References
Allsup, C. M., George, I., & Lankau, R. A. (2023). Shifting microbial
communities can enhance tree tolerance to changing climates.Science , 380 (6647), 835–840.
https://doi.org/10.1126/science.adf2027
Bartoń, K. (2022). MuMIn: Multi-Model Inference (1.47.1)
[Computer software].
https://cran.r-project.org/web/packages/MuMIn/index.html
Bateman, A., Erickson, T. E., Merritt, D. J., & Muñoz-Rojas, M. (2017).
Effects of inorganic amendments (urea, gypsum) on seed germination and
seedling recruitment of 20 native plant species used in dryland
restoration. Geophysical Research Abstracts ,19 (EGU2017-15744).
https://meetingorganizer.copernicus.org/EGU2017/EGU2017-15744.pdf
Bullied, W. J., Van Acker, R. C., & Bullock, P. R. (2012). Review:
Microsite characteristics influencing weed seedling recruitment and
implications for recruitment modeling. Canadian Journal of Plant
Science , 92 (4), 627–650. https://doi.org/10.4141/cjps2011-281
Caldeira, M. C., Ibáñez, I., Nogueira, C., Bugalho, M. N., Lecomte, X.,
Moreira, A., & Pereira, J. S. (2014). Direct and indirect effects of
tree canopy facilitation in the recruitment of M editerranean oaks.Journal of Applied Ecology , 51 (2), 349–358.
Castro, D., Concha, C., Jamett, F., Ibáñez, C., & Hurry, V. (2022).
Soil Microbiome Influences on Seedling Establishment and Growth of
Prosopis chilensis and Prosopis tamarugo from Northern Chile.Plants , 11 (20), 2717.
https://doi.org/10.3390/plants11202717
Clark, C. J., Poulsen, J. R., Levey, D. J., & Osenberg, C. W. (2007).
Are Plant Populations Seed Limited? A Critique and Meta‐Analysis of Seed
Addition Experiments. The American Naturalist , 170 (1),
128–142. https://doi.org/10.1086/518565
Copenhaver-Parry, P. E., Carroll, C. J. W., Martin, P. H., & Talluto,
M. V. (2020). Multi-scale integration of tree recruitment and range
dynamics in a changing climate. Global Ecology and Biogeography ,29 (1), 102–116. https://doi.org/10.1111/geb.13012
Davis, E. L., & Gedalof, Z. (2018). Limited prospects for future alpine
treeline advance in the Canadian Rocky Mountains. Global Change
Biology , 24 (10), 4489–4504. https://doi.org/10.1111/gcb.14338
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R.,
Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J.
(2019). Global buffering of temperatures under forest canopies.Nature Ecology & Evolution , 3 (5), Article 5.
https://doi.org/10.1038/s41559-019-0842-1
De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K.,
Lembrechts, J., Rodríguez-Sánchez, F., Luoto, M., Scheffers, B., Haesen,
S., Aalto, J., Christiansen, D. M., De Pauw, K., Depauw, L., Govaert,
S., Greiser, C., Hampe, A., Hylander, K., Klinges, D., Koelemeijer, I.,
… De Frenne, P. (2022). Maintaining forest cover to enhance
temperature buffering under future climate change. Science of The
Total Environment , 810 , 151338.
https://doi.org/10.1016/j.scitotenv.2021.151338
Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The
influence of terrain on climate . 1022–1035.
https://doi.org/10.1111/j.1365-2486.2010.02263.x
Dolezal, J., Jandova, V., Macek, M., Mudrak, O., Altman, J.,
Schweingruber, F. H., & Liancourt, P. (2021). Climate warming drives
Himalayan alpine plant growth and recruitment dynamics. Journal of
Ecology , 109 (1), 179–190.
https://doi.org/10.1111/1365-2745.13459
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling
range-shifting species. Methods in Ecology and Evolution ,1 , 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elliott, G. P., & Petruccelli, C. A. (2018). Tree recruitment at the
treeline across the Continental Divide in the Northern Rocky Mountains,
USA: The role of spring snow and autumn climate. Plant Ecology &
Diversity , 11 (3), 319–333.
https://doi.org/10.1080/17550874.2018.1487475
Falco, N., Wainwright, H., Dafflon, B., Léger, E., Peterson, J.,
Steltzer, H., Wilmer, C., Rowland, J. C., Williams, K. H., & Hubbard,
S. S. (2019). Investigating Microtopographic and Soil Controls on a
Mountainous Meadow Plant Community Using High‐Resolution Remote Sensing
and Surface Geophysical Data. Journal of Geophysical Research:
Biogeosciences , 124 (6), 1618–1636.
https://doi.org/10.1029/2018JG004394
Ford, K. R., Ettinger, A. K., Lundquist, J. D., Raleigh, M. S., &
Lambers, J. H. R. (2013). Spatial Heterogeneity in Ecologically
Important Climate Variables at Coarse and Fine Scales in a High-Snow
Mountain Landscape. PLOS ONE , 8 (6), e65008.
https://doi.org/10.1371/journal.pone.0065008
Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G.,
Bolker, B., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves,
S., Heiberger, R., Krivitsky, P., Laboissiere, R., Maechler, M.,
Monette, G., Murdoch, D., Nilsson, H., … R-Core. (2023).car: Companion to Applied Regression (3.1-2) [Computer
software]. https://cran.r-project.org/web/packages/car/index.html
Franklin, J. (2023). Species distribution modelling supports the study
of past, present and future biogeographies. Journal of
Biogeography , n/a (n/a). https://doi.org/10.1111/jbi.14617
Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M., & Hargreaves, A. L.
(2018). Expanding, shifting and shrinking: The impact of global warming
on species’ elevational distributions. Global Ecology and
Biogeography , May , 1–9. https://doi.org/10.1111/geb.12774
Goodwin, K. J. A., & Brown, C. D. (2023). Integrating demographic
niches and black spruce range expansion at subarctic treelines.Oecologia , 201 (1), 19–29.
https://doi.org/10.1007/s00442-022-05293-7
Graae, B. J., Ejrnæs, R., Marchand, F. L., Milbau, A., Shevtsova, A.,
Beyens, L., & Nijs, I. (2009). The effect of an early-season short-term
heat pulse on plant recruitment in the Arctic. Polar Biology ,32 (8), 1117–1126. https://doi.org/10.1007/s00300-009-0608-3
Greiser, C., Hylander, K., Meineri, E., Luoto, M., & Ehrlén, J. (2020).
Climate limitation at the cold edge: Contrasting perspectives from
species distribution modelling and a transplant experiment.Ecography , 43 , 1–11. https://doi.org/10.1111/ecog.04490
Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S.,
& Peterson, A. T. (2007). What Matters for Predicting the Occurrences
of Trees: Techniques, Data, or Species’ Characteristics?Ecological Monographs , 77 (4), 615–630.
Haesen, S., Lembrechts, J. J., De Frenne, P., Lenoir, J., Aalto, J.,
Ashcroft, M. B., Kopecký, M., Luoto, M., Maclean, I., Nijs, I.,
Niittynen, P., van den Hoogen, J., Arriga, N., Brůna, J., Buchmann, N.,
Čiliak, M., Collalti, A., De Lombaerde, E., Descombes, P., … Van
Meerbeek, K. (2021). ForestTemp – Sub-canopy microclimate temperatures
of European forests. Global Change Biology , 27 (23),
6307–6319. https://doi.org/10.1111/gcb.15892
Hargreaves, A. L., Suárez, E., Mehltreter, K., Myers-Smith, I.,
Vanderplank, S. E., Slinn, H. L., Vargas-Rodriguez, Y. L., Haeussler,
S., David, S., Muñoz, J., Almazán-Núñez, R. C., Loughnan, D., Benning,
J. W., Moeller, D. A., Brodie, J. F., Thomas, H. J. D., & Morales, P.
A. (2019). Seed predation increases from the Arctic to the Equator and
from high to low elevations. Science Advances , 5 (2),
1–11. https://doi.org/10.1126/sciadv.aau4403
Hiiesalu, I., Schweichhart, J., Angel, R., Davison, J., Doležal, J.,
Kopecký, M., Macek, M., & Řehakova, K. (2023). Plant-symbiotic fungal
diversity tracks variation in vegetation and the abiotic environment
along an extended elevational gradient in the Himalayas. FEMS
Microbiology Ecology , fiad092. https://doi.org/10.1093/femsec/fiad092
Jabis, M. D., & Ayers, T. J. (2014). Habitat Suitability as a Limiting
Factor for Establishment in a Narrow Endemic: Abronia alpina
(Nyctaginaceae). Western North American Naturalist , 74 (2),
185–200. https://doi.org/10.3398/064.074.0204
James, J. J., Sheley, R. L., Leger, E. A., Adler, P. B., Hardegree, S.
P., Gornish, E. S., & Rinella, M. J. (2019). Increased soil temperature
and decreased precipitation during early life stages constrain grass
seedling recruitment in cold desert restoration. Journal of
Applied Ecology , 56 (12), 2609–2619.
https://doi.org/10.1111/1365-2664.13508
Käber, Y., Meyer, P., Stillhard, J., De Lombaerde, E., Zell, J.,
Stadelmann, G., Bugmann, H., & Bigler, C. (2021). Tree recruitment is
determined by stand structure and shade tolerance with uncertain role of
climate and water relations. Ecology and Evolution ,11 (17), 12182–12203. https://doi.org/10.1002/ece3.7984
Kemppinen, J., Lembrechts, J. J., Van Meerbeek, K., Carnicer, J.,
Chardon, N. I., Kardol, P., Lenoir, J., Liu, D., Maclean, I., Pergl, J.,
Saccone, P., Senior, R. A., Shen, T., Słowińska, S., Vandvik, V., von
Oppen, J., Aalto, J., Ayalew, B., Bates, O., … De Frenne, P.
(2023). Microclimate, an inseparable part of ecology and
biogeography . Zenodo. https://doi.org/10.5281/zenodo.7973314
Kephart, S. R., & Paladino, C. (1997). Demographic change and
microhabitat Variability in a Grassland Endemic, Silene Douglasii Var.
Oraria (Caryophyllaceae). American Journal of Botany ,84 (2), 179–189. https://doi.org/10.2307/2446079
Khurana, E., & Singh, J. S. (2000). Influence of Seed Size on Seedling
Growth of Albizia procera Under Different Soil Water Levels.Annals of Botany , 86 (6), 1185–1192.
https://doi.org/10.1006/anbo.2000.1288
Kołodziejek, J., Patykowski, J., & Wala, M. (2017). Effect of light,
gibberellic acid and nitrogen source on germination of eight taxa from
dissapearing European temperate forest, Potentillo albae-Quercetum.Scientific Reports , 7 (1), 13924.
https://doi.org/10.1038/s41598-017-13101-z
Kroiss, S. J., & HilleRisLambers, J. (2015). Recruitment limitation of
long-lived conifers: Implications for climate change responses.Ecology , 96 (5), 1286–1297.
https://doi.org/10.1890/14-0595.1
Kueppers, L. M., Conlisk, E., Castanha, C., Moyes, A. B., Germino, M.
J., de Valpine, P., Torn, M. S., & Mitton, J. B. (2017). Warming and
provenance limit tree recruitment across and beyond the elevation range
of subalpine forest. Global Change Biology , 23 (6),
2383–2395. https://doi.org/10.1111/gcb.13561
Lawson, C. R., Bennie, J., Hodgson, J. A., Thomas, C. D., & Wilson, R.
J. (2014). Topographic microclimates drive microhabitat associations at
the range margin of a butterfly. Ecography , 37 (8),
732–740. https://doi.org/10.1111/ecog.00535
Lee-Yaw, J. A., Kharouba, H. M., Bontrager, M., Mahony, C., Csergo, A.
M., Noreen, A. M. E., Li, Q., Schuster, R., & Angert, A. L. (2016). A
synthesis of transplant experiments and ecological niche models suggests
that range limits are often niche limits. Ecology Letters ,19 (6), 710–722. https://doi.org/10.1111/ele.12604
Lembrechts, J. J. (2023). Microclimate alters the picture. Nature
Climate Change , 13 (5), Article 5.
https://doi.org/10.1038/s41558-023-01632-5
Lembrechts, J. J., Lenoir, J., Nuñez, M. A., Pauchard, A., Geron, C.,
Bussé, G., Milbau, A., & Nijs, I. (2017). Microclimate variability in
alpine ecosystems as stepping stones for non-native plant establishment
above their current elevational limit. Ecography , 41 (6),
900–909. https://doi.org/10.1111/ecog.03263
Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider,
S., Pellissier, L., Pauchard, A., Ratier Backes, A., Dimarco, R. D.,
Nuñez, M. A., Aalto, J., & Nijs, I. (2019). Comparing temperature data
sources for use in species distribution models: From in-situ logging to
remote sensing. Global Ecology and Biogeography , 28 (11),
1578–1596. https://doi.org/10.1111/geb.12974
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating
microclimate into species distribution models. Ecography ,42 (7), 1267–1279. https://doi.org/10.1111/ecog.03947
Li, Y., Yang, H., Xia, J., Zhang, W., Wan, S., & Li, L. (2011). Effects
of increased nitrogen deposition and precipitation on seed and seedling
production of potentilla tanacetifolia in a temperate steppe ecosystem.PLoS ONE , 6 (12).
https://doi.org/10.1371/journal.pone.0028601
Lloret, F., Peñuelas, J., & Estiarte, M. (2005). Effects of vegetation
canopy and climate on seedling establishment in Mediterranean shrubland.Journal of Vegetation Science , 16 (1), 67–76.
https://doi.org/10.1111/j.1654-1103.2005.tb02339.x
Lovejoy, T. E., & Hannah, L. (2019). Biodiversity and Climate
Change: Transforming the Biosphere . Yale University Press.
Maclean, I. M. D., & Early, R. (2023). Macroclimate data overestimate
range shifts of plants in response to climate change. Nature
Climate Change , 13 (5), 484–490.
https://doi.org/10.1038/s41558-023-01650-3
Mamet, S. D., & Kershaw, G. P. (2013). Multi-scale Analysis of
Environmental Conditions and Conifer Seedling Distribution Across the
Treeline Ecotone of Northern Manitoba, Canada. Ecosystems ,16 (2), 295–309. https://doi.org/10.1007/s10021-012-9614-3
Man, M., Kalčík, V., Macek, M., Brůna, J., Hederová, L., Wild, J., &
Kopecký, M. (2023). MyClim: Microclimate data handling and standardised
analyses in R - Man—Methods in Ecology and Evolution—Wiley Online
Library. Methods in Ecology and Evolution , Early View .
https://doi.org/10.1111/2041-210X.14192
Man, M., Kalčík, V., Macek, M., Wild, J., Kopecký, M., Brůna, J.,
Hederová, L., & Sciences, I. of B. of the C. A. of. (2023).myClim: Microclimatic Data Processing (1.0.1) [Computer
software]. https://cran.r-project.org/web/packages/myClim/index.html
Mazerolle, M. J. (2020). AICcmodavg: Model Selection and
Multimodel Inference Based on (Q)AIC(c) (2.3-1) [Computer
software].
https://cran.r-project.org/web/packages/AICcmodavg/index.html
Monaco, T. A., Mackown, C. T., Johnson, D. A., Jones, T. A., Norton, J.
M., Norton, J. B., & Redinbaugh, M. G. (2003). Nitrogen effects on seed
germination and seedling growth. In Plant Physiologist and Plant
Geneticist (Vol. 56, pp. 73036–2144). Plants, Soils.
Mondoni, A., Pedrini, S., Bernareggi, G., Rossi, G., Abeli, T., Probert,
R. J., Ghitti, M., Bonomi, C., & Orsenigo, S. (2015). Climate warming
could increase recruitment success in glacier foreland plants.Annals of Botany , 116 (6), 907–916.
https://doi.org/10.1093/aob/mcv101
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M.,
Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher,
B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I.,
Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate-change
refugia: Biodiversity in the slow lane. Frontiers in Ecology and
the Environment , 18 (5), 228–234.
https://doi.org/10.1002/fee.2189
Morris, W. F., & Ehrlén, J. (2015). Predicting changes in the
distribution and abundance of species under environmental change.Ecology Letters , 18 (3), 303–314.
https://doi.org/10.1111/ele.12410
Moser, B., Walthert, L., Metslaid, M., Wasem, U., & Wohlgemuth, T.
(2017). Spring water deficit and soil conditions matter more than seed
origin and summer drought for the establishment of temperate conifers.Oecologia , 183 (2), 519–530.
https://doi.org/10.1007/s00442-016-3766-3
Muñoz Mazon, M., Klanderud, K., & Sheil, D. (2023). Exploring how
disturbance and light availability shape the elevation ranges of
multiple mountain tree and shrub species in the tropics. Landscape
Ecology . https://doi.org/10.1007/s10980-023-01670-6
Normand, S., Zimmermann, N. E., Schurr, F. M., & Lischke, H. (2014).
Demography as the basis for understanding and predicting range dynamics.Ecography , 37 , 1149–1154.
https://doi.org/10.1111/ecog.01490
Oldfather, M. F., & Ackerly, D. D. (2019). Microclimate and demography
interact to shape stable population dynamics across the range of an
alpine plant. New Phytologist , 222 (1), 193–205.
https://doi.org/10.1111/nph.15565
Ósvaldsson, A., Chesler, M. K., & Burns, J. H. (2022). Effects of snow
on reproduction of perennial Thalictrum dioicum: Plants survive but
seedlings fail to recruit with reduced snow cover. American
Journal of Botany , 109 (3), 406–418.
https://doi.org/10.1002/ajb2.1829
Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S.
H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G.,
Akçakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A.,
Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G.,
Williams, S. E., … Rondinini, C. (2015). Assessing species
vulnerability to climate change. Nature Climate Change , 5 ,
215–225. https://doi.org/10.1038/nclimate2448
Pérez-Fernández, M. A., Calvo-Magro, E., Montanero-Fernández, J., &
Oyola-Velasco, J. A. (2006). Seed germination in response to chemicals:
Effect of nitrogen and pH in the media. Journal of Environmental
Biology , 27 (1), 13–20.
Pradhan, K., Ettinger, A. K., Case, M. J., & Hille Ris Lambers, J.
(2023). Applying climate change refugia to forest management and
old‐growth restoration. Global Change Biology , 29 (13),
3692–3706. https://doi.org/10.1111/gcb.16714
Pröll, G., Dullinger, S., Dirnböck, T., Kaiser, C., & Richter, A.
(2011). Effects of nitrogen on tree recruitment in a temperate montane
forest as analysed by measured variables and Ellenberg indicator values.Preslia , 83 , 111–127.
Pulliam, H. R. (2000). On the relationship between niche and
distribution. Ecology Letters , 3 , 349–361.
https://doi.org/10.1046/j.1461-0248.2000.00143.x
R Core Team, R. (2023). R: A Language and Environment for
Statistical Computing [Computer software]. R Foundation for
Statistical Computing, Vienna, Austria. http://www.r-project.org
Renard, S. M., McIntire, E. J. B., & Fajardo, A. (2016). Winter
conditions – not summer temperature – influence establishment of
seedlings at white spruce alpine treeline in Eastern Quebec.Journal of Vegetation Science , 27 (1), 29–39.
https://doi.org/10.1111/jvs.12347
Rigg, J. L., Offord, C. A., Singh, B. K., Anderson, I., Clarke, S., &
Powell, J. R. (2016). Soil microbial communities influence seedling
growth of a rare conifer independent of plant–soil feedback.Ecology , 97 (12), 3346–3358.
https://doi.org/10.1002/ecy.1594
Rodríguez-García, E., Bravo, F., & Spies, T. A. (2011). Effects of
overstorey canopy, plant–plant interactions and soil properties on
Mediterranean maritime pine seedling dynamics. Forest Ecology and
Management , 262 (2), 244–251.
Rumpf, S. B., Hülber, K., Klonner, G., Moser, D., Schütz, M., Wessely,
J., Willner, W., Zimmermann, N. E., & Dullinger, S. (2018). Range
dynamics of mountain plants decrease with elevation. Proceedings
of the National Academy of Sciences , 201713936–201713936.
https://doi.org/10.1073/PNAS.1713936115
Sanczuk, P., De Lombaerde, E., Haesen, S., Van Meerbeek, K., Van der
Veken, B., Hermy, M., Verheyen, K., Vangansbeke, P., & De Frenne, P.
(2022). Species distribution models and a 60‐year‐old transplant
experiment reveal inhibited forest plant range shifts under climate
change. Journal of Biogeography , 49 (3), 537–550.
https://doi.org/10.1111/jbi.14325
Sanczuk, P., De Pauw, K., De Lombaerde, E., Luoto, M., Meeussen, C.,
Govaert, S., Vanneste, T., Depauw, L., Brunet, J., Cousins, S. A. O.,
Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Plue, J.,
Selvi, F., Spicher, F., Uria-Diez, J., Verheyen, K., … De Frenne,
P. (2023). Microclimate and forest density drive plant population
dynamics under climate change. Nature Climate Change ,13 (8), Article 8. https://doi.org/10.1038/s41558-023-01744-y
Santana, V. M., Bradstock, R. A., Ooi, M. K. J., Denham, A. J., Auld, T.
D., Baeza, M. J., Santana, V. M., Bradstock, R. A., Ooi, M. K. J.,
Denham, A. J., Auld, T. D., & Baeza, M. J. (2010). Effects of soil
temperature regimes after fire on seed dormancy and germination in six
Australian Fabaceae species. Australian Journal of Botany ,58 (7), 539–545. https://doi.org/10.1071/BT10144
Scherrer, D., & Körner, C. (2010). Infra-red thermometry of alpine
landscapes challenges climatic warming projections. Global Change
Biology , 16 (9), 2602–2613.
https://doi.org/10.1111/j.1365-2486.2009.02122.x
Schurr, F. M., Pagel, J., Cabral, J. S., Groeneveld, J., Bykova, O.,
O’Hara, R. B., Hartig, F., Kissling, W. D., Linder, H. P., Midgley, G.
F., Schröder, B., Singer, A., & Zimmermann, N. E. (2012). How to
understand species’ niches and range dynamics: A demographic research
agenda for biogeography. Journal of Biogeography , 39 ,
2146–2162. https://doi.org/10.1111/j.1365-2699.2012.02737.x
Selmants, P. C., Adair, K. L., Litton, C. M., Giardina, C. P., &
Schwartz, E. (2016). Increases in mean annual temperature do not alter
soil bacterial community structure in tropical montane wet forests.Ecosphere , 7 (4). https://doi.org/10.1002/ecs2.1296
Smithers, B. (2017). Soil Preferences in Germination and Survival of
Limber Pine in the Great Basin White Mountains. Forests ,8 (11), 423. https://doi.org/10.3390/f8110423
Stanton-Geddes, J., Tiffin, P., & Shaw, R. G. (2012). Role of climate
and competitors in limiting fitness across range edges of an annual
plant. Ecology , 93 (7), 1604–1613.
https://doi.org/10.1890/11-1701.1
Stickley, S. F., & Fraterrigo, J. M. (2023). Microclimate species
distribution models estimate lower levels of climate-related habitat
loss for salamanders. Journal for Nature Conservation , 72 ,
126333. https://doi.org/10.1016/j.jnc.2023.126333
Szeicz, J. M., & Macdonald, G. M. (1995). Recent White Spruce Dynamics
at the Subarctic Alpine Treeline of North-Western Canada. Journal
of Ecology , 83 (5), 873–885. https://doi.org/10.2307/2261424
Tanner, K. E., Moore-O’Leary, K. A., Parker, I. M., Pavlik, B. M., Haji,
S., & Hernandez, R. R. (2021). Microhabitats associated with solar
energy development alter demography of two desert annuals.Ecological Applications , 31 (6), e02349.
https://doi.org/10.1002/eap.2349
Thompson, L. J., & Naeem, S. (1996). The effects of soil warming on
plant recruitment. Plant and Soil , 182 (2), 339–343.
https://doi.org/10.1007/BF00029064
Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M.,
Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M.,
Sykes, M. T., & Zimmermann, N. E. (2008). Predicting global change
impacts on plant species’ distributions: Future challenges.Perspectives in Plant Ecology, Evolution and Systematics ,9 , 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
Tobias, T. B., Farrer, E. C., Rosales, A., Sinsabaugh, R. L., Suding, K.
N., & Porras-Alfaro, A. (2017). Seed-associated fungi in the alpine
tundra: Both mutualists and pathogens could impact plant recruitment.Fungal Ecology , 30 , 10–18.
https://doi.org/10.1016/j.funeco.2017.08.001
Tourville, J. C., Wason, J. W., & Dovciak, M. (2022). Canopy gaps
facilitate upslope shifts in montane conifers but not in temperate
deciduous trees in the Northeastern United States. Journal of
Ecology , 110 (12), 2870–2882.
https://doi.org/10.1111/1365-2745.13993
Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A
practical guide to selecting models for exploration, inference, and
prediction in ecology. Ecology , 102 (6), e03336.
https://doi.org/10.1002/ecy.3336
Urban, M. C. (2019). Projecting biological impacts from climate change
like a climate scientist. Wiley Interdisciplinary Reviews: Climate
Change , 10 , e585–e585. https://doi.org/10.1002/wcc.585
van der Heijden, M. G., Bruin, S. de, Luckerhoff, L., van Logtestijn, R.
S., & Schlaeppi, K. (2016). A widespread plant-fungal-bacterial
symbiosis promotes plant biodiversity, plant nutrition and seedling
recruitment. The ISME Journal , 10 (2), Article 2.
https://doi.org/10.1038/ismej.2015.120
Weintraub, S. R., Cole, R. J., Schmitt, C. G., & All, J. D. (2016).
Climatic controls on the isotopic composition and availability of soil
nitrogen across mountainous tropical forest. Ecosphere ,7 (8). https://doi.org/10.1002/ecs2.1412
Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder,
M. A. (2009). Niches, models, and climate change: Assessing the
assumptions and uncertainties. Proceedings of the National Academy
of Sciences , 106 (Supplement 2), 19729–19736.
https://doi.org/10.1073/pnas.0901639106
Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T.
(2019). Climate at ecologically relevant scales: A new temperature and
soil moisture logger for long-term microclimate measurement.Agricultural and Forest Meteorology , 268 , 40–47.
https://doi.org/10.1016/j.agrformet.2018.12.018
Xi, N., Chu, C., & Bloor, J. M. G. (2018). Plant drought resistance is
mediated by soil microbial community structure and soil-plant feedbacks
in a savanna tree species. Environmental and Experimental Botany ,155 , 695–701. https://doi.org/10.1016/j.envexpbot.2018.08.013
Yates, C. J., Hobbs, R. J., & Bell, R. W. (1996). Factors Limiting the
Recruitment of Eucalyptus salmonophloia in Remnant Woodlands. III.
Conditions Necessary for Seed Germination. Australian Journal of
Botany , 44 (3), 283–296. https://doi.org/10.1071/bt9960283
Zhong, M., Miao, Y., Han, S., & Wang, D. (2019). Nitrogen addition
decreases seed germination in a temperate steppe. Ecology and
Evolution , 9 (15), 8441–8449. https://doi.org/10.1002/ece3.5151
Zurbriggen, N., Hättenschwiler, S., Frei, E. S., Hagedorn, F., & Bebi,
P. (2013). Performance of germinating tree seedlings below and above
treeline in the Swiss Alps. Plant Ecology , 214 (3),
385–396. https://doi.org/10.1007/s11258-013-0176-z