References
Aidelberg, G., Towbin,
B.D., Rothschild, D., Dekel, E., Bren, A., Alon, U., 2014. Hierarchy of
non-glucose sugars in Escherichia coli. BMC Syst. Biol. 8, 133.
https://doi.org/10.1186/s12918-014-0133-z
Bajic, D., Sanchez,
A., 2020. The ecology and evolution of microbial metabolic strategies.
Curr. Opin. Biotechnol., Energy Biotechnologyy ● Environmental
Biotechnology 62, 123–128.
https://doi.org/10.1016/j.copbio.2019.09.003
Bintu, L., Buchler,
N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T.,
Phillips, R., 2005. Transcriptional regulation by the numbers:
applications. Curr. Opin. Genet. Dev., Chromosomes and expression
mechanisms 15, 125–135. https://doi.org/10.1016/j.gde.2005.02.006
Blaiseau, P.L.,
Holmes, A.M., 2021. Diauxic Inhibition: Jacques Monod’s Ignored Work. J.
Hist. Biol. 54, 175–196. https://doi.org/10.1007/s10739-021-09639-4
Blouin, M., Karimi,
B., Mathieu, J., Lerch, T.Z., 2015. Levels and limits in artificial
selection of communities. Ecol. Lett. 18, 1040–1048.
https://doi.org/10.1111/ele.12486
Brenner, K., You, L.,
Arnold, F.H., 2008. Engineering microbial consortia: a new frontier in
synthetic biology. Trends Biotechnol. 26, 483–489.
https://doi.org/10.1016/j.tibtech.2008.05.004
Cacace, E., Kim, V.,
Varik, V., Knopp, M., Tietgen, M., Brauer-Nikonow, A., Inecik, K.,
Mateus, A., Milanese, A., Mårli, M.T., Mitosch, K., Selkrig, J.,
Brochado, A.R., Kuipers, O.P., Kjos, M., Zeller, G., Savitski, M.M.,
Göttig, S., Huber, W., Typas, A., 2023. Systematic analysis of drug
combinations against Gram-positive bacteria. Nat. Microbiol. 1–17.
https://doi.org/10.1038/s41564-023-01486-9
Chang, C.-Y., Vila,
J.C.C., Bender, M., Li, R., Mankowski, M.C., Bassette, M., Borden, J.,
Golfier, S., Sanchez, P.G.L., Waymack, R., Zhu, X., Diaz-Colunga, J.,
Estrela, S., Rebolleda-Gomez, M., Sanchez, A., 2021. Engineering complex
communities by directed evolution. Nat. Ecol. Evol. 5, 1011–1023.
https://doi.org/10.1038/s41559-021-01457-5
Chen, Y., Lin, C.-J.,
Jones, G., Fu, S., Zhan, H., 2009. Enhancing biodegradation of
wastewater by microbial consortia with fractional factorial design. J.
Hazard. Mater. 171, 948–953.
https://doi.org/10.1016/j.jhazmat.2009.06.100
Côté, I.M., Darling,
E.S., Brown, C.J., 2016. Interactions among ecosystem stressors and
their importance in conservation. Proc. R. Soc. B Biol. Sci. 283,
20152592. https://doi.org/10.1098/rspb.2015.2592
Cruz-Loya, M., Tekin,
E., Kang, T.M., Cardona, N., Lozano-Huntelman, N., Rodriguez-Verdugo,
A., Savage, V.M., Yeh, P.J., 2021. Antibiotics Shift the Temperature
Response Curve of Escherichia coli Growth. mSystems 6,
10.1128/msystems.00228-21. https://doi.org/10.1128/msystems.00228-21
Dal Bello, M., Lee,
H., Goyal, A., Gore, J., 2021. Resource–diversity relationships in
bacterial communities reflect the network structure of microbial
metabolism. Nat. Ecol. Evol. 5, 1424–1434.
https://doi.org/10.1038/s41559-021-01535-8
Diaz-Colunga, J.,
Skwara, A., Vila, J.C.C., Bajic, D., Sánchez, Á., 2023. Global epistasis
and the emergence of ecological function.
https://doi.org/10.1101/2022.06.21.496987
Doulcier, G., Lambert,
A., De Monte, S., Rainey, P.B., 2020. Eco-evolutionary dynamics of
nested Darwinian populations and the emergence of community-level
heredity. eLife 9, e53433. https://doi.org/10.7554/eLife.53433
D’Souza, G., Shitut,
S., Preussger, D., Yousif, G., Waschina, S., Kost, C., 2018. Ecology and
evolution of metabolic cross-feeding interactions in bacteria. Nat.
Prod. Rep. 35, 455–488. https://doi.org/10.1039/C8NP00009C
Dukovski, I., Bajić,
D., Chacón, J.M., Quintin, M., Vila, J.C.C., Sulheim, S., Pacheco, A.R.,
Bernstein, D.B., Riehl, W.J., Korolev, K.S., Sanchez, A., Harcombe,
W.R., Segrè, D., 2021. A metabolic modeling platform for the computation
of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16,
5030–5082. https://doi.org/10.1038/s41596-021-00593-3
Eng, A., Borenstein,
E., 2019. Microbial community design: methods, applications, and
opportunities. Curr. Opin. Biotechnol., Systems Biology •
Nanobiotechnology 58, 117–128.
https://doi.org/10.1016/j.copbio.2019.03.002
Espinar, L., Dies, M.,
Çağatay, T., Süel, G.M., Garcia-Ojalvo, J., 2013. Circuit-level input
integration in bacterial gene regulation. Proc. Natl. Acad. Sci. 110,
7091–7096. https://doi.org/10.1073/pnas.1216091110
Estrela, S., Sánchez,
Á., Rebolleda-Gómez, M., 2021a. Multi-Replicated Enrichment Communities
as a Model System in Microbial Ecology. Front. Microbiol. 12.
Estrela, S.,
Sanchez-Gorostiaga, A., Vila, J.C., Sanchez, A., 2021b. Nutrient
dominance governs the assembly of microbial communities in mixed
nutrient environments. eLife 10, e65948.
https://doi.org/10.7554/eLife.65948
Fonte, E.S., Amado,
A.M., Meirelles-Pereira, F., Esteves, F.A., Rosado, A.S., Farjalla,
V.F., 2013. The Combination of Different Carbon Sources Enhances
Bacterial Growth Efficiency in Aquatic Ecosystems. Microb. Ecol. 66,
871–878. https://doi.org/10.1007/s00248-013-0277-1
Goldford, J.E., Lu,
N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., Segrè,
D., Mehta, P., Sanchez, A., 2018. Emergent simplicity in microbial
community assembly. Science 361, 469–474.
https://doi.org/10.1126/science.aat1168
Harcombe, W.R., Riehl,
W.J., Dukovski, I., Granger, B.R., Betts, A., Lang, A.H., Bonilla, G.,
Kar, A., Leiby, N., Mehta, P., Marx, C.J., Segrè, D., 2014. Metabolic
Resource Allocation in Individual Microbes Determines Ecosystem
Interactions and Spatial Dynamics. Cell Rep. 7, 1104–1115.
https://doi.org/10.1016/j.celrep.2014.03.070
Heinken, A., Basile,
A., Thiele, I., 2021. Advances in constraint-based modelling of
microbial communities. Curr. Opin. Syst. Biol. 27, 100346.
https://doi.org/10.1016/j.coisb.2021.05.007
Jiménez, J.,
Guardia-Puebla, Y., Romero-Romero, O., Cisneros-Ortiz, M.E., Guerra, G.,
Morgan-Sagastume, J.M., Noyola, A., 2014. Methanogenic activity
optimization using the response surface methodology, during the
anaerobic co-digestion of agriculture and industrial wastes. Microbial
community diversity. Biomass Bioenergy 71, 84–97.
https://doi.org/10.1016/j.biombioe.2014.10.023
Johnson, M.S., Reddy,
G., Desai, M.M., 2023. Epistasis and evolution: recent advances and an
outlook for prediction. BMC Biol. 21, 120.
https://doi.org/10.1186/s12915-023-01585-3
Kaplan, S., Bren, A.,
Zaslaver, A., Dekel, E., Alon, U., 2008. Diverse Two-Dimensional Input
Functions Control Bacterial Sugar Genes. Mol. Cell 29, 786–792.
https://doi.org/10.1016/j.molcel.2008.01.021
Kikot, P., Viera, M.,
Mignone, C., Donati, E., 2010. Study of the effect of pH and dissolved
heavy metals on the growth of sulfate-reducing bacteria by a fractional
factorial design. Hydrometallurgy, 18th International Biohydrometallurgy
Symposium, IBS2009, Bariloche-Argentina, 13-17 September 2009 104,
494–500. https://doi.org/10.1016/j.hydromet.2010.02.026
Klitgord, N., Segrè,
D., 2010. Environments that Induce Synthetic Microbial Ecosystems. PLOS
Comput. Biol. 6, e1001002. https://doi.org/10.1371/journal.pcbi.1001002
Kucharzyk, K.H.,
Crawford, R.L., Paszczynski, A.J., Soule, T., Hess, T.F., 2012.
Maximizing microbial degradation of perchlorate using a genetic
algorithm: Media optimization. J. Biotechnol. 157, 189–197.
https://doi.org/10.1016/j.jbiotec.2011.10.011
Lázár, V., Snitser,
O., Barkan, D., Kishony, R., 2022. Antibiotic combinations reduce
Staphylococcus aureus clearance. Nature 610, 540–546.
https://doi.org/10.1038/s41586-022-05260-5
Mancuso, C.P., Lee,
H., Abreu, C.I., Gore, J., Khalil, A.S., 2021. Environmental
fluctuations reshape an unexpected diversity-disturbance relationship in
a microbial community [WWW Document]. eLife.
https://doi.org/10.7554/eLife.67175
Mataigne, V., Vannier,
N., Vandenkoornhuyse, P., Hacquard, S., 2021. Microbial Systems Ecology
to Understand Cross-Feeding in Microbiomes. Front. Microbiol. 12.
McCarty, N.S.,
Ledesma-Amaro, R., 2019. Synthetic Biology Tools to Engineer Microbial
Communities for Biotechnology. Trends Biotechnol. 37, 181–197.
https://doi.org/10.1016/j.tibtech.2018.11.002
Molina-Barahona, L.,
Rodrı́guez-Vázquez, R., Hernández-Velasco, M., Vega-Jarquı́n, C.,
Zapata-Pérez, O., Mendoza-Cantú, A., Albores, A., 2004. Diesel removal
from contaminated soils by biostimulation and supplementation with crop
residues. Appl. Soil Ecol. 27, 165–175.
https://doi.org/10.1016/j.apsoil.2004.04.002
Monod, J., 1942.
Recherches sur la croissance des cultures bactériennes. Hermann & cie,
Paris.
Okano, H., Hermsen,
R., Kochanowski, K., Hwa, T., 2020. Regulation underlying hierarchical
and simultaneous utilization of carbon substrates by flux sensors in
Escherichia coli. Nat. Microbiol. 5, 206–215.
https://doi.org/10.1038/s41564-019-0610-7
Pacheco, A.R.,
Osborne, M.L., Segrè, D., 2021. Non-additive microbial community
responses to environmental complexity. Nat. Commun. 12, 2365.
https://doi.org/10.1038/s41467-021-22426-3
Pacheco, A.R., Segrè,
D., 2021. An evolutionary algorithm for designing microbial communities
via environmental modification. J. R. Soc. Interface 18, 20210348.
https://doi.org/10.1098/rsif.2021.0348
Panke-Buisse, K.,
Poole, A.C., Goodrich, J.K., Ley, R.E., Kao-Kniffin, J., 2015. Selection
on soil microbiomes reveals reproducible impacts on plant function. ISME
J. 9, 980–989. https://doi.org/10.1038/ismej.2014.196
Replansky, T., Bell,
G., 2009. The relationship between environmental complexity, species
diversity and productivity in a natural reconstructed yeast community.
Oikos 118, 233–239. https://doi.org/10.1111/j.1600-0706.2008.16948.x
Ruiz, J., de Celis,
M., Diaz-Colunga, J., Vila, J.C., Benitez-Dominguez, B., Vicente, J.,
Santos, A., Sanchez, A., Belda, I., 2023. Predictability of the
community-function landscape in wine yeast ecosystems. Mol. Syst. Biol.
19, e11613. https://doi.org/10.15252/msb.202311613
Rydenfelt, M., Garcia,
H.G., Iii, R.S.C., Phillips, R., 2014. The Influence of Promoter
Architectures and Regulatory Motifs on Gene Expression in Escherichia
coli. PLOS ONE 9, e114347. https://doi.org/10.1371/journal.pone.0114347
San León, D., Nogales,
J., 2022. Toward merging bottom–up and top–down model-based designing
of synthetic microbial communities. Curr. Opin. Microbiol. 69, 102169.
https://doi.org/10.1016/j.mib.2022.102169
Sanchez, A., 2019.
Defining Higher-Order Interactions in Synthetic Ecology: Lessons from
Physics and Quantitative Genetics. Cell Syst. 9, 519–520.
https://doi.org/10.1016/j.cels.2019.11.009
Sanchez, A., Bajic,
D., Diaz-Colunga, J., Skwara, A., Vila, J.C.C., Kuehn, S., 2023. The
community-function landscape of microbial consortia. Cell Syst. 14,
122–134. https://doi.org/10.1016/j.cels.2022.12.011
Skonieczny, M.T.,
Yargeau, V., 2009. Biohydrogen production from wastewater by Clostridium
beijerinckii: Effect of pH and substrate concentration. Int. J. Hydrog.
Energy 34, 3288–3294. https://doi.org/10.1016/j.ijhydene.2009.01.044
Smith, T.P., Clegg,
T., Bell, T., Pawar, S., 2021. Systematic variation in the temperature
dependence of bacterial carbon use efficiency. Ecol. Lett. 24,
2123–2133. https://doi.org/10.1111/ele.13840
Smith, T.P., Clegg,
T., Ransome, E., Martin-Lilley, T., Rosindell, J., Woodward, G., Pawar,
S., Bell, T., 2023. Bacterial responses to complex mixtures of chemical
pollutants. https://doi.org/10.1101/2023.02.18.529059
Swayambhu, G.,
Moscatello, N., Atilla-Gokcumen, G.E., Pfeifer, B.A., 2020. Flux Balance
Analysis for Media Optimization and Genetic Targets to Improve
Heterologous Siderophore Production. iScience 23, 101016.
https://doi.org/10.1016/j.isci.2020.101016
Swenson, W., Wilson,
D.S., Elias, R., 2000. Artificial ecosystem selection. Proc. Natl. Acad.
Sci. 97, 9110–9114. https://doi.org/10.1073/pnas.150237597
Vandecasteele, F.P.J.,
Crawford, R.L., Hess, T.F., 2008. Using a genetic algorithm to drive a
microbial ecosystem in a desirable direction. Environ. Microbiol. 10,
1823–1830. https://doi.org/10.1111/j.1462-2920.2008.01603.x
Vessman, B.,
Guridi-Fernández, P., Arias-Sánchez, F.I., Mitri, S., 2023. Novel
artificial selection method improves function of simulated microbial
communities. https://doi.org/10.1101/2023.01.08.523165
Voigt, C.A., 2020.
Synthetic biology 2020–2030: six commercially-available products that
are changing our world. Nat. Commun. 11, 6379.
https://doi.org/10.1038/s41467-020-20122-2
Williams, H.T.P.,
Lenton, T.M., 2007. Artificial selection of simulated microbial
ecosystems. Proc. Natl. Acad. Sci. 104, 8918–8923.
https://doi.org/10.1073/pnas.0610038104
Wong, B.G., Mancuso,
C.P., Kiriakov, S., Bashor, C.J., Khalil, A.S., 2018. Precise, automated
control of conditions for high-throughput growth of yeast and bacteria
with eVOLVER. Nat. Biotechnol. 36, 614–623.
https://doi.org/10.1038/nbt.4151
Wood, K., Nishida, S.,
Sontag, E.D., Cluzel, P., 2012. Mechanism-independent method for
predicting response to multidrug combinations in bacteria. Proc. Natl.
Acad. Sci. 109, 12254–12259. https://doi.org/10.1073/pnas.1201281109
Xie, L., Shou, W.,
2021. Steering ecological-evolutionary dynamics to improve artificial
selection of microbial communities. Nat. Commun. 12, 6799.
https://doi.org/10.1038/s41467-021-26647-4
Xie, L., Yuan, A.E.,
Shou, W., 2019. Simulations reveal challenges to artificial community
selection and possible strategies for success. PLOS Biol. 17, e3000295.
https://doi.org/10.1371/journal.pbio.3000295
Yeh, P., Tschumi,
A.I., Kishony, R., 2006. Functional classification of drugs by
properties of their pairwise interactions. Nat. Genet. 38, 489–494.
https://doi.org/10.1038/ng1755
Yeh, P.J., Hegreness,
M.J., Aiden, A.P., Kishony, R., 2009. Drug interactions and the
evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 460–466.
https://doi.org/10.1038/nrmicro2133
Zhou, H., Gao, X.,
Wang, S., Zhang, Y., Coulon, F., Cai, C., 2023. Enhanced Bioremediation
of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized
Microbial Consortia Combined with Strengthening Remediation Strategies.
Int. J. Environ. Res. Public. Health 20, 1766.
https://doi.org/10.3390/ijerph20031766