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Abstract: The necessary conditions for the optimal control of partially observed, fully coupled

forward-backward mean-field stochastic differential equations driven by Teugels martingales are dis-

cussed in this paper. In this context, we make the assumption that the forward diffusion coefficient

and the martingale coefficient are independent of the control variable, and the control domain may not

necessarily be convex. For this class of optimal control problems, we derive the stochastic maximum

principle based on the classical method of spike variations and the filtering techniques. The adjoint

processes that are related to the variational equations are determined by the solutions of proposed

forward-backward stochastic differential equations in finite-dimensional spaces. Further, the Hamil-

tonian function is used to obtain the maximum principle for the optimality of the given control system.

Our results are then applied to the mean-field type problem of linear quadratic stochastic optimization.
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1. Introduction

Stochastic optimal control problems (SOCP) have attained significant attention from researchers and

have a lot of applications in various fields, including finance, engineering, economics, and operations

research. Several methods are used to solve SOCP. One such important method is the Pontryagin

maximum principle. The paper [1] extensively examined the variational principle of optimality for
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stochastic systems with mixed initial and terminal conditions, specifically addressing the general case

of a non-convex control domain. The consideration of mixed initial and terminal conditions and the

cost functional in [1] indicates that the problem studied by the author is more broad and inclusive.

Forward-Backward Stochastic Differential Equations (FBSDE) has lot of applications in finance.

One such problem is risk minimizing portfolio problem. While investigating SOCPs, Pardoux and

Peng [2] introduced general nonlinear backward stochastic differential equations (BSDEs). A forward-

backward stochastic differential equation (FBSDE) is constructed by coupling a BSDE with a forward

stochastic differential equation (SDE). For the forward-backward stochastic jump-diffusion differential

systems with observation noises, the maximum principle is obtained [3]. The authors in [4] conducted

research into the fully coupled forward-backward stochastic control system using convex variation

methods and duality techniques. On the other hand, in [5], the authors established the maximum

principle for FBSDEs with non-convex control domain. The paper [6] discussed the optimal control

for fully coupled forward-backward doubly SDEs. As an application, they also addressed the linear

quadratic (LQ) problem.

Kac [7] and McKean [8] initially introduced the mean-field SDE (MF-SDE) for investigating physi-

cal systems with a large number of interacting particles. Solutions of MF-SDEs typically occur as a

limit in law of an increasing number of identically distributed interacting processes. Applications of

the mean-field models to economics and finance were further developed [9]. Since then, the optimal

control problem (OCP) of MF- SDE has significantly improved. Mean-field FBSDEs (MF-FBSDE),

which are used to describe how a large population of interacting agents or particles behaves and play

an important role in statistics and financial engineering. The necessary conditions for the OCPs of

MF-BSDEs with delay and noisy memory in the infinite horizon, as well as for the McKean Vlasov

FBSDEs, were established in [10] and [11]. The optimal transport problem was studied and the neces-

sary conditions for the optimality of the extended mean field control systems have been developed [12].

To gain a more comprehensive understanding of FBSDEs and MF-FBSDEs, readers are encouraged

to consult references [13–15].

It is common knowledge that the SOCPs related to Teugels martingales can accurately explain the

randomness in the environment. Subsequently, several studies have examined BSDEs and SDEs that

are influenced by the combined impact of Brownian motion and Teugels martingales. The authors

in [16] investigated the necessary and sufficient conditions for SDEs and discovered the maximum

principle for Lévy process-related backward stochastic systems. For additional insights into Lévy



Mean-field FBSDE 3

processes and Teugels martingales, readers are encouraged to refer [17–20] for further relevant findings

and real-world applications.

Recently authors in [21, 22] discussed the maximum principle for the stochastic systems with full

information. However, in many practical situations, such as the well-known stochastic recursive opti-

mal problems [23], [24] and the risk-sensitive optimal portfolio problems [25], the states of the system

cannot be observed directly, and the controllers have to make a decision partially according to their

observable information. The objective of the optimal control problem with partial observation, is to

derive a suitable optimal control to the model, where the controller has less information than the

complete information filtration. In particular, a partially observed optimal control problem can be

used to build an economic model in which there are information gaps among economic agents. Thus,

studying partially-observed optimal control problems (PO-OCP) is natural and necessary. The nec-

essary conditions for the optimality of the PO-OCPs of McKean-Vlasov type systems were discussed

in [26] and the LQ nonzero-sum stochastic differential game with Markov jump was studied [27]. FB-

SDEs with jumps and regime switching under partial observation was studied by the authors in [28].

While investigating the PO-OCPs of SDEs, many authors derived the necessary conditions for op-

timality under the assumption of convex control domain. Readers can refer to [29–31]. But in most

of the cases, the control domain is need not be convex. Thus the aim of this paper is to deepen the

investigation of optimal control of partially observed, fully coupled FBSDE of mean-field type driven

by Teugels martingales under non-convex control domain. Compared our work with [1], a novel com-

bination of Teugels martingales and mean-field theory, we newly discussed the necessary conditions

for partially observed MF-FBSDEs with Teugels martingales.

The following are the major contributions in this paper:

• Teugels martingales provide a more realistic representation of certain real-world phenomena,

such as financial asset prices, where the sudden jumps or discontinuous movements will occur.

Thus, the partially observed and fully coupled FBSDE of mean-field type driven by Teugels

martingales serves as a novel system.

• Incorporating the mean field terms in the coupled system makes the system more complex.

• The maximum principle for optimal control of the proposed system is extended to accommo-

date a non-convex control domain, allowing for more comprehensive applicability.

• The mean-field LQ stochastic optimization problem provides insight into the proposed theo-

retical results.
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The organization of this paper is as follows:

Section 2 of this paper is dedicated to formulating the fully coupled MF-FBSDEs with partial obser-

vation, driven by Teugels martingales. In Section 3, we derive the variational inequality (V.I.) using

spike variational techniques and variational equations for our main result. Furthermore, we derive the

maximum principle for the proposed control system governed by fully coupled MF-FBSDE. In Section

4, the LQ stochastic OCP is showcased as an application.

2. Model Formulation

In this article, Rn is used to denote the n-dimensional Euclidean space. ⟨·, ·⟩ and | · | denote the scalar

product and norm in the Euclidean space, respectively. The transpose of a matrix is denoted by ⊤ in

the superscripts. K̄ is always used to represent a positive constant and ς denotes time.

Let (Ω,F, (Fς),P) be a complete filtered probability space with a normal filtration Fς which

is generated by three mutually independent stochastic processes: A d-dimensional Brownian mo-

tion {B(ς)}ς≥0, an r-dimensional Brownian motion {W(ς)}ς≥0 and a 1-dimensional Lévy process

{L̃(ς)}ς≥0, where the Lévy measure ν of {L̃(ς)}ς≥0 satisfies
∫
R
(1 ∧ x2)ν(dx) < ∞, and for some

ε > 0 and λ > 0,
∫
(−ε,ε)

exp(λ|x|)ν(dx) < ∞. For some λ > 0, we denote L̃1(ς) = L̃(ς) and

L̃i(ς) =
∑

0<ζ≤ς

(△L(ζ))i for (i ≥ 2), where △L̃(ζ) = L̃(ζ) − L̃(ζ−), Si(ς) = L̃i(ς) − E[L̃i(t)] is the

compensated power jump process of order i. Denote Hi(ς) = ci,iS
i(ς)+ ci,i−1S

i−1(ς)+ · · ·+ ci,1S
1(ς),

and {Hi(ς)}∞i=1 is called Teugels martingales associated with the Lévy process {L̃(ς)}ς≥0. Let Tf > 0

be a fixed time horizon. L2(Ω,FB
Tf
;Rn) denotes the space of all Rn-valued FB

Tf
-measurable random

variables ξ such that E[ |ξ|2 ] < ∞, L2
FB([0, Tf ];R

n) denotes the space of all Rn-valued Fς
B-adapted

processes Ψς such that E[
∫ Tf

0
|Ψς |2dt] < ∞.

Let U be a non empty, non-convex subset of Rk. An admissible control variable is denoted as

v : [0, Tf ]×Ω −→ U and meets the following criteria: it is FW
ς -adapted, and its absolute moments are

bounded. That is sup
0≤ς≤Tf

E|v(ς)|i < ∞, for all positive integers i. Let Uad represents the collection of

all admissible control variables.

Let v(·) ∈ Uad be given. Now, consider the following control system governed by fully-coupled FBSDE

of mean-field type:

dpv(ς) = h(ς, pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)], s(ς), E[s(ς)], v(ς))dς
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+

d∑
j=1

σj(ς, pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)], s(ς), E[s(ς)])dBj(ς)

+

∞∑
j=1

f j(ς, pv(ς−), E[pv(ς−)], qv(ς−), E[qv(ς−)], rv(ς), E[rv(ς)], s(ς), E[s(ς)])dH
j(ς),

−dqv(ς) = k(ς, pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)], s(ς), E[s(ς)], v(ς))dς −
d∑

j=1

(rv)
j(ς)dBj(ς)

−
∞∑
j=1

sj(ς)dHj(ς),

pv(0) = p0,

qv(Tf ) = l(pv(Tf ), E[pv(Tf )]). (1)

Here, the state processes (pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)]) ≡ (pv(ς, ω), E[pv(ς, ω)], qv(ς, ω),

E[qv(ς, ω)], rv(ς, ω), E[rv(ς, ω)]) ∈ Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d, 0 ≤ ς ≤ Tf , ω ∈ Ω, p0 ∈ Rn

is deterministic and

h : [0, Tf ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)× l2(Rm)× U −→ Rn,

σj : [0, Tf ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)× l2(Rm) −→ Rn,

f : [0, Tf ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)× l2(Rm) −→ l2(Rn),

k : [0, Tf ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)× l2(Rm)× U −→ Rm,

l : Rn ×Rn −→ Rm.

In our assumptions, the state processes (pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)]) are not directly

observable. However, the controllers are equipped with the capability to observe a correlated noisy

process W(·) that is associated with the state process. This relationship is characterized by

dW(ς) = g(ς, pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], v(ς))dς + dB̃(ς),

W(0) = 0. (2)

Here B̃(·) represents an r-dimensional stochastic process that depends on v(·) and

g : [0, Tf ]×Rn ×Rn ×Rm ×Rm × U −→ Rr.

To guarantee the existence and uniqueness of the solutions for the aforementioned fully coupled MF-

FBSDE (1), we impose the subsequent assumptions: (A1) and the G-monotonic conditions (A2) as

employed in [32].

For this let us take an m× n matrix G of full rank and for any v(·) ∈ Uad, we employ the notations
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Γv := (pv, E[pv], qv, E[qv], rv, E[rv]) and A(ς,Γv, s, E[s], v) :=


−G⊤k

Gh

Gσ

 (ς,Γv, s, E[s], v).

Here, Gσ ≡ (Gσ1,Gσ2, · · · ,Gσd). We consider the following assumption to be valid for our investiga-

tion.

(A1) Lipschitz and linear growth conditions for nonlinear functions in system:

(i) ∀Γv, v(·) ∈ Uad and (s, E[s]), A(·,Γv, v) ∈ L2
FW ([0, Tf ];R

n×Rn×Rm×Rm×Rm×d×Rm×d×

l2(Rn)× l2(Rn)),

(ii) h, k are differentiable in Γv and its derivatives are continuous. It has uniformly bounded,

uniformly Lipschitz partial derivatives and are bounded by K̄(1 + |p| + |E[p]| + |q| + |E[q]| +

|r|+ |E[r]|+ |v|),

(iii) g is differentiable in (p, E[p], q, E[q]), continuous in v and uniformly bounded. Its derivatives

are continuous and all uniformly bounded,

(iv) For each j = 1, 2, 3, · · · , d, σj is continuously differentiable in Γv, its partial derivatives are

uniformly bounded. Additionally, σj is bounded by K̄(1+ |p|+ |E[p]|+ |q|+ |E[q]|+ |r|+ |E[r]|),

(v) For each j = 1, 2, . . .∞, f j is uniformly Lipschitz with respect to (Γv, s, E[s]),

(vi) l is continuously differentiable in (p, E[p]), lp, lE[p] are uniformly bounded and l is bounded by

K̄(1 + |p|+ |E[p]|),

(vii) For each (p, E[p]) ∈ Rn ×Rn, l(p, E[p]) ∈ L2(Ω,FB
Tf
;Rm).

(A2) G-Monotonic conditions:〈
A(ς,Γv, s, E[s], v)−A(ς, Γ̄v, s̄, E[s̄], v),Γv − Γ̄v

〉
+

∞∑
j=1

〈
Gf j(ς,Γv, s, E[s])− Gf j(ς, Γ̄v, s̄, E[s̄]), s̄

j

〉

≤ −β1

(
|Gp̂v|2 + |GEp̂v|2

)
− β2

(
|Gq̂v|2 + |GEq̂v|2 + |Gr̂v|2 + |GEr̂v|2+

∞∑
j=1

|G⊤s̄j |2
)
,

〈
l(pv, E[pv])− l(p̄v, E[p̄v]),G((pv, E[pv])− (p̄v, E[p̄v]))

〉
≥ µ1

(
|Gp̂v|2 + |GE[p̂v]|2

)
,

where Γv = (pv, qv, rv), Γ̄v = (p̄v, q̄v, r̄v), p̂v = pv − p̄v, q̂v = qv − q̄v, r̂v = rv − r̄v, and the given non-

negative constants β1, β2 and µ1 with β1+β2 > 0, β2+µ1 > 0.Moreover we have µ1 > 0, β1 > 0(β2 > 0)

when m > n(m < n).



Mean-field FBSDE 7

Remark 2.1. For any v(·) ∈ Uad, under the assumptions (A1) and (A2), we can establish that the

MF-FBSDE (1) possesses a unique solution Γv(·) ≡ (pv, E[pv], qv, E[qv], rv, E[rv]). This result is derived

from Theorem 2.6 in [32], and the solution is commonly referred to as the corresponding trajectory.

In order to find the optimal control for our partially observed system (1) with (2), we define the

following change of measure. That is dPv := Yv(ς)dP, where

Yv(ς) :=exp

{∫ ς

0

⟨g(ζ, pv(ζ), E[pv(ζ)], qv(ζ), E[qv(ζ)], v(ζ)), dW(ζ)⟩

− 1

2

∫ ς

0

|g(ζ, pv(ζ), E[pv(ζ)], qv(ζ), E[qv(ζ)], v(ζ))|2dζ
}
.

(3)

It is evident that Yv(·) is the unique solution of the following equation (4), which is adapted to FW
ς .

dYv(ς) = Yv(ς)⟨g(ζ, pv(ζ), E[pv(ζ)], qv(ζ), E[qv(ζ)], v(ζ)), dW(ζ)⟩,

Yv(0) = 1.

(4)

By employing Itô’s formula, one can demonstrate that sup
0≤ς≤Tf

E|Yv(ς)|i < ∞, for all positive integers

i. As a result of Girsanov’s theorem and (A1), Pv is a new probability measure and Rd+r-valued

standard Brownian motion (B(·), B̃(·)) which is defined on the new probability space (Ω,F, {Fς},Pv).

Remark 2.2. The equation (3) is known as Doléans-Dade exponential. It allows us to transform a

stochastic integral involving a local martingale into a true martingale. This transformation simpli-

fies the analysis of stochastic processes and provides a powerful tool for solving various problems in

stochastic finance, option pricing, and other areas involving stochastic modeling.

The cost functional for the proposed System (1) is given by the following equation:

J ∗(v(·)) := Ev
{∫ Tf

0

φ(ς, pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)], sv(ς), E[sv(ς)], v(ς))dς

+ ϕ(pv(Tf ), E[pv(Tf )]) + γ(qv(0), E[qv(0)])

}
.

(5)

In this context, Ev signifies the expectation on the probability space (Ω,F,Fς ,Pv) and

φ : [0, Tf ]×Rn ×Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)× l2(Rm)× U −→ R,

ϕ : Rn ×Rn −→ R,

γ : Rm ×Rm −→ R.
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We need the following hypothesis.

(A3) Lipschitz and linear growth conditions for nonlinear functions in cost functional:

(i) φ is continuous in v, continuously differentiable in (p, E[p], q, E[q], r, E[r], s, E[s]), its partial

derivatives are continuous in (p, E[p], q, E[q], r, E[r], s, E[s], v) and bounded by K̄(1+|p|+|E[p]|+

|q|+ |E[q]|+ |r|+ |E[r]|+ |s|+ |E[s]|+ |v|),

(ii) ϕ is continuously differentiable and ϕp is bounded by K̄(1 + |p|) and ϕE[p] is bounded by

K̄(1 + |E[p]|),

(iii) γ is continuously differentiable, γq is bounded by K̄(1 + |q|) and γE[q] is bounded by K̄(1 +

|E[q]|).

The primary objective of the proposed PO-OCP is to minimize (5), while considering v(·) ∈ Uad as

the admissible control, subject to the constraints given by (1) and (2).

In other words, our goal is to find u(·) ∈ Uad that satisfies

J ∗(u(·)) = inf
v(·)∈Uad

J ∗(v(·)). (6)

Based on [33], the cost functional (5) is modified as follows:

J ∗(v(·)) := Ev
{∫ Tf

0

Yv(ς)φ(ς, pv(ς), E[pv(ς)], qv(ς), E[qv(ς)], rv(ς), E[rv(ς)], sv(ς), E[sv(ς)], v(ς))dς

+ Yv(Tf )ϕ(pv(Tf ), E[pv(Tf )]) + γ(qv(0), E[qv(0)])

}
.

(7)

Therefore, the original problem (6) can be reformulated as minimizing (7) with respect to v(·) ∈ Uad

while satisfying the constraints (1) and (4).

3. Partially Observed Stochastic Maximum Principle

3.1. Spike Variation and ε-order Estimations. Suppose that u(·) ∈ Uad is an optimal control,

Γ(·) ≡ (p(·), E[p(·)], q(·), E[q(·)], r(·), E[r(·)]) represents the optimal trajectory of (1). Similarly, let Y(·)

denote the solution of (4). Here, we use the spike variation which is used in [33] as follows:

uε(ς) :=


v, if δ ≤ ς ≤ δ + ε,

u(ς), otherwise.

(8)
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Assuming that ε is a positive value which is sufficiently small, 0 ≤ δ ≤ Tf is fixed, and v ∈ U is an

arbitrary random variable that is measurable with respect to FW
δ such that sup

ω∈Ω
|v(ω)| < +∞. Clearly,

uε(·) is admissible.

Let Γε(·) ≡ (pε(·), E[pε(·)], qε(·), E[qε(·)], rε(·), E[rε(·)]) denote the perturbed trajectory of the proposed

system described by equation (1). Furthermore, let Yε(·) represent the solution of equation (4) which

corresponds to uε(·).

We use the following simplified notations:

κ(uε(ς)) := κ(ς, p(ς), E[p(ς)], q(ς), E[q(ς)], r(ς), E[r(ς)], s(ς), E[s(ς)], uε(ς)),

κ(u(ς)) := κ(ς, p(ς), E[p(ς)], q(ς), E[q(ς)], r(ς), E[r(ς)], s(ς), E[s(ς)], u(ς)),

κ̃(ς) := κ̃(ς, p(ς), E[p(ς)], q(ς), E[q(ς)], r(ς), E[r(ς)], s(ς), E[s(ς)]),

where κ = h, k, g, φ, κ̃ = σ, f and similarly we can use the simplified notations for their partial

derivatives in the optimal trajectory (p, E[p], q, E[q], r, E[r]). Here after we use the notations p̃, q̃, r̃, s̃

for E[p], E[q], E[r], E[s] respectively. Now consider the variational equations (a linear FBSDE) corre-

sponding to (1) as follows:

dp1(ς) =

[
hp(u(ς))p

1(ς) + hp̃(u(ς))E[p
1(ς)] + hq(u(ς))q

1(ς) + hq̃(u(ς))E[q
1(ς)] + hr(u(ς))r

1(ς)

+ hr̃(u(ς))E[r
1(ς)] + hs(u(ς))s

1(ς) + hs̃(u(ς))E[s
1(ς)] + h(uε(ς))− h(u(ς))

]
dς

+

d∑
j=1

[
σj
p(ς)p

1(ς) + σj
p̃(ς)E[p

1(ς)] + σj
q(ς)q

1(ς) + σj
q̃(ς)E[q

1(ς)] + σj
r(ς)r

1(ς)

+ σj
r̃(ς)E[r

1(ς)] + σj
s(ς)s

1(ς) + σj
s̃(ς)E[s

1(ς)]

]
dBj(ς)

+

∞∑
j=1

[
f j
p (ς)p

1(ς) + f j
p̃ (ς)E[p

1(ς)] + f j
q (ς)q

1(ς) + f j
q̃ (ς)E[q

1(ς)] + f j
r (ς)r

1(ς)

+ f j
r̃ (ς)E[r

1(ς)] + f j
s (ς)s

1(ς) + f j
s̃ (ς)E[s

1(ς)]

]
dHj(ς)

−dq1(ς) =

[
kp(u(ς))p

1(ς) + kp̃(u(ς))E[p
1(ς)] + kq(u(ς))q

1(ς) + kq̃(u(ς))E[q
1(ς)] + kr(u(ς))r

1(ς)

+ kr̃(u(ς))E[r
1(ς)] + ks(u(ς))s

1(ς) + ks̃(u(ς))E[s
1(ς)] + k(uε(ς))− k(u(ς))

]
dς −

d∑
j=1

(r1)j(ς)
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× dBj(ς)−
∞∑
j=1

(s1)j(ς)dHj(ς),

p1(0) = 0,

q1(Tf ) = lp(p(Tf ), E[p(Tf )])p
1(ς) + lp̃(p(Tf ), E[p(Tf )])E[p

1(ς)], (9)

and corresponding to (4) which is a linear SDE:

dY1(ς) = ⟨Y1(ς)g(u(ς)) + Y(ς)gp(u(ς))p
1(ς) + Y(ς)gp̃(u(ς))E[p

1(ς)] + Y(ς)gq(u(ς))q
1(ς)

+ Y(ς)gq̃(u(ς))E[q
1(ς)] + Y(ς)(g(uε(ς)− g(u(ς))), dW(ς)⟩,

Y1(0) = 0. (10)

Clearly by the assumptions (A1) and (A2), (9) and(10) admit unique adapted solutions (p1(·), E[p1(·)],

q1(·), E[q1(·)], r1(·), E[r1(·)]) and Y1(·) respectively.

3.2. Variational Inequality. The main objective of this subsection is to calculate some estimations

for order of ε for Y1(·) and Yε(·)− (Y(·) + Y1(·)). Then we derive V.I. using these estimations.

Lemma 3.1. Assuming that (A1) and (A2) are satisfied, we can obtain the following result:

(i) sup
0≤ς≤Tf

E|Y1(ς)|2 ≤ K̄ε, (ii) sup
0≤ς≤Tf

E|Y1(ς)|4 ≤ K̄ε2, (11)

(iii) sup
0≤ς≤Tf

E|Yε(ς)− Y(ς)− Y1(ς)|2 ≤ K̄εε
2. (12)

Proof. First we prove the inequality (ii) in (11), then obviously the inequality (i) in (11)

holds. From (10) and using the inequalities of Holder and Davis-Burkholder-Gundy, we obtain

Y1(ς) =

∫ ς

0

⟨Y1(ζ)g(u(ζ)) + Y(ζ)gp(u(ζ))p
1(ζ) + Y(ζ)gp̃(u(ζ))E[p

1(ζ)] + Y(ζ)gq(u(ζ))q
1(ζ)

+ Y(ζ)gq̃(u(ζ))E[q
1(ζ)] + Y(ζ)(g(uε(ζ)− g(u(ζ))), dW(ζ)⟩

E|Y1(t)|4 ≤ K̄

(
E

∣∣∣∣ ∫ t

0

Y1(ζ)⟨g(u(ζ)), dW(ζ)⟩
∣∣∣∣4 + E

∣∣∣∣ ∫ t

0

Y(ζ)⟨gp(u(ζ))p1(ζ), dW(ζ)⟩
∣∣∣∣4

+ E

∣∣∣∣ ∫ ς

0

Y(ζ)⟨gp̃(u(ζ))E[p1(ζ)], dW(ζ)⟩
∣∣∣∣4 + E

∣∣∣∣ ∫ ς

0

Y(ζ)⟨gq(u(ζ))q1(ζ), dW(ζ)⟩
∣∣∣∣4

+ E

∣∣∣∣ ∫ ς

0

Y(ζ)⟨gq̃(u(ζ))E[q1(ζ)], dW(ζ)⟩
∣∣∣∣4 + E

∣∣∣∣ ∫ ς

0

Y(ζ)⟨g(uε(ζ)− g(u(ζ))), dW(ζ)⟩
∣∣∣∣4

≤ K̄

(∫ ς

0

E|Y1(ζ)|4dζ + E

[ ∫ ς

0

|Y(ζ)p1(ζ)|2dζ
]2
+ E

[ ∫ ς

0

|Y(ζ)E[p1(ζ)]|2dζ
]2
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+ E

[∫ ς

0

|Y(ζ)q1(ζ)|2dζ
]2
+E

[ ∫ ς

0

|Y(ζ)E[q1(ζ)]|2dζ
]2

+ε

∫ δ+ε

δ

E|Y(ζ)(g(uεζ)

−g(u(ζ))|4dζ
)

≤ K̄

(∫ ς

0

E|Y1(ζ)|4dζ+E

[ ∫ ς

0

|Y(ζ)|4dζ ·
∫ ς

0

|p1(ζ)|4dζ
]
+ E

[ ∫ ς

0

|Y(ζ)|4dζ

·
∫ ς

0

|E[p1(ζ)]|4dζ
]
+ E

[ ∫ ς

0

|Y(ζ)|4dζ ·
∫ ς

0

|q1(ζ)|4dζ
]
+E

[ ∫ ς

0

|Y(ζ)|4dζ

·
∫ ς

0

|E[q1(ζ)]|4dζ
])

+ K̄ε2 sup
0≤ς≤Tf

E|Y(ζ)|4

≤ K̄

(∫ ς

0

E|Y1(ζ)|4dζ +
[
Tf sup

0≤ς≤Tf

E|Y(ζ)|8
] 1

2

·
[
E

∫ ς

0

|p1(ζ)|8dζ
] 1

2

+

[
Tf sup

0≤ς≤Tf

E|Y(ζ)|8
] 1

2

·
[
E

∫ ς

0

|E[p1(ζ)]|8dζ
] 1

2

+

[
Tf sup

0≤ς≤Tf

E|Y(ζ)|8
] 1

2

·
[
E

∫ ς

0

|q1(ζ)|8dζ
] 1

2

+

[
Tf sup

0≤ς≤Tf

E|Y(ζ)|8
] 1

2

·
[
E

∫ ς

0

|E[q1(ζ)]|8dζ
] 1

2
)
+ K̄ε2

≤ K̄

(∫ ς

0

E|Y1(ζ)|4dζ +
√
Tf sup

0≤ς≤Tf

E|p1(ζ)|8 +
√
Tf sup

0≤ς≤Tf

E|E[p1(ζ)]8|

+
√

Tf sup
0≤ς≤Tf

E|q1(ζ)|8 +
√

Tf sup
0≤ς≤Tf

E|E[q1(ζ)]8|
)
+ K̄ε2.

By Lemma 2.5 of [33] and the Gronwall inequality we get inequality (ii) in (11). We now prove the

inequality (iii) in (12). At first, we have to estimate Yε(ς)− Y(ς)− Y1(ς). For this, let us consider∫ ς

0

Y1(ζ)⟨g(u(ζ)), dW(ζ)⟩+
∫ ς

0

Y(ζ)⟨g(ζ, p(ζ) + p1(ζ), E[p(ζ)] + E[p1(ζ)], q(ζ) + q1(ζ), E[q(ζ)]

+ E[q1(ζ)], uε(ζ)), dW(ζ)⟩

=

∫ ς

0

Y1(ζ)⟨g(u(ζ)), dW(ζ)⟩+
∫ ς

0

Y(ζ)⟨g(uε(ζ)), dW(ζ)⟩+
∫ ς

0

Y(ζ)

〈∫ 1

0

gp(ζ, p(ζ) + λp1(ζ),

E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))p1(ζ)dλ, dW(ζ)

〉
+

∫ ς

0

Y(ζ)〈∫ 1

0

gp̃(ζ, p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))

E[p1(ζ)]dλ, dW(ζ)

〉
+

∫ ς

0

Y(ζ)

〈∫ 1

0

gq(ζ, p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ),

E[q(ζ)] + λE[q1(ζ)], uε(ζ))q1(ζ)dλ, dW(ζ)

〉
+

∫ ς

0

Y(ζ)

〈∫ 1

0

gq̃(ζ, p(ζ) + λp1(ζ), E[p(ζ)]

+ λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))E[q1(ζ)]dλ, dW(ζ)

〉
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=

∫ ς

0

⟨Y1(ζ)g(u(ζ)) + Y(ζ)gp(u(ζ))p
1(ζ) + Y(ζ)gp̃(u(ζ))E[p

1(ζ)] + Y(ζ)gq(u(ζ))q
1(ζ)

+ Y(ζ)gq̃(u(ζ))E[q
1(ζ)] + Y(ζ)(g(uε(ζ))− g(u(ζ))), dW(ζ)⟩+

∫ ς

0

Y(ζ)⟨g(u(ζ)), dW(ζ)⟩

+

∫ ς

0

Y(ζ)⟨Aε
2(ζ), dW(ζ)⟩

= Y(ς)− 1 + Y1(ς) +

∫ ς

0

Y(ζ)⟨Aε
2(ζ), dW(ζ)⟩, (13)

where

Aε
2(ζ) :=

∫ 1

0

[gp(ζ, p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))

− gp(u(ζ))]dλp
1(ζ) +

∫ 1

0

[gp̃(ζ, p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)]

+ λE[q1(ζ)], uε(ζ))− gp(u(ζ))]dλE[p
1(ζ)]+

∫ 1

0

[gq(ζ, p(ζ)+ λp1(ζ), E[p(ζ)]+λE[p1(ζ)], q(ζ)

+ λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))− gq(u(ζ))]dλq
1(ζ) +

∫ 1

0

[gq̃(ζ, p(ζ) + λp1(ζ), E[p(ζ)]

+ λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))− gp(u(ζ))]dλE[q
1(ζ)].

By Lemma 2.7 of [32],

sup
0≤ς≤Tf

E

(∫ ς

0

Y(ζ)Aε
2(ζ)dW(ζ)

)2

≤ K̄εε
2. (14)

Now

Yε(ς) = 1 +

∫ ς

0

Yε(ζ)⟨g(ζ, pε(ζ), E[pε(ζ)], qε(ζ), E[qε(ζ)], uε(ζ)), dW(ζ)⟩. (15)

Using (13) and (15) we can get

Yε(ς)− Y(ς)− Y1(ς)

=

∫ ς

0

Yε(ζ)⟨g(ζ), pε(ζ), E[pε(ζ)], qε(ζ), E[qε(ζ)], uε(ζ), dW(ζ)⟩ −
∫ ς

0

Y1(ζ)⟨g(u(ζ)), dW(ζ)⟩

−
∫ ς

0

Y(ζ)⟨g(ζ, p(ζ) + p1(ζ), E[p(ζ)] + E[p1(ζ)], q(ζ) + q1(ζ), E[q(s)]

+ E[q1(ζ)], uε(ζ)), dW(ζ)⟩+
∫ ς

0

Y(ζ)⟨Aε(ζ), dW(ζ)⟩

=

∫ ς

0

(Yε(ζ)− Y(ζ)− Y1(ζ))⟨g(s), pε(ζ), E[pε(ζ)], qε(ζ), E[qε(ζ)], uε(ζ), dW(ζ)⟩

+

∫ ς

0

(Y(ζ) + Y1(ζ))⟨Bε
2(ζ), dW(ζ)⟩+

∫ ς

0

Y1(ζ)Bε
3(ζ), dW(ζ)⟩+

∫ ς

0

Y1(ζ)⟨g(uε(ζ))

− g(u(ζ)), dW(ζ)⟩+
∫ ς

0

Y(ζ)⟨Aε
2(ζ), dW(ζ)⟩, (16)



Mean-field FBSDE 13

where

Bε
2 :=

∫ ς

0

gp(p(ζ) + p1(ζ) + λ(pε(ζ)− p(ζ)− p1(ζ)), E[p(ζ)] + E[p1(ζ)] + λ(E[pε(ζ)]− E[p(ζ)]

− E[p1(ζ)]), q(ζ) + q1(ζ) + λ(qε(ζ)− q(ζ)− q1(ζ)), E[q(ζ)] + E[q1(ζ)] + λ(E[qε(ζ)]

− E[q(ζ)]− E[q1(ζ)]), uε(ζ))dλ(pε(ζ)− p(ζ)− p1(ζ)) +

∫ ς

0

hp̃(p(ζ) + p1(ζ) + λ(pε(ζ)

− p(ζ)− p1(ζ)), E[p(ζ)] + E[p1(ζ)] + λ(E[pε(ζ)]− E[p(ζ)]− E[p1(ζ)]), q(ζ) + q1(ζ)

+λ(qε(ζ)− q(ζ)− q1(ζ)), E[q(ζ)] +E[q1(ζ)]+λ(E[qε(ζ)]− E[q(ζ)]− E[q1(ζ)]), uε(ζ))

× dλ(E[pε(ζ)]− E[p(ζ)]− E[p1(ζ)]) +

∫ ς

0

gq(p(ζ) + p1(ζ) + λ(pε(ζ)− p(ζ)

− p1(ζ)), E[p(ζ)] + E[p1(ζ)] + λ(E[pε(ζ)]− E[p(ζ)]− E[p1(ζ)]), q(ζ) + q1(ζ) + λ(qε(ζ)

− q(ζ)− q1(ζ)), E[q(ζ)] + E[q1(ζ)] + λ(E[qε(ζ)]− E[q(ζ)]− E[q1(ζ)]), uε(ζ))dλ(qε(ζ)

− q(ζ)− q1(ζ)) +

∫ ς

0

gq̃(p(ζ) + p1(ζ) + λ(pε(ζ)− p(ζ)− p1(ζ)), E[p(ζ)] + E[p1(ζ)]

+ λ(E[pε(ζ)]− E[p(ζ)]− E[p1(ζ)]), q(ζ) + q1(ζ) + λ(qε(ζ)− q(ζ)− q1(ζ)), E[q(ζ)]

+ E[q1(ζ)] + λ(E[qε(ζ)]− E[q(ζ)]− E[q1(ζ)]), uε(ζ))dλ(E[qε(ζ)]− E[q(ζ)]− E[q1(ζ)])

Bε
3 :=

∫ 1

0

gp(p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))

× dλp1(ζ)+

∫ 1

0

gp̃(p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)]

+ λE[q1(ζ)], uε(ζ))dλE[p1(ζ)]+

∫ 1

0

gq(p(ζ) + λp1(ζ), E[p(ζ)] + λE[p1(ζ)], q(ζ)

+ λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))dλq1(ζ)+

∫ 1

0

gq̃(p(ζ) + λp1(ζ), E[p(ζ)]

+ λE[p1(ζ)], q(ζ) + λq1(ζ), E[q(ζ)] + λE[q1(ζ)], uε(ζ))dλE[q1(ζ)]

By Lemma 2.5 of [33], it becomes apparent that:

sup
0≤ς≤Tf

E

(∫ ς

0

Y(ζ)Bε
2(ζ)dW(ζ)

)2

≤ K̄εε
2. (17)

By (14),(16) and (17), we have

E|Yε(ς)− Y(ς)− Y1(ς)|2
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≤
{
K̄

∫ ς

0

E|Yε(ζ)− Y(ζ)− Y1(ζ)|2dζ + E

∫ ς

0

|Y1(ζ)Bε
2(ζ)|2dζ + E

∫ ς

0

|Y1(ζ)Bε
3(ζ)|2dζ

+ E

∫ ς

0

|Y1(ζ)(g(uε(ζ))− g(u(ζ)))|2dζ + sup
0≤ς≤Tf

E

(∫ ς

0

Y(ζ)Aε
2(ζ)dW(ζ)

)2

+ sup
0≤ς≤Tf

E

(∫ ς

0

Y(ζ)Bε
2(ζ)dW(ζ)

)2 }
≤ K̄

∫ ς

0

E|Yε(ζ)− Y(ζ)− Y1(ζ)|2dζ + K̄εε
2.

By the Gronwall inequality, we get

sup
0≤ς≤Tf

E|Yε(ς)− Y(ς)− Y1(ς)|2 ≤ K̄εε
2.

Hence the inequality (iii) in (12) holds. □

To prove the partially-observed stochastic maximum principle, we need the following V.I.

Lemma 3.2. Under the assumptions (A1)∼(A3) and considering u(·) as an optimal control for the

proposed PO-OCP (6), we can deduce the following:

Eu
{∫ ς

0

[η(ς)φ(u(ς)) + φ⊤
p (u(ς))p

1(ς) + φ⊤
p̃ E[p

1(ς)], φ⊤
q (u(ς))q

1(ς) + φ⊤
q̃ E[q

1(ς)]

+ φ⊤
r (u(ς))r

1(ς) + φ⊤
r̃ E[r

1(ς)] + φ⊤
r (u(ς))r

1(ς) + φ⊤
r̃ E[r

1(ς)] + φ(uε(ς))− φ(u(ς))]dς

+ η(Tf )ϕ(p(Tf ), E[p(Tf )]) + ϕ⊤
p (p(Tf ), E[p(Tf )])p

1(Tf ) + ϕ⊤
p̃ (p(Tf ), E[p(Tf )])E[p

1(Tf )]

+ γq(q(0), E[q(0)])q
1(0) + γq̃(q(0), E[q(0)])E[q

1(0)]

}
≥ o(ε). (18)

Here, η(·) represents the solution to the subsequent SDE:

dη(ς) = ⟨gp(u(ς))p1(ς) + gp̃(u(ς))E[p
1(ς)] + gq(u(ς))q

1(ς) + gq̃(u(ς))E[q
1(ς)] + g(uε(ς))

− g(u(ς)), dB̃(ς)⟩,

η(0) = 0, (19)

and o(ε) denotes the order of ε in the Taylor’s expansion such that o(ε)
ε −→ 0 as ε −→ 0.

Proof. Given that u(ς) is optimal for 0 ≤ ς ≤ Tf , it follows that:

0 ≤ J ∗(uε(ς))− J ∗(u(ς)
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= E

∫ ς

0

[
Yε(ς)φ(ς, pε(ς), E[pε(ς)], qε(ς), E[qε(ς)], rε(ς), E[rε(ς)], sε(ς), E[sε(ς)], uε(ς))− Y(ς)φ(u(ς))

]
dς

+ E

[
Yε(Tf )ϕ(p

ε(Tf ), E[p
ε(Tf )])− Y(Tf )ϕ(p(Tf ), E[p(Tf )])

]
+ E

[
γ(qε(0), E[qε(0)])− γ(q(0), E[q(0)])

]
.

= J1 + J2 + J3, (20)

where

J1 = E

∫ ς

0

[
Yε(ς)φ(ς, pε(ς), E[pε(ς)], qε(ς), E[qε(ς)], rε(ς), E[rε(ς)], sε(ς), E[sε(ς)], uε(ς))− Y(ς)φ(u(ς))

]
dς,

J2 = E

[
Yε(Tf )ϕ(p

ε(Tf ), E[p
ε(Tf )])− Y(Tf )ϕ(p(Tf ), E[p(Tf )])

]
,

J3 = E

[
γ(qε(0), E[qε(0)])− γ(q(0), E[q(0)])

]
.

First we are going to compute J3. For this purpose, it is evident that:

E

[
γ(qε(0), E[qε(0)])− γ(q(0) + q1(0), E[q(0) + q1(0)])

]
= o(ε).

Hence,

J1 = E

[
γ(qε(0), E[qε(0)])− γ(q(0), E[q(0)])

]
= E

[
γ⊤
q (q(0), E[q(0)])q1(0) + γ⊤

q̃ (q(0), E[q(0)])E[q1(0)]

]
+ o(ε).

Next we are going to evaluate the term J2. That is

J2 = E

[
Yε(T ′

f )ϕ(p
ε(Tf ), E[p

ε(Tf )])− Y(Tf )ϕ(p(Tf ), E[p(Tf )])

]
= E

[
Y1(Tf )ϕ(p(Tf ), E[p(Tf )])

]
+ E

[
Y(Tf )ϕ

⊤
p (p(Tf ), E[p(Tf )])p

1(Tf ) + ϕp̃(p(Tf ), E[p(Tf )])E[p
1(Tf )]

]
+ E

[
(Y(Tf ) + Y1(Tf ))ϕ

⊤
p (p(Tf ) + p1(Tf ), E[p(Tf ) + p1(Tf )])(p

ε(Tf )− p(Tf )− p1(Tf )) + ϕ⊤
p̃ (p(Tf )

+ p1(Tf ), E[p(Tf ) + p1(Tf )])(E[p
ε(Tf )]− E[p(Tf )]− E[p1(Tf )])

]
+ E

[
Y1(Tf )[ϕ

⊤
p (p(Tf ), E[p(Tf )])p

1(Tf )

+ ϕ⊤
p̃ (p(Tf ), E[p(Tf )])E[p

1(Tf )]]

]
+ E

[
(Yε(Tf )− Y(Tf )− Y1(Tf ))ϕ(p

ε(Tf ), E[p
ε(Tf )])

]
+ o(ε).

Finally,

J3 = E

∫ Tf

0

[Yε(ς)φ(ς, pε(ς), E[pε(ς)], qε(ς), E[qε(ς)], rε(ς), E[rε(ς)], sε(ς), E[sε(ς)], uε(ς))− Y(ς)φ(u(ς))]dς
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= E

∫ Tf

0

Y1(ς)φ(u(ς))dς + E

∫ Tf

0

(Yε(ς)− Y(ς)− Y1(ς))[φ(ς, p(ς) + p1(ς), E[p(ς) + p1(ς)], q(ς)

+ q1(ς), E[q(ς) + q1(ς)], r(ς) + r1(ς), E[r(ς) + r1(ς)], s(ς) + s1(ς), E[s(ς) + s1(ς)], uε(ς))]dς

+ E

∫ Tf

0

(Y(ς) + Y1(ς))[φ(ς, p(ς) + p1(ς), E[p(ς) + p1(ς)], q(ς) + q1(ς), E[q(ς) + q1(ς)], r(ς)

+ r1(ς), E[r(ς) + r1(ς)], s(ς) + s1(ς), E[s(ς) + s1(ς)], uε(ς))− φ(uε(ς))]dς − E

∫ Tf

0

(Y(ς)

+ Y1(ς))[φ(ς, p(ς) + p1(ς), E[p(ς) + p1(ς)], q(ς) + q1(ς), E[q(ς) + q1(ς)], r(ς) + r1(ς), E[r(ς)

+ r1(ς)], s(ς) + s1(ς), E[s(ς) + s1(ς)], u(ς))− φ(u(ς))]dς + E

∫ Tf

0

(Y(ς)+Y1(ς))[φ(uε(ς))−φ(u(ς))]

+ E

∫ Tf

0

(Y(ς) + Y1(ς))[φ(ς, p(ς) + p1(ς), E[p(ς) + p1(ς)], q(ς) + q1(ς), E[q(ς) + q1(ς)], r(ς)

+ r1(ς), E[r(ς) + r1(ς)], s(ς) + s1(ς), E[s(ς) + s1(ς)], u(ς))− φ(u(ς))]dς

= E

∫ Tf

0

[
Y1(ς)φ(u(ς)) + Y(ς)φ⊤

p (u(ς))p
1(ς) + Y(ς)φ⊤

p̃ (u(ς))E[p
1(ς)] + Y(ς)φ⊤

q (u(ς))q
1(ς)

+ Y(ς)φ⊤
q̃ (u(ς))E[q

1(ς)] + Y(ς)φ⊤
r (u(ς))r

1(ς) + Y(ς)φ⊤
r̃ (u(ς))E[r1(ς)] + Y(ς)φ⊤

s (u(ς))s
1(ς)

+ Y(ς)φ⊤
s̃ (u(ς))E[s

1(ς)]

]
dς + o(ε).

Using J1,J2 and J3 in (20), we obtain

Eu
{∫ ς

0

[Y1(ς)φ(u(ς)) + Y(ς)φ⊤
p (u(ς))p

1(ς) + Y(ς)φ⊤
p̃ E[p

1(ς)] + Y(ς)φ⊤
q (u(ς))q

1(ς) + Y(ς)φ⊤
q̃ E[q

1(ς)]

+ Y(ς)φ⊤
r (u(ς))r

1(ς) + Y(ς)φ⊤
r̃ E[r

1(ς)] + Y(ς)φ⊤
s (u(ς))s

1(ς) + Y(ς)φ⊤
s̃ E[s

1(ς)] + Y(ς)(φ(uε(ς))

− φ(u(ς)))]dς+Y1(Tf )ϕ(p(Tf ), E[p(Tf )])+Y(Tf )ϕ
⊤
p (p(Tf ), E[p(Tf )])p

1(Tf )+Y(Tf )ϕ
⊤
p̃ (p(Tf ), E[p(Tf )])

× E[p1(Tf )]+ γq(q(0), E[q(0)])q
1(0)+γq̃(q(0), E[q(0)])E[q

1(0)]

}
≥ o(ε). (21)

Applying Ito’s formula in (10), we can get

Y1(ς) = Y(ς)

∫ ς

0

⟨gp(u(ζ))p1(ζ) + gp̃(u(ζ))E[p1(ζ)] + gq(u(ζ))q
1(ζ) + gq̃(u(ζ))E[q

1(ζ)] + g(uε(ζ))

− g(u(ζ)), dB̃(ζ)⟩.

By (4), we can get

dY−1(ς) = −Y−1(ς)⟨g(u(ς)), dW(ς)⟩+ Y−1(ς)|g(u(ς))|2dς.
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By applying Ito’s formula to the expression η(·) = Y−1(·)Y1(·), we obtain equation (19). Consequently,

based on equation (21), we can conclude that V.I. (18) holds. Hence, the proof is now complete. □

3.3. Partially observed Stochastic Mean-Field Maximum Principle. The goal of this sub-

section is to derive the partially-observed stochastic maximum principle, To achieve this, we start

by eliminating the variational processes (p1(·), E[p1(·)], q1(·), E[q1(·)], r1(·), E[r1(·)]) and the auxiliary

process η(·) from V.I. (18). Subsequently, we utilize Ito’s formula to derive the necessary conditions

for optimality. In order to handle the process η(·) ∈ R, consider the auxiliary BSDE as follows:

−dP̃ (ς) = φ(u(ς))dς − ⟨Q̃(ς), dB̃(ς)⟩,

P̃ (Tf ) = Υ(p(Tf ), E[p(Tf )]). (22)

Based on the assumptions (A1) and (A3), it can be readily verified that (22) possesses a unique

solution denoted by (P̃ (·), Q̃(·)).

The following system represents the adjoint equations for (1):

dΦ(ς) =

[
k⊤q (u(ς))Φ(ς) + k⊤q̃ (u(ς))E[Φ(ς)]− h⊤

q (u(ς))Ψ(ς)− h⊤
q̃ (u(ς))E[Ψ(ς)]

−
d∑

j=1

(
σj
q

⊤
(ς)aj(ς) + σj

q̃

⊤
(ς)E[aj(ς)]

)
−

∞∑
j=1

(
f j
q (ς)b

j(ς) + f j
q̃ (ς)E[b

j(ς)]

)

− g⊤q (u(ς))Q̃(ς)− g⊤q̃ (u(ς))E[Q̃(ς)]− φq((u(ς)))− φq̃(u(ς)

]
dς

+

d∑
j=1

[
k⊤rj (u(ς))Φ(ς) + k⊤r̃j (u(ς))E[Φ(ς)]− h⊤

rj (u(ς))Ψ(ς)− h⊤
r̃j (u(ς))E[Ψ(ς)]

+

d∑
i=1

(
σi
rj

⊤
(ς)ai(ς) + σi

r̃j
⊤
(ς)E[ai(ς)]

)
+

∞∑
i=1

(
f i
rj (ς)b

i(ς) + f i
r̃j (ς)E[b

i(ς)]

)

− φrj (u(ς))− φr̃j (u(ς))

]
dBj(ς) +

d∑
j=1

[
k⊤sj (u(ς))Φ(ς) + k⊤s̃j (u(ς))E[Φ(ς)]− h⊤

sj (u(ς))Ψ(ς)

− h⊤
s̃j (u(ς))E[Ψ(ς)] +

d∑
i=1

(
σi
sj

⊤
(ς)ai(ς) + σi

s̃j
⊤
(ς)E[ai(ς)]

)

+

∞∑
i=1

(
f i
sj (ς)b

i(ς) + f i
s̃j (ς)E[b

i(ς)]

)
− φsj (u(ς))− φs̃j (u(ς))

]
dHj(ς),

−dΨ(ς) =

[
− k⊤p (u(ς))Φ(ς)− k⊤p̃ (u(ς))E[Φ(ς)] + h⊤

p (u(ς))Ψ(ς) + h⊤
p̃ (u(ς))E[Ψ(ς)]
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−
d∑

j=1

(
σj
p

⊤
(ς)aj(ς) + σj

p̃

⊤
(ς)E[aj(ς)]

)
−

∞∑
j=1

(
f j
p (ς)b

j(ς) + f j
p̃ (ς)E[b

j(ς)]

)

+ g⊤p (u(ς))Q̃(ς) + g⊤p̃ (u(ς))E[Q̃(ς)]− φp((u(ς)))− φp̃(u(ς))

]
dς −

d∑
j=1

aj(ς)dBj(ς)

−
∞∑
j=1

bj(ς)dHj(ς),

Φ(0) = −
[
γq(q(0), E[q(0)]) + γq̃(q(0), E[q(0)])

]
,

Ψ(Tf ) = −
[
l⊤p (p(Tf ), E[p(Tf )])Φ(Tf ) + l⊤p̃ (p(Tf ), E[p(Tf )])E[Φ(Tf )] + ϕp(p(Tf ), E[p(Tf )])

+ ϕ⊤
p̃ (p(Tf ), E[p(Tf )])

]
. (23)

Likewise, under the assumptions (A1)∼(A3), it can be verified that (23) has a unique solution given

by (Φ(·),Ψ(·), a(·), b(·)).

From [33], let us define the Hamiltonian function using the system (1) with cost functional (7)

H : [0, Tf ]×Rn ××Rn ×Rm ×Rm ×Rm×d ×Rm×d × l2(Rm)× l2(Rm)×U ×Rm ×Rn ×Rn×d ×

l2(Rm)×Rr −→ R as

H(ς, p, p̃, q, q̃, r, r̃, s, s̃, v,Φ(·),Ψ(·), k(·), a(·), Q̃) := ⟨Ψ, h(ς, p, p̃, q, q̃, r, r̃, s, s̃, v)⟩

− ⟨Φ, k(ς, p, p̃, q, q̃, r, r̃, s, s̃, v)⟩+ ⟨σ(ς, p, p̃, q, q̃, r, r̃, s, s̃), a(ς)⟩+
∞∑
j=1

bj(ς)f j(ς, p, p̃, q, q̃, r, r̃, s, s̃)

+ ⟨Q̃, g(ς, p, p̃, q, q̃, v)⟩+ φ(ς, p, p̃, q, q̃, v). (24)

Then, (23) can be reformulated as a stochastic Hamiltonian system of the following type:

dΦ(ς) = −
[
Hq(u(ς)) + E[Hq̃(u(ς))]

]
dς +

d∑
j=1

[
Hj

rj (u(ς)) + E[Hj
r̃j (u(ς))]

]
dBj(ς)

−
∞∑
j=1

[
Hj

sj (u(ς)) + E[Hj
s̃j (u(ς))]

]
dHj(ς),

−dΨ(ς) =

[
Hp(u(ς)) + E[Hp̃(u(ς))]

]
dς −

d∑
j=1

aj(ς)dBj(ς)−
∞∑
j=1

bj(ς)dHj(ς),

Φ(0) = −
[
γq(q(0), E[q(0)]) + E[γq̃(q(0), E[q(0)])]

]
,
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Ψ(Tf ) = −
[
l⊤p (p(Tf ), E[p(Tf )])Φ(Tf ) + E[l⊤p̃ (p(Tf ), E[p(Tf )])Φ(Tf )] + ϕp(p(Tf ), E[p(Tf )])

+ E[ϕ⊤
p̃ (p(Tf ), E[p(Tf )])]

]
. (25)

Here the partial derivative of H with respect to p is denoted as

Hp(u(ς)) := Hp(ς, p(ς), E[p(ς)], q(ς), E[q(ς)], r(ς), E[r(ς)], s(ς), E[s(ς)], u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς)) and

similarly we can use the simplified notations for other partial derivatives.

The subsequent theorem presents the key result of this manuscript.

Theorem 3.3 (Partially-Observed Mean Field Stochastic Maximum Principle). We assume (A1)∼

(A3) hold and considering u(·) as an optimal control for our PO-OCP described by (6), let (p(·), E[p(·)],

q(·), E[q(·)], r(·), E[r(·)]) represents the corresponding optimal path, and Y(·) be the solution of (4).

Moreover, let (P̃ (·), Q̃(·))denote the solution of (22) and (Φ(·),Ψ(·), a(·), b(·)) be the solution of ad-

joint equations(23).

Then we obtain the following:

Eu
[
H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), v,Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))|FW
ς

]
≥ 0 (26)

∀v ∈ U, a.e. ς ∈ [0, Tf ], a.s.,

where H is the Hamiltonian function given in (24).

Proof. By employing Ito’s formula to ⟨p1(·),Ψ(·)⟩ + ⟨q1(·),Φ(·)⟩ + η(·)P̃ (·) and using the auxiliary

BSDE (22) and adjoint equations (23), as well as the variational equations (9) and V.I. (18), we get

Eu
[ ∫ Tf

0

(
η(·)φ(u(ς)) + φ⊤

p (u(ς))p
1(ς) + φ⊤

p̃ (u(ς))E[p
1(ς)] + φ⊤

q (u(ς))q
1(ς) + φ⊤

q̃ (u(ς))E[q
1(ς)]

+ φ⊤
r (u(ς))r

1(ς) + φ⊤
r̃ (u(ς))E[r

1(ς)] + φ⊤
s (u(ς))s

1(ς) + φ⊤
s̃ (u(ς))E[s

1(ς)] + φ(uε(ς))− φ(u(ς))

)
dς

+ η(Tf )ϕ(p(Tf ), E[p(Tf )]) + ϕ⊤
p (p(Tf ), E[p(Tf )])p

1(Tf ) + ϕ⊤
p̃ (p(Tf ), E[p(Tf )])E[p

1(Tf )]

+ γq(q(0), E[q(0)])q
1(0) + γq̃(q(0), E[q(0)])E[q

1(0)]

]
= Eu

[ ∫ Tf

0

(
⟨Ψ(ς), h(uε(ς))− h(u(ς))⟩ − ⟨Φ(ς), k(uε(ς))− k(u(ς))⟩+ ⟨Q̃, g(uε(ς))− g(u(ς))⟩

+ φ(uε(ς))− φ(u(ς))

)
dς

]
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= Eu
[ ∫ Tf

0

(
H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), s(ς), s̃(ς), uε(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς)

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς)s(ς), s̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς)

)
dς

]
≥ o(ε)

Based on the definition of uε(·), we have

Eu
[ ∫ δ+ε

δ

(
H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), s(ς), s̃(ς)v,Φ(ς),Ψ(ς), a(ς), b(ς), Ψ̃(ς))

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς), s(ς), s̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς)

)
dς

]
≥ o(ε)

Dividing the above equation by ε, we get

lim
ε−→0

1

ε
Eu

∫ δ+ε

δ

(
H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), s(ς), s̃(ς), v,Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς), s(ς), s̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))

)
dς ≥ 0.

Hence, we have

Eu
[
H(p(δ), p̃(δ), q(δ), q̃(δ), r(δ), r̃(δ), s(δ), s̃(δ), v,Φ(δ),Ψ(δ), a(δ), b(δ), Q̃(δ))

−H(δ, p(δ), p̃(δ), q(δ), q̃(δ), r(δ), r̃(δ), s(δ), s̃(δ), u(δ),Φ(δ),Ψ(δ), a(δ), b(δ), Q̃(δ))

]
≥ 0

a.e. δ ∈ [0, Tf ].

Consider a deterministic element c ∈ U and an arbitrary element F ∈ FW
ς . We define w∗(ς) =

cIF + u(ς)IΩ−F , where I denotes the indicator function.

It is evident that, w∗(·) is also an admissible control. As 0 ≤ δ ≤ ςf , for any bounded U-valued,

Fς
W -measurable random variable v such that sup

ω∈Ω
|v(ω)| < ∞, we obtain the following:

Eu
[
H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), s(ς), s̃(ς), v,Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς), s(ς), s̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))

]
dς ≥ 0, a.e. ς ∈ [0, Tf ].

By utilizing the aforementioned inequality for w∗(·), one can get

Eu
[
I(H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), s(ς), s̃(ς), c,Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))



Mean-field FBSDE 21

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς), s(ς), s̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς)))

]
dς ≥ 0

∀F ∈ FW
ς , a.e. ς ∈ [0, Tf ].

This leads to the conclusion that

Eu
[
H(ς, p(ς), p̃(ς), q(ς), q̃(ς), r(ς), r̃(ς), v,Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))

−H(ς, p(ς), p̃(ς), q(ς), q̃, r(ς), r̃(ς), u(ς),Φ(ς),Ψ(ς), a(ς), b(ς), Q̃(ς))|FW
ς

]
≥ 0,

a.e. ς ∈ [0, Tf ], a.s.

Thus (26) holds. □

4. Application in Linear Quadratic Mean Field Optimal Control Problem

In this section, we are going to discuss an LQ example to illustrate our theoretical results in the

previous section. Let us consider the following control system governed by MF-FBSDE with m = n =

1.

dpv(ς) = [A1(ς)pv(ς) +A2(ς)E[pv(ς)] +A3(ς)qv(ς) +A4(ς)E[qv(ς)] +A5(ς)v(ς)]dς +

d∑
j=1

Cj(ς)dBj(ς)

+

∞∑
j=1

Dj(ς)dHj(ς),

−dqv(ς) = [B1(ς)pv(ς) +B2(ς)E[pv(ς)] +B3(ς)qv(ς) +B4(ς)E[qv(ς)] +B5(ς)v(ς)]dς −
d∑

j=1

(rjv)(ς)dBj(ς)

−
∞∑
j=1

sj(ς)dHj(ς), ς ∈ [0, Tf ],

pv(0) = p0,

qv(Tf ) = C1pv(Tf ) + C2E[pv(Tf )], (27)

and observation

dW(ς) = G(ς)dς + dB̃(ς), ς ∈ [0, Tf ],

W(0) = 0. (28)
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Here, the functions Ai(·), Bi(·) for i = 1, 2, · · · , 5, Cj(·) for j = 1, 2, . . . d and Dj(·) for j = 1, 2, . . . are

all bounded, deterministic and satisfying the assumptions (A1) and (A2) in Section 2.

The cost functional is

J ∗(v(·)) = 1

2
Ev

[ ∫ Tf

0

[S1(ς)(pv(ς))
2 + S2(ς)(E[pv(ς)])

2 + S3(ς)(qv(ς))
2 + S4(ς)(E[qv(ς)])

2

+ S5(ς)u
2(ς)]dς +M1(pv(Tf ))

2 +M2(E[pv(Tf )])
2 +N1(qv(0))

2 +N2(E[qv(0)])
2

]
, (29)

where the functions Si(·) ≥ 0, ∀ i = 1, 2, 3, 4, S5(·) > 0 and the constants M1,M2, N1, N2 ≥ 0.

The function S−1
5 (·) is also bounded. The two-dimensional standard Brownian motion (B(·),W(·)) is

defined on (Ω,F, {Fς}, P ). By (28), it is clear that (B(·), B̃(·)) constitutes a standard Brownian motion

which is two dimensional, defined on (Ω,F, {Fς},Pv), a new probability space, where Pv represents a

new probability measure.

It is simple to prove that the condition (A2) in Section 2 holds for any given v(·). Hence, the FBSDE

(27) admits a unique solution (pv(·), E[pv(·)], qv(·), E[qv(·)], rv(·), E[rv(·)]). The Hamiltonian function

is given by

H(ς, p, p̄, q, q̄, r, r̄, v,Φ,Ψ, a, b, Q̃) = Ψ(A1(ς)p+A2(ς)p̄+A3(ς)q +A4(ς)q̄+A5(ς)v)− Φ(B1(ς)p+B2(ς)p̄

+B3(ς)q +B4(ς)q̄ +B5(ς)v) +

d∑
j=1

aj(ς)Cj(ς)+

∞∑
j=1

bj(ς)Dj(ς)

+Q̃F̄ (ς) +
1

2
[S1(ς)p

2 + S2(ς)(p̄)
2 + S3(ς)q

2 + S4(ς)(q̄)
2 + S5(ς)v

2].

(30)

By Theorem 2.2, if u(·) is optimal, then

u(ς) = −S−1
5 (ς)

(
A5(ς)E

u[Ψ(ς)|Fς ]−B5(ς)E
u[Φ(ς)|Fς ]

)
, (31)

where (Φ(·),Ψ(·)) represents the solution to the FBSDE specified as follows :

dΦ(ς) =

(
B3(ς)Φ(ς) +B4(ς)E[Φ(ς)]−A3(ς)Ψ(ς)−A4(ς)E[Ψ(ς)]− S3(ς)qu(ς)− S4(ς)E[qu(ς)]

)
dς,

−dΨ(ς) =

(
−B1(ς)Φ(ς)−B2(ς)E[Φ(ς)] +A1(ς)Ψ(ς) +A2(ς)E[Ψ(ς)]− S1(ς)pu(ς)− S2(ς)E[pu(ς)]

)
dς

−
d∑

j=1

aj(ς)dBj(ς)−
∞∑
j=1

bj(ς)dHj(ς),
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Φ(0) = −N1(qv(0))−N2E[qv(0)],

Ψ(Tf ) = −C1Φ(Tf )− C2E[Φ(Tf )] +M1(pu(Tf )) +M2(E[pu(Tf )]). (32)

Similarly, one can verify that the condition (A2) is satisfied, in which case the FBSDE (32) admits a

unique solution (Φ(·),Ψ(·), a(·), b(·)).

Moreover, one can demonstrate that the admissible control (31), which satisfies the necessary optimal-

ity conditions, is indeed optimal. The expectations Eu and Ev are equivalent. Then for any admissible

control v(·), the following holds:

J ∗(v(·))− J ∗(u(·)) = 1

2
Eu

[ ∫ Tf

0

S1(ς)(pv(ς)− pu(ς))
2 + 2S1(ς)pu(ς)(pv(ς)− pu(ς))

+ S2(ς)(E[pv(ς)]− E[pu(ς)])
2 + 2S2(ς)E[pv(ς)](E[pv(ς)]− E[pu(ς)])

+ S3(ς)(qv(ς)− qu(ς))
2 + 2S3(ς)qu(ς)(qv(ς)− qu(ς))

+ S4(ς)(E[qv(ς)]− E[qu(ς)])
2 + 2S4(ς)E[qv(ς)](E[qv(ς)]− E[qu(ς)])

+ S5(ς)(v(ς)− u(ς))2 + 2S5(ς)u(ς)(v(ς)− u(ς)) +M1(pv(Tf )− pu(Tf ))
2

+ 2M1pu(Tf )(pv(Tf )− pu(Tf )) +M2(E[pv(Tf )]− E[pu(Tf )])
2

+ 2M2E[pu(Tf )](E[pv(Tf )]− E[pu(Tf )]) +N1(qv(0)− qu(0))
2

+ 2N1qu(0)(qv(0)− qu(0)) +N2(E[qv(0)]− E[qu(0)])
2

+ 2N2E[qu(0)](E[qv(0)]− E[qu(0)])

]
. (33)

Applying Ito’s formula to (pv(ς)− pu(ς))Ψ(ς) + (qv(ς)− qu(ς))Φ(ς), we have

Eu
[
(M1pu(Tf ) +M2E[pu(Tf )])(pv(Tf )− pu(Tf )) + (N1qu(0) +N2E[qu(0)])(qv(0)− qu(0))

]
= Eu

[ ∫ Tf

0

(
(pv(ς)− pu(ς))S1(ς)pu(ς) + (pv(ς)− pu(ς))S2(ς)E[pu(ς)]+Ψ(ς)A5(ς)(v(ς)−u(ς))

+ (qv(ς)− qu(ς))S3(ς)qu(ς) + (qv(ς)− qu(ς))S4(ς)E[qu(ς)]− Φ(ς)B5(ς)(v(ς)− u(ς))dς

)]
.

(34)
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As Si(ς) ≥ 0 ∀i = 1, 2, 3, 4, S5(ς) > 0 ∀t ∈ [0, Tf ] and M1,M2, N1, N2 ≥ 0, observing that (Φ(·),Ψ(·))

are not completely observable, we obtain

J ∗(v(·))− J ∗(u(·)) ≥ Eu
[ ∫ Tf

0

(
S1(ς)pu(ς)(pv(ς)− pu(ς)) + S2(ς)E[pu(ς)]E[pv(ς)− pu(ς)]

+ S3(ς)qu(ς)(qv(ς)− qu(ς)) + S4(ς)E[qu(ς)]E[qv(ς)− qu(ς)]

+ S5(ς)u(ς)(v(ς)− u(ς))

)
dt+M1pu(Tf )(pv(Tf )− pu(Tf ))

+M2E[pu(Tf )]E[pv(Tf )− pu(Tf )] +N1qu(0)(qv(0)− qu(0))

+N2E[qu(0)]E[qv(0)− qu(0)]

]
= Eu

[ ∫ Tf

0

(
S5(ς)u(ς)(v(ς)− u(ς)) + (A5(ς)Ψ(ς)−B5(ς)Φ(ς))(v(ς)− u(ς))

)
dt

]
= Eu

[∫ Tf

0

(
S5(ς)

(
− S−1

5 (ς)A5(ς)E
u[Ψ(ς)|Ft]−B5(ς)E

u[Φ(ς)|Ft]

)
(v(ς)− u(ς))

+ (A5(ς)Ψ(ς)−B5(ς)Φ(ς))(v(ς)− u(ς))

)
dς

]
= 0. (35)

Hence, (31) is an optimal control.

With the help of (31) and the filtering estimates for optimal trajectories, we are looking for an explicit

observable optimal control. For this, considering the terminal condition of (32), we get

Ψ(ς) = Π1(ς)(Φ(ς)− E[Φ(ς)]) + Π2(ς)E[Φ(ς)] + π1(ς)(p(ς)− E[p(ς)]) + π2(ς)E[p(ς)] + χ(ς), (36)

where π1(·), π2(·) satisfies the following Riccati equations(37) and (38):
π̇1(ς) + (2A1(ς) +A3(ς))π1(ς) + S−1

5 (ς)A2
5(ς)π

2
1(ς) + S1(ς) = 0,

π1(Tf ) = M1,

(37)


π̇2(ς) + (2A2(ς) +A1 −A3(ς)−A4(ς))π2(ς)− S−1

5 (ς)A2
5(ς)π

2
2(ς) + S1(ς) + S2(ς) = 0,

π2(Tf ) = M1 +M2,

(38)

Further the functions Π1(·),Π2(·), χ(·) satisfies the following ordinary differential equations(39)∼(41):
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
Π̇1(ς) + (A1(ς) +B3(ς)− π1(ς)A5(ς)S

−1
5 A5(ς))Π1(ς) +A3(ς)Π

2
1(ς) +B1(ς) = 0,

Π1(Tf ) = −C1,

(39)


Π̇2(ς) + (B3(ς) +B4(ς) +A1(ς)−A3(ς)−A4(ς)− π2(ς)A5(ς)S

−1
5 A5(ς))Π2(ς) +B1(ς)

+B2 +B5(ς) = 0,

Π2(Tf ) = −(C1 + C2),

(40)

and 
χ̇(ς) + (A1(ς) +A2(ς)−A5(ς)S

−1
5 (ς)A5(ς)π2(ς))χ(ς) = 0,

χ(Tf ) = 0.

(41)

From the classical Riccati equation theory, it is obvious that the Riccati equations (37),(38) admit

unique solutions and all the three ordinary differential equations (39),(40), and (41) which also have

unique solutions respectively.

Next, we know that

dΦ(ς) =

(
(B3(ς)−A3(ς)Π1(ς))Φ(ς) + (B4(ς) +A3(ς)Π1(ς)−A3(ς)Π2(ς)−A4(ς)Π2(ς))E[Φ(ς)]

−A3(ς)π1(ς)p(ς) +(A3(ς)π1(ς)−A3(ς)π2(ς)−A4(ς)π2(ς))E[p(ς)]−S3(ς)q(ς)−S4(ς)E[q(ς)]

)
dς,

Φ(0) = −N1q(0)−N2E[q(0)]. (42)

Our aim is to establish the filtering estimate Φ̂(ς) of Φ(·) under FW
ς .

(i.e) Φ̂(ς) := Eu[ Φ(ς)|FW
ς ], 0 ≤ ς ≤ Tf .

Then the observable optimal control is obtained, using (31) and (36) as follows:

u(ς) = −S−1
5 (ς)

(
A5(ς)Π1(ς)(p̂(ς)− E[p̂(ς)]) + (A5(ς)Π2(ς)−B5(ς))E[p̂(ς)] +A5(ς)π1(ς)(p̂(ς)−E[p̂(ς)])

+A5(ς)π2(ς)E[p̂(ς)] +A5(ς)χ(ς)

)
, 0 ≤ ς ≤ Tf . (43)
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Taking conditional expectation on (42), we get

dΦ̂(ς) =

(
(B3(ς)−A3(ς)Π1(ς))Φ̂(ς) + (B4(ς) +A3(ς)Π1(ς)−A3(ς)Π2(ς)−A4(ς)Π2(ς))E[Φ̂(ς)]

−A3(ς)π1(ς)p̂(ς)+(A3(ς)π1(ς)−A3(ς)π2(ς)−A4(ς)π2(ς))E[p̂(ς)]−S3(ς)q̂(ς)−S4(ς)E[q̂(ς)]

)
dς,

Φ̂(0) = −N1q̂(0)−N2E[q̂(0)], (44)

where the filtering estimates of the optimal paths under FW
ς are defined as follows:

p̂(ς) := Eu[pu(ς)|FW
ς ], q̂(ς) := Eu[qu(ς)|FW

ς ], r̂(ς) := Eu[ru(ς)|FW
ς ], 0 ≤ ς ≤ Tf .

Now, we use the observable optimal control (43), in the proposed LQ system (27) and taking the

conditional expectation E[ ·|FW
ς ] on both sides to get

dp̂u(ς) =

(
(A1(ς)−A5(ς)S

−1
5 (ς)A5(ς)π1(ς))p̂u(ς) + (A2(ς) +A5(ς)S

−1
5 (ς)A5(ς)π1(ς)

−A5(ς)S
−1
5 (ς)A5(ς)π2(ς))E[p̂u(ς)]+A3(ς)q̂u(ς)+A4(ς)E[q̂u(ς)]−A5(ς)S

−1
5 (ς)A5(ς)Π1(ς)Φ̂(ς)

+ (A5(ς)S
−1
5 (ς)A5(ς)Π1(ς)−A5(ς)S

−1
5 (ς)A5(ς)Π2(ς) +A5(ς)S

−1
5 (ς)B5(ς))E[Φ̂(ς)]

−A5(ς)S
−1
5 (ς)A5(ς)χ(ς)

)
dς,

−dq̂u(ς) =

(
(B1(ς)−B5(ς)S

−1
5 (ς)A5(ς)π1(ς))p̂u(ς) + (B2(ς) +B5(ς)S

−1
5 (ς)A5(ς)π1(ς)

−B5(ς)S
−1
5 (ς)A5(ς)π2(ς))E[p̂u(ς)] +B3(ς)q̂u(ς) +B4(ς)E[q̂u(ς)]−B5(ς)S

−1
5 (ς)A5(ς)Π1(ς)Φ̂(ς)

+B5(ς)S
−1
5 (ς)A5(ς)Π1(ς)−B5(ς)S

−1
5 (ς)A5(ς)Π2(ς)+B5(ς)S

−1
5 (ς)B5(ς))E[Φ̂(ς)]

−B5(ς)S
−1
5 (ς)A5(ς)χ(ς)

)
dς,

p̂(0) = p0,

q̂u(Tf ) = C1p̂u(Tf ) + C2E[p̂u(Tf )]. (45)

Clearly (44) and (45) admits unique solution. Therefore (43) is an observable optimal control.

Now, we are going to obtain the filtering estimate r̂u(ς). From the terminal condition of (27), we can

get

qu(ς) = Σ1(ς)(pu(ς)− E[pu(ς)]) + Σ2(ς)E[pu(ς)] + ∆(ς), a.e. ς ∈ [0, Tf ], (46)
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where Σ1(·),Σ2(·) are the solutions of the Riccati equations which are provided below
Σ̇1(ς) + (A1(ς)−A2

5(ς)S
−1
5 (ς)π1(ς) +B1(ς))Σ1(ς) +A3(ς)Σ

2
1(ς) +B1(ς) = 0,

Σ1(Tf ) = C1,

(47)


Σ̇2(ς) + (A1(ς) +A2(ς)−A2

5(ς)S
−1
5 (ς)π2(ς) +B3(ς) +B4(ς))Σ2(ς) + (A3(ς) +A4(ς))Σ

2
2(ς)

+B1(ς) +B2(ς) = 0,

Σ2(Tf ) = C1 + C2

(48)

and ∆(·) satisfies the following ordinary differential equation
∆̇(ς) + (B3(ς) +B4(ς))∆(ς)− S−1

5 (ς)Σ1(ς)A2
5(ς)Π1(ς)(Φ̂(ς)− E[Φ̂(ς)])

−Σ2(ς)A5(ς)S
−1
5 (ς)(A5(ς)Π2(ς)−B5(ς))E[Φ̂(ς)]− Σ2(ς)A2

5(ς)S
−1
5 (ς)χ(ς) = 0,

∆(Tf ) = 0.

(49)

From the theory of classical BSDE, it is simple to derive

(r̂j)u(ς) = rj(ς) = Dj(ς)Σ1(ς) a.e.ς ∈ [0, Tf ],∀i = 1, 2, 3, . . . . (50)

Therefore, the following result is obtained.

Theorem 4.1. For the proposed LQ PO-OCP of fully-coupled forward-backward mean-field SDE (27),

the expression (43) gives the optimal control u(·) which is observable, where Φ̂(·) is the solution of (44)

and π1(ς), π2(ς),Π1(·),Π2(·) are the solutions of the Riccati equations(37)-(40). Moreover the filtering

estimates (p̂(·), q̂(·), r̂(·)) of optimal trajectories (p(·), q(·), r(·)) are given by (45), where Σ1(·),Σ2(·)

are the solutions of Riccati equation(47),(48).

5. Conclusion and Future works

This research focuses on establishing the maximum principle for the PO-OCP. The controlled state

process is governed by FBSDE of mean-field type, with the influence of Teugels martingales. Through

the transformation of the partial observation problem into an equivalent form with complete informa-

tion, we have effectively derived the stochastic maximum principle for optimal control. This conversion

has played a crucial role in overcoming the complexities associated with partial observation, enabling
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us to establish a robust framework for tackling the problem of optimal control. To validate our

theoretical findings, we have explicitly solved a PO-LQ problem. This explicit solution serves as con-

crete evidence of the effectiveness and practical applicability of the proposed approach to deal with

partially observed systems. These findings open up new avenues for addressing complex financial

decision-making scenarios under partial information constraints, enhancing the applicability of the

proposed methodology in the field of finance. The authors’ future focus will be on establishing the

stochastic maximum principle for mean-field type FBSDEs with mixed initial and terminal conditions.
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