References
Aidelberg, G., Towbin, B.D., Rothschild, D., Dekel, E., Bren, A., Alon, U., 2014. Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst. Biol. 8, 133. https://doi.org/10.1186/s12918-014-0133-z
Bajic, D., Sanchez, A., 2020. The ecology and evolution of microbial metabolic strategies. Curr. Opin. Biotechnol., Energy Biotechnologyy ● Environmental Biotechnology 62, 123–128. https://doi.org/10.1016/j.copbio.2019.09.003
Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T., Phillips, R., 2005. Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev., Chromosomes and expression mechanisms 15, 125–135. https://doi.org/10.1016/j.gde.2005.02.006
Blaiseau, P.L., Holmes, A.M., 2021. Diauxic Inhibition: Jacques Monod’s Ignored Work. J. Hist. Biol. 54, 175–196. https://doi.org/10.1007/s10739-021-09639-4
Blouin, M., Karimi, B., Mathieu, J., Lerch, T.Z., 2015. Levels and limits in artificial selection of communities. Ecol. Lett. 18, 1040–1048. https://doi.org/10.1111/ele.12486
Brenner, K., You, L., Arnold, F.H., 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489. https://doi.org/10.1016/j.tibtech.2008.05.004
Cacace, E., Kim, V., Varik, V., Knopp, M., Tietgen, M., Brauer-Nikonow, A., Inecik, K., Mateus, A., Milanese, A., Mårli, M.T., Mitosch, K., Selkrig, J., Brochado, A.R., Kuipers, O.P., Kjos, M., Zeller, G., Savitski, M.M., Göttig, S., Huber, W., Typas, A., 2023. Systematic analysis of drug combinations against Gram-positive bacteria. Nat. Microbiol. 1–17. https://doi.org/10.1038/s41564-023-01486-9
Chang, C.-Y., Vila, J.C.C., Bender, M., Li, R., Mankowski, M.C., Bassette, M., Borden, J., Golfier, S., Sanchez, P.G.L., Waymack, R., Zhu, X., Diaz-Colunga, J., Estrela, S., Rebolleda-Gomez, M., Sanchez, A., 2021. Engineering complex communities by directed evolution. Nat. Ecol. Evol. 5, 1011–1023. https://doi.org/10.1038/s41559-021-01457-5
Chen, Y., Lin, C.-J., Jones, G., Fu, S., Zhan, H., 2009. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. J. Hazard. Mater. 171, 948–953. https://doi.org/10.1016/j.jhazmat.2009.06.100
Côté, I.M., Darling, E.S., Brown, C.J., 2016. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592. https://doi.org/10.1098/rspb.2015.2592
Cruz-Loya, M., Tekin, E., Kang, T.M., Cardona, N., Lozano-Huntelman, N., Rodriguez-Verdugo, A., Savage, V.M., Yeh, P.J., 2021. Antibiotics Shift the Temperature Response Curve of Escherichia coli Growth. mSystems 6, 10.1128/msystems.00228-21. https://doi.org/10.1128/msystems.00228-21
Dal Bello, M., Lee, H., Goyal, A., Gore, J., 2021. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434. https://doi.org/10.1038/s41559-021-01535-8
Diaz-Colunga, J., Skwara, A., Vila, J.C.C., Bajic, D., Sánchez, Á., 2023. Global epistasis and the emergence of ecological function. https://doi.org/10.1101/2022.06.21.496987
Doulcier, G., Lambert, A., De Monte, S., Rainey, P.B., 2020. Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity. eLife 9, e53433. https://doi.org/10.7554/eLife.53433
D’Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S., Kost, C., 2018. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488. https://doi.org/10.1039/C8NP00009C
Dukovski, I., Bajić, D., Chacón, J.M., Quintin, M., Vila, J.C.C., Sulheim, S., Pacheco, A.R., Bernstein, D.B., Riehl, W.J., Korolev, K.S., Sanchez, A., Harcombe, W.R., Segrè, D., 2021. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082. https://doi.org/10.1038/s41596-021-00593-3
Eng, A., Borenstein, E., 2019. Microbial community design: methods, applications, and opportunities. Curr. Opin. Biotechnol., Systems Biology • Nanobiotechnology 58, 117–128. https://doi.org/10.1016/j.copbio.2019.03.002
Espinar, L., Dies, M., Çağatay, T., Süel, G.M., Garcia-Ojalvo, J., 2013. Circuit-level input integration in bacterial gene regulation. Proc. Natl. Acad. Sci. 110, 7091–7096. https://doi.org/10.1073/pnas.1216091110
Estrela, S., Sánchez, Á., Rebolleda-Gómez, M., 2021a. Multi-Replicated Enrichment Communities as a Model System in Microbial Ecology. Front. Microbiol. 12.
Estrela, S., Sanchez-Gorostiaga, A., Vila, J.C., Sanchez, A., 2021b. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife 10, e65948. https://doi.org/10.7554/eLife.65948
Fonte, E.S., Amado, A.M., Meirelles-Pereira, F., Esteves, F.A., Rosado, A.S., Farjalla, V.F., 2013. The Combination of Different Carbon Sources Enhances Bacterial Growth Efficiency in Aquatic Ecosystems. Microb. Ecol. 66, 871–878. https://doi.org/10.1007/s00248-013-0277-1
Goldford, J.E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., Segrè, D., Mehta, P., Sanchez, A., 2018. Emergent simplicity in microbial community assembly. Science 361, 469–474. https://doi.org/10.1126/science.aat1168
Harcombe, W.R., Riehl, W.J., Dukovski, I., Granger, B.R., Betts, A., Lang, A.H., Bonilla, G., Kar, A., Leiby, N., Mehta, P., Marx, C.J., Segrè, D., 2014. Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Rep. 7, 1104–1115. https://doi.org/10.1016/j.celrep.2014.03.070
Heinken, A., Basile, A., Thiele, I., 2021. Advances in constraint-based modelling of microbial communities. Curr. Opin. Syst. Biol. 27, 100346. https://doi.org/10.1016/j.coisb.2021.05.007
Jiménez, J., Guardia-Puebla, Y., Romero-Romero, O., Cisneros-Ortiz, M.E., Guerra, G., Morgan-Sagastume, J.M., Noyola, A., 2014. Methanogenic activity optimization using the response surface methodology, during the anaerobic co-digestion of agriculture and industrial wastes. Microbial community diversity. Biomass Bioenergy 71, 84–97. https://doi.org/10.1016/j.biombioe.2014.10.023
Johnson, M.S., Reddy, G., Desai, M.M., 2023. Epistasis and evolution: recent advances and an outlook for prediction. BMC Biol. 21, 120. https://doi.org/10.1186/s12915-023-01585-3
Kaplan, S., Bren, A., Zaslaver, A., Dekel, E., Alon, U., 2008. Diverse Two-Dimensional Input Functions Control Bacterial Sugar Genes. Mol. Cell 29, 786–792. https://doi.org/10.1016/j.molcel.2008.01.021
Kikot, P., Viera, M., Mignone, C., Donati, E., 2010. Study of the effect of pH and dissolved heavy metals on the growth of sulfate-reducing bacteria by a fractional factorial design. Hydrometallurgy, 18th International Biohydrometallurgy Symposium, IBS2009, Bariloche-Argentina, 13-17 September 2009 104, 494–500. https://doi.org/10.1016/j.hydromet.2010.02.026
Klitgord, N., Segrè, D., 2010. Environments that Induce Synthetic Microbial Ecosystems. PLOS Comput. Biol. 6, e1001002. https://doi.org/10.1371/journal.pcbi.1001002
Kucharzyk, K.H., Crawford, R.L., Paszczynski, A.J., Soule, T., Hess, T.F., 2012. Maximizing microbial degradation of perchlorate using a genetic algorithm: Media optimization. J. Biotechnol. 157, 189–197. https://doi.org/10.1016/j.jbiotec.2011.10.011
Lázár, V., Snitser, O., Barkan, D., Kishony, R., 2022. Antibiotic combinations reduce Staphylococcus aureus clearance. Nature 610, 540–546. https://doi.org/10.1038/s41586-022-05260-5
Mancuso, C.P., Lee, H., Abreu, C.I., Gore, J., Khalil, A.S., 2021. Environmental fluctuations reshape an unexpected diversity-disturbance relationship in a microbial community [WWW Document]. eLife. https://doi.org/10.7554/eLife.67175
Mataigne, V., Vannier, N., Vandenkoornhuyse, P., Hacquard, S., 2021. Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes. Front. Microbiol. 12.
McCarty, N.S., Ledesma-Amaro, R., 2019. Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends Biotechnol. 37, 181–197. https://doi.org/10.1016/j.tibtech.2018.11.002
Molina-Barahona, L., Rodrı́guez-Vázquez, R., Hernández-Velasco, M., Vega-Jarquı́n, C., Zapata-Pérez, O., Mendoza-Cantú, A., Albores, A., 2004. Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Appl. Soil Ecol. 27, 165–175. https://doi.org/10.1016/j.apsoil.2004.04.002
Monod, J., 1942. Recherches sur la croissance des cultures bactériennes. Hermann & cie, Paris.
Okano, H., Hermsen, R., Kochanowski, K., Hwa, T., 2020. Regulation underlying hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia coli. Nat. Microbiol. 5, 206–215. https://doi.org/10.1038/s41564-019-0610-7
Pacheco, A.R., Osborne, M.L., Segrè, D., 2021. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365. https://doi.org/10.1038/s41467-021-22426-3
Pacheco, A.R., Segrè, D., 2021. An evolutionary algorithm for designing microbial communities via environmental modification. J. R. Soc. Interface 18, 20210348. https://doi.org/10.1098/rsif.2021.0348
Panke-Buisse, K., Poole, A.C., Goodrich, J.K., Ley, R.E., Kao-Kniffin, J., 2015. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989. https://doi.org/10.1038/ismej.2014.196
Replansky, T., Bell, G., 2009. The relationship between environmental complexity, species diversity and productivity in a natural reconstructed yeast community. Oikos 118, 233–239. https://doi.org/10.1111/j.1600-0706.2008.16948.x
Ruiz, J., de Celis, M., Diaz-Colunga, J., Vila, J.C., Benitez-Dominguez, B., Vicente, J., Santos, A., Sanchez, A., Belda, I., 2023. Predictability of the community-function landscape in wine yeast ecosystems. Mol. Syst. Biol. 19, e11613. https://doi.org/10.15252/msb.202311613
Rydenfelt, M., Garcia, H.G., Iii, R.S.C., Phillips, R., 2014. The Influence of Promoter Architectures and Regulatory Motifs on Gene Expression in Escherichia coli. PLOS ONE 9, e114347. https://doi.org/10.1371/journal.pone.0114347
San León, D., Nogales, J., 2022. Toward merging bottom–up and top–down model-based designing of synthetic microbial communities. Curr. Opin. Microbiol. 69, 102169. https://doi.org/10.1016/j.mib.2022.102169
Sanchez, A., 2019. Defining Higher-Order Interactions in Synthetic Ecology: Lessons from Physics and Quantitative Genetics. Cell Syst. 9, 519–520. https://doi.org/10.1016/j.cels.2019.11.009
Sanchez, A., Bajic, D., Diaz-Colunga, J., Skwara, A., Vila, J.C.C., Kuehn, S., 2023. The community-function landscape of microbial consortia. Cell Syst. 14, 122–134. https://doi.org/10.1016/j.cels.2022.12.011
Skonieczny, M.T., Yargeau, V., 2009. Biohydrogen production from wastewater by Clostridium beijerinckii: Effect of pH and substrate concentration. Int. J. Hydrog. Energy 34, 3288–3294. https://doi.org/10.1016/j.ijhydene.2009.01.044
Smith, T.P., Clegg, T., Bell, T., Pawar, S., 2021. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133. https://doi.org/10.1111/ele.13840
Smith, T.P., Clegg, T., Ransome, E., Martin-Lilley, T., Rosindell, J., Woodward, G., Pawar, S., Bell, T., 2023. Bacterial responses to complex mixtures of chemical pollutants. https://doi.org/10.1101/2023.02.18.529059
Swayambhu, G., Moscatello, N., Atilla-Gokcumen, G.E., Pfeifer, B.A., 2020. Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous Siderophore Production. iScience 23, 101016. https://doi.org/10.1016/j.isci.2020.101016
Swenson, W., Wilson, D.S., Elias, R., 2000. Artificial ecosystem selection. Proc. Natl. Acad. Sci. 97, 9110–9114. https://doi.org/10.1073/pnas.150237597
Vandecasteele, F.P.J., Crawford, R.L., Hess, T.F., 2008. Using a genetic algorithm to drive a microbial ecosystem in a desirable direction. Environ. Microbiol. 10, 1823–1830. https://doi.org/10.1111/j.1462-2920.2008.01603.x
Vessman, B., Guridi-Fernández, P., Arias-Sánchez, F.I., Mitri, S., 2023. Novel artificial selection method improves function of simulated microbial communities. https://doi.org/10.1101/2023.01.08.523165
Voigt, C.A., 2020. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379. https://doi.org/10.1038/s41467-020-20122-2
Williams, H.T.P., Lenton, T.M., 2007. Artificial selection of simulated microbial ecosystems. Proc. Natl. Acad. Sci. 104, 8918–8923. https://doi.org/10.1073/pnas.0610038104
Wong, B.G., Mancuso, C.P., Kiriakov, S., Bashor, C.J., Khalil, A.S., 2018. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36, 614–623. https://doi.org/10.1038/nbt.4151
Wood, K., Nishida, S., Sontag, E.D., Cluzel, P., 2012. Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proc. Natl. Acad. Sci. 109, 12254–12259. https://doi.org/10.1073/pnas.1201281109
Xie, L., Shou, W., 2021. Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities. Nat. Commun. 12, 6799. https://doi.org/10.1038/s41467-021-26647-4
Xie, L., Yuan, A.E., Shou, W., 2019. Simulations reveal challenges to artificial community selection and possible strategies for success. PLOS Biol. 17, e3000295. https://doi.org/10.1371/journal.pbio.3000295
Yeh, P., Tschumi, A.I., Kishony, R., 2006. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494. https://doi.org/10.1038/ng1755
Yeh, P.J., Hegreness, M.J., Aiden, A.P., Kishony, R., 2009. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 460–466. https://doi.org/10.1038/nrmicro2133
Zhou, H., Gao, X., Wang, S., Zhang, Y., Coulon, F., Cai, C., 2023. Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized Microbial Consortia Combined with Strengthening Remediation Strategies. Int. J. Environ. Res. Public. Health 20, 1766. https://doi.org/10.3390/ijerph20031766