V., Fox, M. D., George, M. S., Gilbert, D., Kimiskidis, V. K., Koch, G., Ilmoniemi, R. J., Lefaucheur, J. P., Leocani, L., … basis of this article began with a Consensus Statement from the IFCN Workshop on „Present, Future of TMS: Safety, Ethical Guidelines“, Siena, October 17-20, 2018, updating through April 2020. (2021). Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 132(1), 269–306. https://doi.org/10.1016/j.clinph.2020.10.003
Rusjan, P. M., Barr, M. S., Farzan, F., Arenovich, T., Maller, J. J., Fitzgerald, P. B., & Daskalakis, Z. J. (2010). Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image-guided neuronavigation. Human Brain Mapping, 31(11), 1643–1652. https://doi.org/10.1002/hbm.20964
Schmaußer, M., Hoffmann, S., Raab, M., & Laborde, S. (2022). The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. Journal of Neuroscience Research, 100(9), 1664–1694. https://doi.org/10.1002/jnr.25062
Schmaußer, M., & Laborde, S. (2023). Tonic and phasic cardiac vagal activity predict cognitive-affective processing in an emotional stop-signal task. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 191, 9–18. https://doi.org/10.1016/j.ijpsycho.2023.06.008
Shackman, A. J., Maxwell, J. S., McMenamin, B. W., Greischar, L. L., & Davidson, R. J. (2011). Stress Potentiates Early and Attenuates Late Stages of Visual Processing. The Journal of Neuroscience, 31(3), 1156–1161. https://doi.org/10.1523/JNEUROSCI.3384-10.2011
Smith, R., Allen, J. J. B., Thayer, J. F., Fort, C., & Lane, R. D. (2014). Increased association over time between regional frontal lobe BOLD change magnitude and cardiac vagal control with sertraline treatment for major depression. PSYCHIATRY RESEARCH-NEUROIMAGING, 224(3), 225–233. https://doi.org/10.1016/j.pscychresns.2014.08.015
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 75, 274–296. https://doi.org/10.1016/j.neubiorev.2017.02.003
Spangler, D. P., & McGinley, J. J. (2020). Vagal Flexibility Mediates the Association Between Resting Vagal Activity and Cognitive Performance Stability Across Varying Socioemotional Demands. Frontiers in Psychology, 11. https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02093
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 37(2), 141–153. https://doi.org/10.1007/s12160-009-9101-z
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4
van Marle, H. J. F., Hermans, E. J., Qin, S., & Fernández, G. (2009). From specificity to sensitivity: How acute stress affects amygdala processing of biologically salient stimuli. Biological Psychiatry, 66(7), 649–655. https://doi.org/10.1016/j.biopsych.2009.05.014
Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, P. G., Brockett, A. T., Brown, J. W., Chamberlain, S. R., Chambers, C. D., Colonius, H., Colzato, L. S., Corneil, B. D., Coxon, J. P., Dupuis, A., Eagle, D. M., Garavan, H., Greenhouse, I., Heathcote, A., Huster, R. J., … Boehler, C. N. (2019). A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife, 8. https://doi.org/10.7554/eLife.46323
Figure 1. Experimental Design
Figure 2. Scatter plots depicting the results of simple slope analysis showing the relationship between vmHRV reactivity and SSRTs in subjects with low (- 1 SD), medium (mean), and high (+ 1 SD) tonic CVA
Figure 3. Violin plot depicting the effects of theta burst stimulation on resting vmHRV
Figure 4. Violin plot depicting the effects of theta burst stimulation on on-task vmHRV
Figure 5. Violin plot depicting the effects of theta burst stimulation on vmHRV reactivity
Figure 6. Violin plot depicting the effects of theta burst stimulation on SSRTs
Table 1. Summary of sample descriptive data
Table 2 . Results of linear regression model regarding the effects of vmHRV on SSRT (pre stimulation)
Table 3 . Results of linear regression model regarding the effects of vmHRV on SSRT (post stimulation)
Table 4 . Simple effects of vmHRV reactivity (post stimulation)