References
1. Alzheimer’s Disease Fact Sheet. NIH National Institute on Aging https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (2021).
2. Breijyeh, Z. & Karaman, R. Comprehensive Review on Alzheimer ’ s Disease : (2020).
3. Abubakar, M. B. et al. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci.14 , 1–16 (2022).
4. Pires, M. & Rego, A. C. Apoe4 and Alzheimer’s Disease Pathogenesis—Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int. J. Mol. Sci. 24 , (2023).
5. DuBoff, B., Götz, J. & Feany, M. B. Tau Promotes Neurodegeneration via DRP1 Mislocalization In Vivo. Neuron 75 , (2012).
6. Biomarkers for Dementia Detection and Research. https://www.nia.nih.gov/health/biomarkers-dementia-detection-and-research (2010).
7. Weller, J. & Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment [version 1; referees: 2 approved].F1000Research 7 , 1–9 (2018).
8. What Happens to the Brain in Alzheimer’s Disease? https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease (2017).
9. Wenck, G. Neuropathologic changes in Alzheimer’s Disease. J. Clin. Psychol. (2003).
10. Mhyre, T. R., Nw, R., Boyd, J. T., Hall, G. & Room, C. Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. 65 , 389–455 (2012).
11. Erickson, M. A. & Banks, W. A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism vol. 33 (2013).
12. Yiannopoulou, K. G. & Papageorgiou, S. G. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord.6 , (2013).
13. How Is Alzheimer’s Disease Treated? https://www.nia.nih.gov/health/how-alzheimers-disease-treated (2021).
14. Dr. Ananya Mandal, M. What are Tau Proteins? News Medicalhttps://www.news-medical.net/life-sciences/What-are-Tau-Proteins.aspx (2019).
15. LeBoeuf, A. C. et al. FTDP-17 Mutations in Tau Alter the Regulation of Microtubule Dynamics. J. Biol. Chem. 283 , (2008).
16. Barbier, P. et al. Role of tau as a microtubule-associated protein: Structural and functional aspects. Frontiers in Aging Neuroscience vol. 10 (2019).
17. Dr. Ananya Mandal, M. Tau Protein Function. News Medicalhttps://www.news-medical.net/life-sciences/Tau-Protein-Function.aspx (2019).
18. Trzeciakiewicz, H. et al. A dual pathogenic mechanism links tau acetylation to sporadic tauopathy. Sci. Rep. 7 , (2017).
19. Maina, M. B., Al-Hilaly, Y. K. & Serpell, L. C. Nuclear tau and its potential role in alzheimer’s disease. Biomolecules 6 , (2016).
20. Goedert, M. & Spillantini, M. G. A century of Alzheimer’s disease.Science (80-. ). 314 , (2006).
21. Lee Virginia, M. Y. et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17.Science (80-. ). 282 , (1998).
22. Hasegawa, M., Smith, M. J. & Goedert, M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly.FEBS Lett. 437 , (1998).
23. Barghorn, S. et al. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry 39 , (2000).
24. Deture, M. et al. Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions. Brain Res. 853 , (2000).
25. Hasegawa, M., Smith, M. J., Iijima, M., Tabira, T. & Goedert, M. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 443 , (1999).
26. Nacharaju, P. et al. Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett.447 , (1999).
27. Arrasate, M., Pérez, M., Armas-Portela, R. & Ávila, J. Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS Lett. 446 , (1999).
28. Rizzini, C. et al. Tau gene mutation K257T causes a tauopathy similar to Pick’s disease. J. Neuropathol. Exp. Neurol.59 , (2000).
29. Yen, S. H., Hutton, M., DeTure, M., Ko, L. W. & Nacharaju, P. Fibrillogenesis of tau: Insights from Tau missense mutations in FTDP-17. in Brain Pathology vol. 9 (1999).
30. Gamblin, T. C. et al. In vitro polymerization of tau protein monitored by laser light scattering: Method and application to the study of FTDP-17 mutants. Biochemistry 39 , (2000).
31. Eftekharzadeh, B. et al. Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease. Neuron99 , (2018).
32. Paonessa, F. et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep. 26 , (2019).
33. Alonso, A. D. C., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 91 , (1994).
34. Khlistunova, I. et al. Inducible expression of tau repeat domain in cell models of tauopathy: Aggregation is toxic to cells but can be reversed by inhibitor drugs. J. Biol. Chem. 281 , (2006).
35. Feinstein, S. C. & Wilson, L. Inability of tau to properly regulate neuronal microtubule dynamics: A loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim. Biophys. Acta - Mol. Basis Dis. 1739 , (2005).
36. Bunker, J. M., Kamath, K., Wilson, L., Jordan, M. A. & Feinstein, S. C. FTDP-17 mutations compromise the ability of Tau to regulate microtubule dynamics in cells. J. Biol. Chem. 281 , (2006).
37. Levy, S. F. et al. Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners: Implications for neurodegeneration.J. Biol. Chem. 280 , (2005).
38. Panda, D., Samuel, J. C., Massie, M., Feinstein, S. C. & Wilson, L. Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease. Proc. Natl. Acad. Sci. U. S. A. 100 , (2003).
39. Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.Proc. Natl. Acad. Sci. U. S. A. 102 , (2005).
40. Jordan, M. A. & Wilson, L. The Role of Microtubules in Cell Biology, Neurobiology, and Oncology . The Role of Microtubules in Cell Biology, Neurobiology, and Oncology (2008). doi:10.1007/978-1-59745-336-3.
41. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nature Reviews Cancer vol. 4 (2004).
42. Gonçalves, A. et al. Resistance to taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl. Acad. Sci. U. S. A. 98 , (2001).
43. Yvon, A. M. C., Wadsworth, P. & Jordan, M. A. Taxol suppresses dynamics of individual microtubules in living human tumor cells.Mol. Biol. Cell 10 , (1999).
44. Noble, W., Hanger, D. P., Miller, C. C. J. & Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases.Frontiers in Neurology vol. 4 JUL (2013).
45. Neddens, J. et al. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol. Commun. 6 , (2018).
46. Luna-Muñoz, J. et al. Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by Alz-50 antibody in Alzheimer’s disease.J. Alzheimer’s Dis. 8 , (2005).
47. Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P. & Anderton, B. H. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase.Neurosci. Lett. 147 , (1992).
48. Lovestone, S. et al. Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol. 4 , (1994).
49. Lovestone, S., Hartley, C. L., Pearce, J. & Anderton, B. H. Phosphorylation of tau by glycogen synthase kinase-3β in intact mammalian cells: The effects on the organization and stability of microtubules. Neuroscience 73 , (1996).
50. Mudher, A. et al. GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol. Psychiatry9 , (2004).
51. Allisy-Roberts, P. & Williams, J. Radiation hazards and protection.Farr’s Phys. Med. Imaging 23–47 (2008) doi:10.1016/B978-0-7020-2844-1.50006-5.
52. L.M., I. et al. Dendritic function of tau mediates amyloid-beta toxicity in alzheimer’s disease mouse models. Cellvol. 142 (2010).
53. Liao, X., Zhang, Y., Wang, Y. & Wang, J. The effect of cdk-5 overexpression on tau phosphorylation and spatial memory of rat.Sci. China, Ser. C Life Sci. 47 , (2004).
54. Billingsley, M. L. & Kincaid, R. L. Regulated phosphorylation and dephosphorylation of tau protein: Effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochemical Journal vol. 323 (1997).
55. Roberson, E. D. et al. Amyloid-β/fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of alzheimer’s disease. J. Neurosci. 31 , (2011).
56. Scales, T. M. E. et al. Tyrosine phosphorylation of tau by the Src family kinases Lck and Gyn. Mol. Neurodegener.6 , (2011).
57. Usardi, A. et al. Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS J. 278 , (2011).
58. Williamson, R., Usardi, A., Hanger, D. P. & Anderton, B. H. Membrane‐bound β‐amyloid oligomers are recruited into lipid rafts by a fyn‐dependent mechanism. FASEB J. 22 , (2008).
59. Williamson, R. et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-β peptide exposure: Involvement of Src family protein kinases.J. Neurosci. 22 , (2002).
60. Amadoro, G. et al. Endogenous Aβ causes cell death via early tau hyperphosphorylation. Neurobiol. Aging 32 , (2011).
61. Li, T., Hawkes, C., Qureshi, H. Y., Kar, S. & Paudel, H. K. Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3β.Biochemistry 45 , (2006).
62. Lee, S., Wang, J. W., Yu, W. & Lu, B. Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Aβ toxicity in Drosophila. Nat. Commun.3 , (2012).
63. Lee, G. et al. Phosphorylation of Tau by Fyn: Implications for Alzheimer’s Disease. J. Neurosci. 24 , (2004).
64. Cancino, G. I. et al. C-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice.Neurobiol. Aging 32 , (2011).
65. Derkinderen, P. et al. Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J. Neurosci. 25 , (2005).
66. Lebouvier, T. et al. The microtubule-associated protein tau is phosphorylated by Syk. Biochim. Biophys. Acta - Mol. Cell Res.1783 , (2008).
67. Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C. X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22 , (2005).
68. Santacruz, K. et al. Medicine: Tau suppression in a neurodegenerative mouse model improves memory function. Science (80-. ). 309 , (2005).
69. Berger, Z. et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci.27 , (2007).
70. Rocher, A. B. et al. Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp. Neurol. 223 , (2010).
71. Drechsel, D. N., Hyman, A. A., Cobb, M. H. & Kirschner, M. W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3 , (1992).
72. Shahpasand, K. et al. Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer’s disease. J. Neurosci.32 , (2012).
73. Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer’s disease. J. Cell Biol.143 , (1998).
74. Manczak, M. & Reddy, P. H. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: Implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 21 , (2012).
75. DuBoff, B., Feany, M. & Götz, J. Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci.36 , (2013).
76. Schneider, A., Biernat, J., Von Bergen, M., Mandelkow, E. & Mandelkow, E. M. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38 , (1999).
77. Cho, J. H. & Johnson, G. V. W. Glycogen Synthase Kinase 3β Phosphorylates Tau at Both Primed and Unprimed Sites: DIFFERENTIAL IMPACT ON MICROTUBULE BINDING. J. Biol. Chem. 278 , 187–193 (2003).
78. Sundaram, J. R. et al. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J. Neurosci. 33 , (2013).
79. Le Corre, S. et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 103 , (2006).
80. Sarkar, S. Neurofibrillary tangles mediated human neuronal tauopathies: insights from fly models. J. Genet. 97 , (2018).
81. B, L. W. Role of Tau Acetylation in Alzheimer’s Disease and Chronic Traumatic Encephalopathy: The Way Forward for Successful Treatment.J. Neurol. Neurosurg. 04 , (2017).
82. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun.2 , (2011).
83. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med.21 , (2015).
84. Tracy, T. E. et al. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron 90 , (2016).
85. Min, S. W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67 , (2010).
86. Luque-Contreras, D., Carvajal, K., Toral-Rios, D., Franco-Bocanegra, D. & Campos-Peña, V. Oxidative stress and metabolic syndrome: Cause or consequence of Alzheimer’s disease? Oxidative Medicine and Cellular Longevity vol. 2014 (2014).
87. Martínez, E., Navarro, A., Ordóñez, C., Del Valle, E. & Tolivia, J. Oxidative stress induces apolipoprotein d overexpression in hippocampus during aging and alzheimer’s disease. J. Alzheimer’s Dis.36 , (2013).
88. Yao, J. et al. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. U. S. A. 106 , (2009).
89. Mondragón-Rodríguez, S. et al. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimer’s disease.Oxidative Medicine and Cellular Longevity (2013) doi:10.1155/2013/940603.
90. Liu, Z. et al. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2015 , (2015).
91. Yao, J. et al. Inhibition of amyloid-β(Aβ) peptide-binding alcohol dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease.J. Neurosci. 31 , (2011).
92. Pensalfini, A. et al. Membrane cholesterol enrichment prevents Aβ-induced oxidative stress in Alzheimer’s fibroblasts.Neurobiol. Aging 32 , (2011).
93. Chan, L. N., Wacholtz, M. & Sha’afi, R. I. Changes in membrane structure and function during chick embryonic erythropoiesis. Mol. Membr. Biol. 1 , (1978).
94. Feng, Y. et al. Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H2O 2. J. Neurochem. 126 , (2013).
95. Pleen, J. & Townley, R. Alzheimer’s disease clinical trial update 2019–2021. J. Neurol. 269 , 1038–1051 (2022).
96. Kim, C. K. et al. Alzheimer’s Disease: Key Insights from Two Decades of Clinical Trial Failures. J. Alzheimer’s Dis.87 , 83–100 (2022).
97. Ling, T. S. et al. The Potential Benefits of Nanotechnology in Treating Alzheimer’s Disease. Biomed Res. Int. 2021 , (2021).
98. Abbas, M. Potential Role of Nanoparticles in Treating the Accumulation of Amyloid-Beta Peptide in Alzheimer’s Patients.Polym. 13 , (2021).
99. Karthivashan, G., Ganesan, P., Park, S. Y., Kim, J. S. & Choi, D. K. Therapeutic strategies and nano-drug delivery applications in management of ageing alzheimer’s disease. Drug Deliv.25 , (2018).
100. Begines, B. et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials10 , (2020).
101. Zhang, L., Yang, S., Wong, L. R., Xie, H. & Ho, P. C. L. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated poly (lactic- co-glycolic acid) nanoparticles and curcumin/Hydroxypropyl-β-Cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s diseas.Mol. Pharm. 17 , (2020).
102. Djiokeng Paka, G. et al. Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide-co-glycolide) Polymeric Matrix Composition. Mol. Pharm. 13 , (2016).
103. Gao, C. et al. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease.J. Nanobiotechnology 18 , (2020).
104. Huang, N. et al. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 8 , (2017).
105. Hettiarachchi, S. D. et al. Nanoparticle-mediated approaches for Alzheimer’s disease pathogenesis, diagnosis, and therapeutics.J. Control. Release 314 , (2019).
106. Vakilinezhad, M. A. et al. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation.DARU, J. Pharm. Sci. 26 , (2018).
107. Ross, C., Taylor, M., Fullwood, N. & Allsop, D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 13 , (2018).
108. Noble, G. T., Stefanick, J. F., Ashley, J. D., Kiziltepe, T. & Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 32 , (2014).
109. Mandell, J. W. & Banker, G. A. A spatial gradient of tau protein phosphorylation in nascent axons. J. Neurosci. 16 , (1996).
110. Song, Q. et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 8 , (2014).
111. Hu, Y. et al. New Strategy for Reducing Tau Aggregation Cytologically by A Hairpinlike Molecular Inhibitor, Tannic Acid Encapsulated in Liposome. ACS Chem. Neurosci. 11 , (2020).
112. Neely, A. et al. Ultrasensitive and highly selective detection of alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano 3 , (2009).
113. Zhang, X. et al. Robust and Universal SERS Sensing Platform for Multiplexed Detection of Alzheimer’s Disease Core Biomarkers Using PAapt-AuNPs Conjugates. ACS Sensors 4 , (2019).
114. Vimal, S. K. et al. Self-Therapeutic Nanoparticle That Alters Tau Protein and Ameliorates Tauopathy Toward a Functional Nanomedicine to Tackle Alzheimer’s. Small 16 , (2020).
115. Ghalandari, B. et al. Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. J. Photochem. Photobiol. B Biol. 192 , 131–140 (2019).
116. Sonawane, S. K., Ahmad, A. & Chinnathambi, S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS Omega 4 , (2019).
117. Tan, Y. J. et al. Phosphopeptide enrichment with TiO2-modified membranes and investigation of tau protein phosphorylation. Anal. Chem. 85 , (2013).
118. Ruedi Aebersold*& Matthias Mann. Mass spectrometry-based proteomics. (2003).
119. Hong, M., Chen, D. C. R., Klein, P. S. & Lee, V. M. Y. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3.J. Biol. Chem. 272 , (1997).
120. Michael P Mazanetz, P. M. F. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. (2007) doi:10.1038/nrd2111.
121. Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R. & Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today 2 , 22–32 (2007).
122. Demeritte, T. et al. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers.ACS Appl. Mater. Interfaces 7 , (2015).
123. Zhao, J. et al. Development of a Tau-Targeted Drug Delivery System Using a Multifunctional Nanoscale Metal-Organic Framework for Alzheimer’s Disease Therapy. ACS Appl. Mater. Interfaces12 , (2020).
124. Li, Y. et al. Improving Sensitivity and Specificity of Amyloid-β Peptides and Tau Protein Detection with Antibiofouling Magnetic Nanoparticles for Liquid Biopsy of Alzheimer’s Disease.ACS Biomater. Sci. Eng. 5 , (2019).
125. Vallet-Regí, M., Colilla, M., Izquierdo-Barba, I. & Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights.Molecules 23 , (2018).
126. Chen, Q. et al. Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer’s Disease. ACS Nano12 , (2018).
127. Sun, H. et al. A Tauopathy-Homing and Autophagy-Activating Nanoassembly for Specific Clearance of Pathogenic Tau in Alzheimer’s Disease. ACS Nano 15 , (2021).
128. Qiao, Z. Y. et al. Polymer-KLAK Peptide Conjugates Induce Cancer Cell Death through Synergistic Effects of Mitochondria Damage and Autophagy Blockage. Bioconjug. Chem. 28 , (2017).
129. Zhao, Q. et al. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv. 24 , (2017).
130. Xu, M. et al. Ultrasound-Excited Protoporphyrin IX-Modified Multifunctional Nanoparticles as a Strong Inhibitor of Tau Phosphorylation and β-Amyloid Aggregation. ACS Appl. Mater. Interfaces 10 , (2018).
131. De Loof, A. & Schoofs, L. Alzheimer’s Disease: Is a Dysfunctional Mevalonate Biosynthetic Pathway the Master-Inducer of Deleterious Changes in Cell Physiology? OBM Neurobiol. (2019).
132. Xia, Y., Prokop, S. & Giasson, B. I. “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol. Neurodegener. 16 , (2021).