References

Allsup, C. M., George, I., & Lankau, R. A. (2023). Shifting microbial communities can enhance tree tolerance to changing climates.Science , 380 (6647), 835–840. https://doi.org/10.1126/science.adf2027
Bartoń, K. (2022). MuMIn: Multi-Model Inference (1.47.1) [Computer software]. https://cran.r-project.org/web/packages/MuMIn/index.html
Bateman, A., Erickson, T. E., Merritt, D. J., & Muñoz-Rojas, M. (2017). Effects of inorganic amendments (urea, gypsum) on seed germination and seedling recruitment of 20 native plant species used in dryland restoration. Geophysical Research Abstracts ,19 (EGU2017-15744). https://meetingorganizer.copernicus.org/EGU2017/EGU2017-15744.pdf
Bullied, W. J., Van Acker, R. C., & Bullock, P. R. (2012). Review: Microsite characteristics influencing weed seedling recruitment and implications for recruitment modeling. Canadian Journal of Plant Science , 92 (4), 627–650. https://doi.org/10.4141/cjps2011-281
Caldeira, M. C., Ibáñez, I., Nogueira, C., Bugalho, M. N., Lecomte, X., Moreira, A., & Pereira, J. S. (2014). Direct and indirect effects of tree canopy facilitation in the recruitment of M editerranean oaks.Journal of Applied Ecology , 51 (2), 349–358.
Castro, D., Concha, C., Jamett, F., Ibáñez, C., & Hurry, V. (2022). Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile.Plants , 11 (20), 2717. https://doi.org/10.3390/plants11202717
Clark, C. J., Poulsen, J. R., Levey, D. J., & Osenberg, C. W. (2007). Are Plant Populations Seed Limited? A Critique and Meta‐Analysis of Seed Addition Experiments. The American Naturalist , 170 (1), 128–142. https://doi.org/10.1086/518565
Copenhaver-Parry, P. E., Carroll, C. J. W., Martin, P. H., & Talluto, M. V. (2020). Multi-scale integration of tree recruitment and range dynamics in a changing climate. Global Ecology and Biogeography ,29 (1), 102–116. https://doi.org/10.1111/geb.13012
Davis, E. L., & Gedalof, Z. (2018). Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains. Global Change Biology , 24 (10), 4489–4504. https://doi.org/10.1111/gcb.14338
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies.Nature Ecology & Evolution , 3 (5), Article 5. https://doi.org/10.1038/s41559-019-0842-1
De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K., Lembrechts, J., Rodríguez-Sánchez, F., Luoto, M., Scheffers, B., Haesen, S., Aalto, J., Christiansen, D. M., De Pauw, K., Depauw, L., Govaert, S., Greiser, C., Hampe, A., Hylander, K., Klinges, D., Koelemeijer, I., … De Frenne, P. (2022). Maintaining forest cover to enhance temperature buffering under future climate change. Science of The Total Environment , 810 , 151338. https://doi.org/10.1016/j.scitotenv.2021.151338
Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence of terrain on climate . 1022–1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x
Dolezal, J., Jandova, V., Macek, M., Mudrak, O., Altman, J., Schweingruber, F. H., & Liancourt, P. (2021). Climate warming drives Himalayan alpine plant growth and recruitment dynamics. Journal of Ecology , 109 (1), 179–190. https://doi.org/10.1111/1365-2745.13459
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution ,1 , 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elliott, G. P., & Petruccelli, C. A. (2018). Tree recruitment at the treeline across the Continental Divide in the Northern Rocky Mountains, USA: The role of spring snow and autumn climate. Plant Ecology & Diversity , 11 (3), 319–333. https://doi.org/10.1080/17550874.2018.1487475
Falco, N., Wainwright, H., Dafflon, B., Léger, E., Peterson, J., Steltzer, H., Wilmer, C., Rowland, J. C., Williams, K. H., & Hubbard, S. S. (2019). Investigating Microtopographic and Soil Controls on a Mountainous Meadow Plant Community Using High‐Resolution Remote Sensing and Surface Geophysical Data. Journal of Geophysical Research: Biogeosciences , 124 (6), 1618–1636. https://doi.org/10.1029/2018JG004394
Ford, K. R., Ettinger, A. K., Lundquist, J. D., Raleigh, M. S., & Lambers, J. H. R. (2013). Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape. PLOS ONE , 8 (6), e65008. https://doi.org/10.1371/journal.pone.0065008
Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., Bolker, B., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S., Heiberger, R., Krivitsky, P., Laboissiere, R., Maechler, M., Monette, G., Murdoch, D., Nilsson, H., … R-Core. (2023).car: Companion to Applied Regression (3.1-2) [Computer software]. https://cran.r-project.org/web/packages/car/index.html
Franklin, J. (2023). Species distribution modelling supports the study of past, present and future biogeographies. Journal of Biogeography , n/a (n/a). https://doi.org/10.1111/jbi.14617
Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M., & Hargreaves, A. L. (2018). Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecology and Biogeography , May , 1–9. https://doi.org/10.1111/geb.12774
Goodwin, K. J. A., & Brown, C. D. (2023). Integrating demographic niches and black spruce range expansion at subarctic treelines.Oecologia , 201 (1), 19–29. https://doi.org/10.1007/s00442-022-05293-7
Graae, B. J., Ejrnæs, R., Marchand, F. L., Milbau, A., Shevtsova, A., Beyens, L., & Nijs, I. (2009). The effect of an early-season short-term heat pulse on plant recruitment in the Arctic. Polar Biology ,32 (8), 1117–1126. https://doi.org/10.1007/s00300-009-0608-3
Greiser, C., Hylander, K., Meineri, E., Luoto, M., & Ehrlén, J. (2020). Climate limitation at the cold edge: Contrasting perspectives from species distribution modelling and a transplant experiment.Ecography , 43 , 1–11. https://doi.org/10.1111/ecog.04490
Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What Matters for Predicting the Occurrences of Trees: Techniques, Data, or Species’ Characteristics?Ecological Monographs , 77 (4), 615–630.
Haesen, S., Lembrechts, J. J., De Frenne, P., Lenoir, J., Aalto, J., Ashcroft, M. B., Kopecký, M., Luoto, M., Maclean, I., Nijs, I., Niittynen, P., van den Hoogen, J., Arriga, N., Brůna, J., Buchmann, N., Čiliak, M., Collalti, A., De Lombaerde, E., Descombes, P., … Van Meerbeek, K. (2021). ForestTemp – Sub-canopy microclimate temperatures of European forests. Global Change Biology , 27 (23), 6307–6319. https://doi.org/10.1111/gcb.15892
Hargreaves, A. L., Suárez, E., Mehltreter, K., Myers-Smith, I., Vanderplank, S. E., Slinn, H. L., Vargas-Rodriguez, Y. L., Haeussler, S., David, S., Muñoz, J., Almazán-Núñez, R. C., Loughnan, D., Benning, J. W., Moeller, D. A., Brodie, J. F., Thomas, H. J. D., & Morales, P. A. (2019). Seed predation increases from the Arctic to the Equator and from high to low elevations. Science Advances , 5 (2), 1–11. https://doi.org/10.1126/sciadv.aau4403
Hiiesalu, I., Schweichhart, J., Angel, R., Davison, J., Doležal, J., Kopecký, M., Macek, M., & Řehakova, K. (2023). Plant-symbiotic fungal diversity tracks variation in vegetation and the abiotic environment along an extended elevational gradient in the Himalayas. FEMS Microbiology Ecology , fiad092. https://doi.org/10.1093/femsec/fiad092
Jabis, M. D., & Ayers, T. J. (2014). Habitat Suitability as a Limiting Factor for Establishment in a Narrow Endemic: Abronia alpina (Nyctaginaceae). Western North American Naturalist , 74 (2), 185–200. https://doi.org/10.3398/064.074.0204
James, J. J., Sheley, R. L., Leger, E. A., Adler, P. B., Hardegree, S. P., Gornish, E. S., & Rinella, M. J. (2019). Increased soil temperature and decreased precipitation during early life stages constrain grass seedling recruitment in cold desert restoration. Journal of Applied Ecology , 56 (12), 2609–2619. https://doi.org/10.1111/1365-2664.13508
Käber, Y., Meyer, P., Stillhard, J., De Lombaerde, E., Zell, J., Stadelmann, G., Bugmann, H., & Bigler, C. (2021). Tree recruitment is determined by stand structure and shade tolerance with uncertain role of climate and water relations. Ecology and Evolution ,11 (17), 12182–12203. https://doi.org/10.1002/ece3.7984
Kemppinen, J., Lembrechts, J. J., Van Meerbeek, K., Carnicer, J., Chardon, N. I., Kardol, P., Lenoir, J., Liu, D., Maclean, I., Pergl, J., Saccone, P., Senior, R. A., Shen, T., Słowińska, S., Vandvik, V., von Oppen, J., Aalto, J., Ayalew, B., Bates, O., … De Frenne, P. (2023). Microclimate, an inseparable part of ecology and biogeography . Zenodo. https://doi.org/10.5281/zenodo.7973314
Kephart, S. R., & Paladino, C. (1997). Demographic change and microhabitat Variability in a Grassland Endemic, Silene Douglasii Var. Oraria (Caryophyllaceae). American Journal of Botany ,84 (2), 179–189. https://doi.org/10.2307/2446079
Khurana, E., & Singh, J. S. (2000). Influence of Seed Size on Seedling Growth of Albizia procera Under Different Soil Water Levels.Annals of Botany , 86 (6), 1185–1192. https://doi.org/10.1006/anbo.2000.1288
Kołodziejek, J., Patykowski, J., & Wala, M. (2017). Effect of light, gibberellic acid and nitrogen source on germination of eight taxa from dissapearing European temperate forest, Potentillo albae-Quercetum.Scientific Reports , 7 (1), 13924. https://doi.org/10.1038/s41598-017-13101-z
Kroiss, S. J., & HilleRisLambers, J. (2015). Recruitment limitation of long-lived conifers: Implications for climate change responses.Ecology , 96 (5), 1286–1297. https://doi.org/10.1890/14-0595.1
Kueppers, L. M., Conlisk, E., Castanha, C., Moyes, A. B., Germino, M. J., de Valpine, P., Torn, M. S., & Mitton, J. B. (2017). Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Global Change Biology , 23 (6), 2383–2395. https://doi.org/10.1111/gcb.13561
Lawson, C. R., Bennie, J., Hodgson, J. A., Thomas, C. D., & Wilson, R. J. (2014). Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography , 37 (8), 732–740. https://doi.org/10.1111/ecog.00535
Lee-Yaw, J. A., Kharouba, H. M., Bontrager, M., Mahony, C., Csergo, A. M., Noreen, A. M. E., Li, Q., Schuster, R., & Angert, A. L. (2016). A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecology Letters ,19 (6), 710–722. https://doi.org/10.1111/ele.12604
Lembrechts, J. J. (2023). Microclimate alters the picture. Nature Climate Change , 13 (5), Article 5. https://doi.org/10.1038/s41558-023-01632-5
Lembrechts, J. J., Lenoir, J., Nuñez, M. A., Pauchard, A., Geron, C., Bussé, G., Milbau, A., & Nijs, I. (2017). Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography , 41 (6), 900–909. https://doi.org/10.1111/ecog.03263
Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., Pellissier, L., Pauchard, A., Ratier Backes, A., Dimarco, R. D., Nuñez, M. A., Aalto, J., & Nijs, I. (2019). Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing. Global Ecology and Biogeography , 28 (11), 1578–1596. https://doi.org/10.1111/geb.12974
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography ,42 (7), 1267–1279. https://doi.org/10.1111/ecog.03947
Li, Y., Yang, H., Xia, J., Zhang, W., Wan, S., & Li, L. (2011). Effects of increased nitrogen deposition and precipitation on seed and seedling production of potentilla tanacetifolia in a temperate steppe ecosystem.PLoS ONE , 6 (12). https://doi.org/10.1371/journal.pone.0028601
Lloret, F., Peñuelas, J., & Estiarte, M. (2005). Effects of vegetation canopy and climate on seedling establishment in Mediterranean shrubland.Journal of Vegetation Science , 16 (1), 67–76. https://doi.org/10.1111/j.1654-1103.2005.tb02339.x
Lovejoy, T. E., & Hannah, L. (2019). Biodiversity and Climate Change: Transforming the Biosphere . Yale University Press.
Maclean, I. M. D., & Early, R. (2023). Macroclimate data overestimate range shifts of plants in response to climate change. Nature Climate Change , 13 (5), 484–490. https://doi.org/10.1038/s41558-023-01650-3
Mamet, S. D., & Kershaw, G. P. (2013). Multi-scale Analysis of Environmental Conditions and Conifer Seedling Distribution Across the Treeline Ecotone of Northern Manitoba, Canada. Ecosystems ,16 (2), 295–309. https://doi.org/10.1007/s10021-012-9614-3
Man, M., Kalčík, V., Macek, M., Brůna, J., Hederová, L., Wild, J., & Kopecký, M. (2023). MyClim: Microclimate data handling and standardised analyses in R - Man—Methods in Ecology and Evolution—Wiley Online Library. Methods in Ecology and Evolution , Early View . https://doi.org/10.1111/2041-210X.14192
Man, M., Kalčík, V., Macek, M., Wild, J., Kopecký, M., Brůna, J., Hederová, L., & Sciences, I. of B. of the C. A. of. (2023).myClim: Microclimatic Data Processing (1.0.1) [Computer software]. https://cran.r-project.org/web/packages/myClim/index.html
Mazerolle, M. J. (2020). AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2.3-1) [Computer software]. https://cran.r-project.org/web/packages/AICcmodavg/index.html
Monaco, T. A., Mackown, C. T., Johnson, D. A., Jones, T. A., Norton, J. M., Norton, J. B., & Redinbaugh, M. G. (2003). Nitrogen effects on seed germination and seedling growth. In Plant Physiologist and Plant Geneticist (Vol. 56, pp. 73036–2144). Plants, Soils.
Mondoni, A., Pedrini, S., Bernareggi, G., Rossi, G., Abeli, T., Probert, R. J., Ghitti, M., Bonomi, C., & Orsenigo, S. (2015). Climate warming could increase recruitment success in glacier foreland plants.Annals of Botany , 116 (6), 907–916. https://doi.org/10.1093/aob/mcv101
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate-change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment , 18 (5), 228–234. https://doi.org/10.1002/fee.2189
Morris, W. F., & Ehrlén, J. (2015). Predicting changes in the distribution and abundance of species under environmental change.Ecology Letters , 18 (3), 303–314. https://doi.org/10.1111/ele.12410
Moser, B., Walthert, L., Metslaid, M., Wasem, U., & Wohlgemuth, T. (2017). Spring water deficit and soil conditions matter more than seed origin and summer drought for the establishment of temperate conifers.Oecologia , 183 (2), 519–530. https://doi.org/10.1007/s00442-016-3766-3
Muñoz Mazon, M., Klanderud, K., & Sheil, D. (2023). Exploring how disturbance and light availability shape the elevation ranges of multiple mountain tree and shrub species in the tropics. Landscape Ecology . https://doi.org/10.1007/s10980-023-01670-6
Normand, S., Zimmermann, N. E., Schurr, F. M., & Lischke, H. (2014). Demography as the basis for understanding and predicting range dynamics.Ecography , 37 , 1149–1154. https://doi.org/10.1111/ecog.01490
Oldfather, M. F., & Ackerly, D. D. (2019). Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytologist , 222 (1), 193–205. https://doi.org/10.1111/nph.15565
Ósvaldsson, A., Chesler, M. K., & Burns, J. H. (2022). Effects of snow on reproduction of perennial Thalictrum dioicum: Plants survive but seedlings fail to recruit with reduced snow cover. American Journal of Botany , 109 (3), 406–418. https://doi.org/10.1002/ajb2.1829
Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akçakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E., … Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change , 5 , 215–225. https://doi.org/10.1038/nclimate2448
Pérez-Fernández, M. A., Calvo-Magro, E., Montanero-Fernández, J., & Oyola-Velasco, J. A. (2006). Seed germination in response to chemicals: Effect of nitrogen and pH in the media. Journal of Environmental Biology , 27 (1), 13–20.
Pradhan, K., Ettinger, A. K., Case, M. J., & Hille Ris Lambers, J. (2023). Applying climate change refugia to forest management and old‐growth restoration. Global Change Biology , 29 (13), 3692–3706. https://doi.org/10.1111/gcb.16714
Pröll, G., Dullinger, S., Dirnböck, T., Kaiser, C., & Richter, A. (2011). Effects of nitrogen on tree recruitment in a temperate montane forest as analysed by measured variables and Ellenberg indicator values.Preslia , 83 , 111–127.
Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters , 3 , 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x
R Core Team, R. (2023). R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org
Renard, S. M., McIntire, E. J. B., & Fajardo, A. (2016). Winter conditions – not summer temperature – influence establishment of seedlings at white spruce alpine treeline in Eastern Quebec.Journal of Vegetation Science , 27 (1), 29–39. https://doi.org/10.1111/jvs.12347
Rigg, J. L., Offord, C. A., Singh, B. K., Anderson, I., Clarke, S., & Powell, J. R. (2016). Soil microbial communities influence seedling growth of a rare conifer independent of plant–soil feedback.Ecology , 97 (12), 3346–3358. https://doi.org/10.1002/ecy.1594
Rodríguez-García, E., Bravo, F., & Spies, T. A. (2011). Effects of overstorey canopy, plant–plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. Forest Ecology and Management , 262 (2), 244–251.
Rumpf, S. B., Hülber, K., Klonner, G., Moser, D., Schütz, M., Wessely, J., Willner, W., Zimmermann, N. E., & Dullinger, S. (2018). Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences , 201713936–201713936. https://doi.org/10.1073/PNAS.1713936115
Sanczuk, P., De Lombaerde, E., Haesen, S., Van Meerbeek, K., Van der Veken, B., Hermy, M., Verheyen, K., Vangansbeke, P., & De Frenne, P. (2022). Species distribution models and a 60‐year‐old transplant experiment reveal inhibited forest plant range shifts under climate change. Journal of Biogeography , 49 (3), 537–550. https://doi.org/10.1111/jbi.14325
Sanczuk, P., De Pauw, K., De Lombaerde, E., Luoto, M., Meeussen, C., Govaert, S., Vanneste, T., Depauw, L., Brunet, J., Cousins, S. A. O., Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Plue, J., Selvi, F., Spicher, F., Uria-Diez, J., Verheyen, K., … De Frenne, P. (2023). Microclimate and forest density drive plant population dynamics under climate change. Nature Climate Change ,13 (8), Article 8. https://doi.org/10.1038/s41558-023-01744-y
Santana, V. M., Bradstock, R. A., Ooi, M. K. J., Denham, A. J., Auld, T. D., Baeza, M. J., Santana, V. M., Bradstock, R. A., Ooi, M. K. J., Denham, A. J., Auld, T. D., & Baeza, M. J. (2010). Effects of soil temperature regimes after fire on seed dormancy and germination in six Australian Fabaceae species. Australian Journal of Botany ,58 (7), 539–545. https://doi.org/10.1071/BT10144
Scherrer, D., & Körner, C. (2010). Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology , 16 (9), 2602–2613. https://doi.org/10.1111/j.1365-2486.2009.02122.x
Schurr, F. M., Pagel, J., Cabral, J. S., Groeneveld, J., Bykova, O., O’Hara, R. B., Hartig, F., Kissling, W. D., Linder, H. P., Midgley, G. F., Schröder, B., Singer, A., & Zimmermann, N. E. (2012). How to understand species’ niches and range dynamics: A demographic research agenda for biogeography. Journal of Biogeography , 39 , 2146–2162. https://doi.org/10.1111/j.1365-2699.2012.02737.x
Selmants, P. C., Adair, K. L., Litton, C. M., Giardina, C. P., & Schwartz, E. (2016). Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests.Ecosphere , 7 (4). https://doi.org/10.1002/ecs2.1296
Smithers, B. (2017). Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains. Forests ,8 (11), 423. https://doi.org/10.3390/f8110423
Stanton-Geddes, J., Tiffin, P., & Shaw, R. G. (2012). Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology , 93 (7), 1604–1613. https://doi.org/10.1890/11-1701.1
Stickley, S. F., & Fraterrigo, J. M. (2023). Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. Journal for Nature Conservation , 72 , 126333. https://doi.org/10.1016/j.jnc.2023.126333
Szeicz, J. M., & Macdonald, G. M. (1995). Recent White Spruce Dynamics at the Subarctic Alpine Treeline of North-Western Canada. Journal of Ecology , 83 (5), 873–885. https://doi.org/10.2307/2261424
Tanner, K. E., Moore-O’Leary, K. A., Parker, I. M., Pavlik, B. M., Haji, S., & Hernandez, R. R. (2021). Microhabitats associated with solar energy development alter demography of two desert annuals.Ecological Applications , 31 (6), e02349. https://doi.org/10.1002/eap.2349
Thompson, L. J., & Naeem, S. (1996). The effects of soil warming on plant recruitment. Plant and Soil , 182 (2), 339–343. https://doi.org/10.1007/BF00029064
Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., & Zimmermann, N. E. (2008). Predicting global change impacts on plant species’ distributions: Future challenges.Perspectives in Plant Ecology, Evolution and Systematics ,9 , 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
Tobias, T. B., Farrer, E. C., Rosales, A., Sinsabaugh, R. L., Suding, K. N., & Porras-Alfaro, A. (2017). Seed-associated fungi in the alpine tundra: Both mutualists and pathogens could impact plant recruitment.Fungal Ecology , 30 , 10–18. https://doi.org/10.1016/j.funeco.2017.08.001
Tourville, J. C., Wason, J. W., & Dovciak, M. (2022). Canopy gaps facilitate upslope shifts in montane conifers but not in temperate deciduous trees in the Northeastern United States. Journal of Ecology , 110 (12), 2870–2882. https://doi.org/10.1111/1365-2745.13993
Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology , 102 (6), e03336. https://doi.org/10.1002/ecy.3336
Urban, M. C. (2019). Projecting biological impacts from climate change like a climate scientist. Wiley Interdisciplinary Reviews: Climate Change , 10 , e585–e585. https://doi.org/10.1002/wcc.585
van der Heijden, M. G., Bruin, S. de, Luckerhoff, L., van Logtestijn, R. S., & Schlaeppi, K. (2016). A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. The ISME Journal , 10 (2), Article 2. https://doi.org/10.1038/ismej.2015.120
Weintraub, S. R., Cole, R. J., Schmitt, C. G., & All, J. D. (2016). Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere ,7 (8). https://doi.org/10.1002/ecs2.1412
Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences , 106 (Supplement 2), 19729–19736. https://doi.org/10.1073/pnas.0901639106
Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T. (2019). Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement.Agricultural and Forest Meteorology , 268 , 40–47. https://doi.org/10.1016/j.agrformet.2018.12.018
Xi, N., Chu, C., & Bloor, J. M. G. (2018). Plant drought resistance is mediated by soil microbial community structure and soil-plant feedbacks in a savanna tree species. Environmental and Experimental Botany ,155 , 695–701. https://doi.org/10.1016/j.envexpbot.2018.08.013
Yates, C. J., Hobbs, R. J., & Bell, R. W. (1996). Factors Limiting the Recruitment of Eucalyptus salmonophloia in Remnant Woodlands. III. Conditions Necessary for Seed Germination. Australian Journal of Botany , 44 (3), 283–296. https://doi.org/10.1071/bt9960283
Zhong, M., Miao, Y., Han, S., & Wang, D. (2019). Nitrogen addition decreases seed germination in a temperate steppe. Ecology and Evolution , 9 (15), 8441–8449. https://doi.org/10.1002/ece3.5151
Zurbriggen, N., Hättenschwiler, S., Frei, E. S., Hagedorn, F., & Bebi, P. (2013). Performance of germinating tree seedlings below and above treeline in the Swiss Alps. Plant Ecology , 214 (3), 385–396. https://doi.org/10.1007/s11258-013-0176-z