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Abstract: With the diversification of electricity price structures, an increasing number of power utilities have incorporated demand
charges into their tariff structures. Individual households equipped with photovoltaic (PV) and energy storage systems can adapt to
this trend by adopting appropriate energy management strategies. Due to the high uncertainty in photovoltaic and load generation
for household users, it is often challenging for them to make the most advantageous choice among the diverse electricity tariffs.
This paper proposes a rolling prediction method based on Long Short-Term Memory (LSTM) networks for monthly peak power
demand, taking into account historical peak power and applying corrective measures within the same month. Additionally, a profit
evaluation method for electricity tariff schemes considering forecast uncertainties is presented. The predictive capabilities of load
and PV power are characterized using kernel density estimation, and a large number of scenarios are generated using Monte
Carlo simulation. Based on the proposed energy management strategies, a probabilistic economic evaluation is conducted for
different tariff schemes, enabling the optimal selection of electricity tariffs. To validate the effectiveness of the proposed methods,
analysis is performed using household data from Arizona, and the results demonstrate that the proposed methods can reduce
monthly electricity expenses and assist households in choosing the correct electricity tariff scheme.
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1 Introduction Specifically, significant attention has been placed on time series-

The charging schemes for electricity prices are becoming increas-
ingly diverse worldwide. The electricity tariff structure is evolving
towards accurately reflecting the costs of electricity consumption
from multiple dimensions, including power and energy, in a more
precise manner[1]. This trend aims to more accurately reflect the
actual supply and consumption of electric energy, in order to pro-
mote energy efficiency and sustainability. Electricity markets and
regulations have improved their pricing models and billing mech-
anisms by considering factors such as demand power, peak loads,
supply-demand balance, and infrastructure costs. This evolution
helps incentivize users to reduce electricity loads during peak hours,
optimize electricity consumption behavior, and promote the use of
clean energy, laying a foundation for sustainability transition of
energy systems[2-3]. Therefore, under electricity tariffs that include
demand charge, a feasible method for selecting electricity tariffs has
become an important issue for resident users.

Due to the correlation between the monthly demand charges for
residential users and their highest power consumption within that
month, it is essential to forecast the peak electricity usage power
in order to make informed decisions when selecting electricity tariff
plans. Concerning peak load forecasting during the month on the res-
idential side, there are numerous existing methods known, but their
application in the context of household energy management often
lacks consideration for frequent updates within the current month.
This limitation can result in decreased forecasting accuracy and mis-
judgment of power demand within the current month. References[4-
5] provide a comprehensive review of the probabilistic forecasting
theory and application methods in the context of renewable energy
power systems. Extensive research has been dedicated to the investi-
gation of advanced probabilistic forecasting methods in the context
of typical application scenarios within emerging power systems.
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based probabilistic forecasting approaches, which leverage the auto-
correlation analysis of historical statistical data associated with the
forecasting target. Furthermore, considerable emphasis has been
placed on exploring artificial intelligence-driven probabilistic fore-
casting methods, such as neural networks and deep learning, which
have emerged as prominent techniques in this field [6-8]. In the field
of microgrids, there exist cases where probabilistic methods have
been used for load forecasting[9-10]. In Reference[9], a probabilis-
tic normal load forecasting model was built using the artificial neural
network (ANN). Reference[10] proposed an adaptive data decompo-
sition based quantile-long-short-term memory(QLSTM) probabilis-
tic forecasting framework to reflect the future load information more
comprehensively. However, forecasting the peak load of residential
users within a month is more challenging compared to forecasting
load of a microgrid. Therefore, in the daily rolling forecasting pro-
cess within a month, forecasting refinement of peak power deamand
is needed. Similar approaches can be explored by referencing lit-
erature from other domains in the power system, and applied to
refine probabilistic load forecasting for residential purposes. In the
field of electricity markets, a model proposed in reference[11] first
used the nonlinear approximation ability of radial basis functions to
forecast the load for the next day without considering the electric-
ity price factors. Then, based on the real-time price changes of the
day, an adaptive fuzzy inference system is used to adjust the load
results obtained from the radial basis functions. In the field of pho-
tovoltaic forecasting, reference[12] proposed a layered correction
approach where forecasts from different time periods can comple-
ment each other based on continuously updated meteorological data.
In terms of park-level load forecasting, reference[13] proposed a
dynamic forecasting model based on load pattern recognition and
intra-day corrections,which utilizes the data from the current day
to update the final forecasting results in a rolling manner. There-
fore, further research and development of timely updating methods
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for peak power demand forecasting are necessary to enhance the
effectiveness of household energy management.

For residential users, particularly those with PV and energy stor-
age systems, the selection of electricity tariffs incorporating demand
charges presents a complex challenge. To minimize demand charges
and attain economic benefits, residents have to consider various
factors such as energy consumption patterns, renewable energy gen-
eration capacity, and energy storage capacity. These factors influence
the costs associated with different energy management strategies.
Additionally, fluctuations in electricity market prices, variations in
peak and off-peak electricity loads, and the accuracy of load and
solar power forecasting further complicate the decision-making pro-
cess. Thus, an analysis of uncertain energy costs becomes imperative
when choosing the appropriate tariff tailored to the specific needs
and circumstances of residential users, ultimately optimizing energy
expenditures and enhancing energy utilization efficiency.

In the selection of energy usage plans for residential users,
deterministic methods are commonly employed for revenue
assessment[14-17]. Reference[14] investigated the application of
recommender system, a fast-developing technique in machine learn-
ing, into the task of recommending electricity plans for the individual
residential customer. In reference[15], the net present value analy-
sis of potential monetary savings was considered and established as
the optimization objective. An optimization strategy is developed to
select the optimal scale of photovoltaic (PV) and retail electricity
plans that are most suitable for this purpose. Reference[16] com-
pares the economic viability of solar energy systems of different
scales under demand charge. However, they lack an analysis of the
involvement of energy storage systems in the electricity consump-
tion behavior of residential users. Reference[17] analyzed the control
strategies and configuration issues of solar storage systems for resi-
dential users under time-of-use and demand pricing scenarios, while
it still lacks consideration for prediction and resource uncertainties.
In addition to the deterministic analysis methods mentioned above,
probabilistic evaluation methods[18-20] that consider uncertainties
are also employed to assess the economic viability. But there is cur-
rently limited application in the selection of electricity price plans for
residential users. Reference[21] proposed a probabilistic formula to
capture uncertainty in cost and benefit data in the expansion of distri-
bution engineering projects. Reference [22] conducted analysis and
computation of the costs and benefits of regional power grids using a
Gaussian statistical model. Reference[23] proposes a novel method
for calculating the levelized cost of electricity (LCOE) by employ-
ing a probability model that takes into account endogenous input
parameters. The method utilizes Monte Carlo simulation to analyze
the economic feasibility of the project. Reference[24] proposed an
economic evaluation method for microgrids that considers the dual
uncertainty of both load and prediction. These methods provide ref-
erences for electricity tariff selection schemes that further consider
predictive uncertainty.

Therefore, the key contributions of the paper include the follow-
ing:
1) A method for analyzing the economic viability of electricity
tariffs with demand charge, based on long-term peak power fore-
casting, which is proposed for comparing the economic feasibility
of different electricity tariffs in various scenarios.

2) A production simulation method that takes into account predic-
tive uncertainties for selecting various electricity tariffs that include
demand charge.

2  Electricity tariff including demand charge

The electricity bill for residents based on the current multi-rate elec-
tricity pricing tariff options includes supply charge, energy charge
and demand charge. Under this pricing structure, the calculation
of the monthly electricity bill can be expressed by the following
formula.

EC = ECy, + ECec + ECy (1)

where EC represents the total electricity cost for that month; ECj4
represents the basic service fee charged by the power utility for

that month; E'C; represents the demand charge for residential cus-
tomers for that month; and ECe. represents the energy charge for
residential users for that month.

2.1  Supply charge

Supply charge refers to the monthly service fee for energy supply,
which is usually charged by the electricity or energy company to
customers for the distribution, transmission, and storage of energy.
Supply charge is often billed on a monthly basis, with a fixed
monthly fee or a fee that is calculated based on the number of days
in the month. When billed based on the number of days in the billing
cycle, the monthly supply charge can be obtained using the following
formula.

ECys = BSpq - ng 2

where BS),q represents the daily base service fee for the electricity
pricing structure; ng represents the number of days in the current
billing cycle.

2.2 Energy charge

Time-of-use (TOU) pricing is an electricity rate structure that reflects
the varying cost of electricity at different times throughout the day.
TOU pricing divides the day into distinct time periods, usually cate-
gorized as peak and off-peak. In this method, the electricity cost of
energy charge can be expressed as:

ECec =Y Chuy - P 3)
teTy

where ciuy represents the unit price per kilowatt-hour (kWh) of elec-
tricity during time period t given by the grid. p,t) represents the power
imported from the grid during time period t. At represents the length
of the time interval.

2.3 Demand charge

Demand charge includes additional expenses which are based on the
consumer’s peak demand during a designated time period (high-
demand period) of any day over a billing cycle. In some typical
electricity pricing tariffs, the calculation of demand charge is appli-
cable for the entire day. The electricity cost of demand charge in the
month can be expressed as:

ECd = DCp “Pmp + DCop * Pmop 4

where DC), represents demand charge for unit power during peak
demand periods in demand-based pricing, pg,, represents the peak
power imported from the grid during peak demand periods in the
entire month; DCly, represents demand charge for unit power during
off-peak demand periods in demand-based pricing, pmop represents
the peak power imported from the grid during off-peak demand
periods in the entire month. And in some typical electricity pricing
tariffs, DC, equals to DCop, pmp equals to pmop.

3 Framework for electricity tariff selection

As shown in Fig.1, for future tariff selections of households with
solar PV and energy storage systems, it is necessary to make pre-
dictions based on historical data. However, these predictions often
have significant uncertainties. To characterize the uncertainty in the
predictions, it is necessary to recharacterize the prediction errors and
consider these errors in the subsequent scenario generation. In par-
ticular, for tariff packages that include demand charges, it is crucial
to also predict the maximum demand power for the current month.
Based on the characterized solar PV and load predictions, appropri-
ate energy management strategies can be employed to determine the
potential electricity costs that households may incur. By comparing
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Fig. 1: Forecasting-based electricity tariff selection.

these costs, the best electricity tariff with demand charges can be
identified.

The next two chapters will discuss how to select electricity tariff
schemes with demand charges from the following two aspects.

Before selecting an electricity tariff, it is necessary to analyze
historical data and generate the probability density function of pre-
diction errors using kernel density estimation. At the same time,
input the maximum daily grid power data from the past 30 days into
a pre-trained Long Short-Term Memory (LSTM) model to obtain the
probability distribution of maximum power for the next month.

When selecting an electricity tariff, two aspects need to be con-
sidered. On the one hand, the impact of the maximum power for
the current month needs to be adjusted in the energy management
method. On the other hand, Monte Carlo simulations are used to
generate diversified application scenarios and obtain the probability
distribution of potential returns under different tariffs. By compar-
ing these probability distributions, the optimal selection plan can be
determined.

4  Prediction error and demand power forecast
model

When utilizing production simulation methods for electricity tariff
selection, it is often based on the simulation of historical data and
forecasted values. However, discrepancies between forecasts and
actual values need to be characterized in order to make the sim-
ulation closely approximate real-world conditions. Additionally, in
the operation of photovoltaic energy storage systems, it is necessary
to consider the highest monthly power consumption and integrate it
into the optimization model. Therefore, two fundamental operations
that must be carried out before residential users choose an electricity
tariff are the establishment of a prediction error model and a long-
term scale maximum power consumption prediction model based on
historical data.
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4.1  Prediction error model

Compare the predicted values of load and photovoltaic generation
with the actual values, and model the prediction errors. According
to references [25-26], prediction errors follow certain distributions,
obtaining the probability distribution of temporal power error values.

Based on accurate photovoltaic and load power data, as well as
their forecast values, it is possible to obtain a probability distribu-
tion for the prediction error at each power point throughout the day.
By utilizing the kernel density estimation method, this distribution
can be obtained [27-28]. Because KDE (Kernel Density Estimation)
does not require a prior distribution assumption, it can be used to
fit the distribution of photovoltaic and load prediction errors, and
it demonstrates the relatively strong autocorrelation inherent in the
prediction errors.

The calculation method and simplified formula for KDE are as
follows:

1 n 1 n z—
fh(x)—g;Kh(m*%ﬁ)—ﬁ;Kh( ) O
— 1 _(@—=p?

K (E hm ) = —c (©6)

where K7, is the kernel function, which often uses the normal ker-
nel for convenience; h is a smoothing parameter called bandwidth.
At a specific point ¢, where x represents the actual power of the
photovoltaic or load, z; represents the predicted value.

4.2  Demand power forecast model based on LSTM network

The maximum monthly demand power serves as a critical constraint
in the daily production simulation, and it is an uncertain quantity for
each day. In the production simulation process of electricity tariff
selection, it is necessary to periodically assess the potential maxi-
mum demand power for the current month within each daily cycle.
This requires long-term scale forecasting of demand power and its
corresponding updates to avoid imposing excessively strict or lenient
constraints on the long-term scale.

Firstly, an LSTM-based probabilistic forecasting model is estab-
lished to predict the daily maximum power imported from the grid
for the remaining days in the current month. This model provides
a probabilistic prediction interval f(p}j.,,qnq) for the maximum
imported power from the grid.

Then, the maximum imported power from the beginning of the
month until the current day is taken into account to update the prob-
abilistic model for the maximum power of the month, characterizing
the probability distribution f (pfﬁax) of the demand power pfﬁax.

Finally, as time progresses, the prediction confidence k in proba-
bilistic forecasting steadily increases. Utilizing the value of k, the
maximum demand power for the current month pj,.nq can be
calculated considering the uncertainty of the forecast . Given his-
torical data including load power, photovoltaic power, and other
relevant factors, the demand power for the entire month can be
determined by applying the global optimization using the model
described above.Given the complete determination of the demand
charge for the current month, it is possible to determine the max-
imum power to be imported from the grid on a daily basis. This
can be used as an essential component of the dataset required for
forecasting.

Due to the temporal continuity between loads, LSTM is a com-
monly used network structure for load prediction[29-30]. The input
of the LSTM network consists of the maximum value, minimum
value, average value, and standard deviation of the power imported
from the grid on a daily basis within the past 30 days, along with a
time label indicating whether it is a weekday or weekend. After pass-
ing through the LSTM layer and dense layer, the output consists of
the values of the 20 quantiles of the maximum purchase power for
the next 30 days as shown in Fig. 2.

In a given scenario, when running into the middle of the current
month, the historical maximum power consumption already gener-
ated is also an important reference for the demand power of that

This is an open access article published by the IET under the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/)



Data imput
Time Iapnel (weekday or weekend )
buy for last 30 days
min
Pouy for last 30 days

P;:y for last 30 days Ca LSTM ¢
Phyy for last 30 days =% J{ A
X
f, ii| Ct T % hy
g g tanh o
hes

Prediction Module

Output
Probabilistic Pirme  matrix
R@ - Rlz)
y= .ee .oe
RP@ - Rolz)

Fig. 2: Model of LSTM network.

af (X)

Probabilistic interval of  Penand
for remaining days f (Pjumans) =[Y1: Y20 Val

\J

0 pmin pmax pmax X

Fig. 3: Forecasting the maximum demand power for the remaining
days pgﬁax on a specific day within a month.

month. When making predictions, this factor needs to be taken into
consideration, and the probability distribution should be refitted by
considering the probability of exceeding this value. As shown in Fig.
3, if the maximum power of electricity imported from the grid before
that day p}r}igx falls within the predicted interval, the probability den-
sity exceeding that value will be organized into a new probability

distribution, which can be expressed as:

N S
> f(p)

pi>phis

[ () = f(2) ©)

where f(z) represents the probability density function before adjust-
ment, f"¢(z) represents the renewed probability density function.
The predicted maximum power f (pfﬁax) can be obtained using this
new probability density function.

Simultaneously, as the production simulation in a given scenario
progresses over time, there is a need for dynamic assessment of
the confidence in the predictions and historical maximum power
consumption. This dynamic assessment leads to refinement to the
predicted demand power. )

Based on the acquired values p}rﬁgx and pfﬁax, the long term
constraints pjj,,, ,nq cal be expressed as:

p}rggxa =k

8
P e =1k ®

* p—
Pdemand =

where & represents probabilities associated with the confidence of
the prediction. k is a value between 0 and 1, and as time goes on, it

gradually approaches 1. We can express it as:
k=1-e¢ ©)

where T represents the current day of the month; A is a fixed param-
eter that can be optimized based on historical data using particle
swarm optimization(PSO) algorithm.

5 Electricity tariff selection

The method for household users to choose electricity tariffs with
demand charges can be divided into the following three steps:

First, based on the predicted values, utilize the error distribution
to generate a large number of uncertainty scenarios with different
prediction errors using Monte Carlo simulation[31-32].

Then, apply the energy management method considering demand
charge to simulate production and obtain a probabilistic electricity
charge distribution for comparing different tariff profits.

5.1  Scenario generation based on Monte Carlo simulation

Leveraging kernel density estimation of prediction errors, a Monte
Carlo simulation approach is adopted to generate a large ensemble
of operational scenarios. This entails augmenting the original fore-
cast results with uncertain prediction errors, thereby incorporating
probabilistic discrepancies into profit evaluation.

For a given moment ¢, R represents the ensemble of aggregate
prediction errors under the load and new energy integration mode,
as shown in equation (27).

R= Z Froad + Fpy = {R;}
rzeX

j:152737"'7n (10)

where Fy,,q and Fpy represent the prediction errors associated
with all loads and new energy sources, respectively. X represents the
distribution space of prediction errors for both loads and new energy
sources. I%; represents the error range corresponding to sample j.
Furthermore, n represents the number of samples that adequately
cover the sample space of prediction errors.

In each sampling process, after obtaining the prediction error
as shown in equation (12), overlaying it onto the original forecast
values enables the simulation of actual data for production purposes.

Apt = flfz (x)|m:rand(Apm;n,Apmax) (11

P-P + AP (12)

where P represents the generated power sequence considering pre-
diction errors, P represents the initial power prediction sequence,
and AP represents the prediction error sequence after probabilistic
sampling at each time point.

5.2 Energy management model used for production
simulation

An energy management strategy suitable for residential photovoltaic
energy storage systems has been proposed. In this strategy, the res-
idential users of the photovoltaic energy storage system adopt an
economically optimized dispatch way to manage their household
energy. As shown in Fig. 4, based on predicted data and real-time
transmitted data of photovoltaic generation and load power, the
objective is to minimize the cost of coordinated operation of daily
energy storage in the household, taking into account the long-term
constraint of monthly demand charges.

5.2.1 Objective function: Household energy management
strategies typically prioritize energy cost as the objective
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function[33-35]. To minimize the the cost of electricity consump-
tion, the objective function of the model can be expressed as:

minf(x,u) = Z (ciubet — oy PsH AL+ AmAess  (13)
teLr

where clt,uy represents unit price per kilowatt-hour (kWh) of electric-

ity bought from the grid during time period t, cée” represents unit

price per kilowatt-hour (kWh) of feeding electricity to the grid dur-
ing time period t, L7 represents the remaining time periods of the
day, Pbt represents the power imported from the grid during time
period t, Pt represents the power fed to the grid during time period
t. Aess represents the value of the maximum power imported from
the grid on the current day exceeding the predicted monthly demand
power, Ay, represents punishment factor.

5.2.2 Constraints: 1t is necessary to maintain a balance in the
transmitted power:

Pl + Py + Piy = Pluq + P + P4, + Py (14

where Ppt)V represents the predicted photovoltaic power during time
period t, Ptoad represents the predicted load power during time
period t, Pj, represents the discharging power of the energy stor-
age during time period t, Pcth represents the charging power of the
energy storage during time period t, Pl represents the discarded PV
power during time period t.

Energy storage needs to consider constraints such as charging and
discharging power, state of charge (SOC), and ramp rate:

0 < P < Uy Pehmax (15)
0 S P(iih S Uéh'Pdhmax (16)
Uy +Udy <1 (17
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Eppss(S0Ct — soct—1)
= (Nen Py — Pdn/nan) At

SOCmin < SOCT < SOCmax (19)

(18)

AE-APy max < PHTY = Pl < AEAPY, max (20)

_At'APdh_max < Péﬁl - P(ﬁh < At'AP)dh_max (21)

where Uéh and Ugh represent binary variables ensuring that energy
storage does not discharge and charge at the same time. Pgpmax
and Pgpmax represent maximum charging power and maximum dis-
charging power of energy storage. Eppgg represents capacity of
energy storage, SOC? represents SOC of energy storage. 7., and
nqn represent charging and discharging efficiency of energy storage.
SOCin and SOChqz represent minimum value and maximum
value of SOC. AP, max and APgp pax represent maximum
charging and discharging ramp rate.

The whole system needs to consider constraints of buying and
selling electricity:

0 S P]; S Ué'Pbmax (22)

0 < Pi < Us+Pre (23)

UL+ U <1 24)
P;V_Pcth"'P(gh_szgpvt (25)

where Uﬁ and UZ represent binary variables ensuring that the system
does not import electricity from the grid and feed electricity to the
grid at the same time. P, represents maximum power that can be
imported from the grid, Pre represents maximum power that can be
fed to the grid (some European countries set it at 50-70 percent of the
inverter’s maximum power). Pyt represents the inverter’s maximum
power.

After forecasting the demand power for the current month, it is
necessary to ensure that the purchased power from the grid during
operation does not exceed this value.

0< Pé — Aess® < Pdemand (26)

Aess® < Aess 27

where pj.  anq 1S the maximum predicted demand for this month
on the current day m, Aess® represents the penalty variable for
exceeding limits.

5.3  Charge comparison and electricity tariff selection

By generating a large number of operational scenarios based on
Monte Carlo simulations and employing an energy management
model that takes demand charges into account, production simula-
tions can yield the electricity costs for users considering source-load
prediction uncertainties under different electricity tarifts as shown in
Fig. 5.

Furthermore, by analyzing the extensive electricity cost results
generated across multiple scenarios using KDE once again, it is pos-
sible to obtain the probability distribution of electricity costs under
different electricity tariffs.

Under each electricity tariff, further analysis can yield diversified
references for household users’ tariff selection, including the average
electricity cost under probabilistic scenarios, electricity costs under
optimistic estimates, and the maximum potential cost that may be
reached in low-probability scenarios.

6 Case study

An analysis was conducted on a number of real-world residential
users with photovoltaic energy storage systems. The study compared
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Table 1 Electricity tariff A (peak time from 4pm to 7pm)

Electricity price Summer Winter

Basic service charge $0.400 $0.400 per day
Demand charge $16.875 $11.845 per kW
Energy charge (On-peak) $0.12414 $0.08711 per kW
Energy charge (Off-peak) $0.05267 $0.05267 per kWh
Energy charge (Super Off-peak) $0.03166 per kWh

the control strategy of the photovoltaic energy storage system pro-
posed in this article with a control method that does not involve
forecasting. The data used in the analysis and the photovoltaic
energy storage system utilized were provided in Arizona. The user’s
household is equipped with a 5 kWh energy storage system, capable
of accommodating a maximum charge/discharge power of 2.5 kW.

The reference electricity price tariff, as shown in Tab 1, Tab 2
and Tab 3, including energy charge pricing and demand charge pric-
ing, is from a power utility in Arizona. The energy-based pricing
is divided into two levels: Peak, Off-peak and Super Off-peak. The
defined time periods are as follows: May to October is designated
as the summer season, while November to April is classified as the
winter season. During winter weekdays, an extended Super Off-Peak
period is observed from 10 AM to 3 PM, allowing for electricity
consumption at a reduced tariff.

Analyze the accuracy of dynamic prediction for the maximum
imported power in the current month; comprehensively compare the
advantages of the strategies proposed in this paper for two electricity
pricing tariffs provided by the company; simultaneously consider the
scale of the deployed energy storage and evaluate the applicability of
different storage sizes to the strategies outlined in this paper.

6.1  Prediction error and demand power forecast
This section focuses on characterizing the user’s source-load predic-

tion errors and forecasting the maximum monthly power consump-
tion.

Table 2 Electricity tariff B (peak time from 3pm to 8pm)

Electricity price Summer Winter

Basic service charge $0.400 $0.400 per day

Demand charge $16.870 $11.842 per kW

Energy charge (On-peak) $0.08615 $0.06323 per kW

Energy charge (Off-peak) $0.05146 $0.05137 per kWh
Energy charge (Super Off-peak) $0.03166 per kWh
Table 3 Electricity tariff C (peak time from 3pm to 8pm)

Electricity price Summer Winter

Basic service charge $0.400 $0.400 per day

Demand charge (On-peak) $19.434 $13.676 per kW

Demand charge (Off-peak)* $6.239 $6.239 per kW

Energy charge (On-peak) $0.08615 $0.06323 per kW

Energy charge (Off-peak) $0.05146 $0.05137 per kWh

* During Off-peak hours, demand charges are only applied to the portion

exceeding SkW of maximum power.
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Fig. 6: The PV forecast and the randomly generated scenarios taking
into account the prediction errors for a typical day.

6.1.1  Prediction error characterizing: In addition to determin-
istic profit analysis results, probabilistic analysis methods consider-
ing prediction errors can be used to compare the electricity costs of
different packages and calculate the electricity costs under different
probabilities.

Based on the historical photovoltaic power, actual load values,
and power values for each month, KDE is used to transform the pre-
diction errors at different time intervals within a day into probability
distribution functions. When combined with the original source-load
prediction data, this process yields the distribution of uncertain-
ties in photovoltaic and load power. A number of scenarios can
be generated using the prediction error distribution to simulate the
desired electricity costs. Taking photovoltaics as an example, Fig. 6
shows the photovoltaic forecast for a typical day and the randomly
generated scenarios.

6.1.2 Demand power forecasting using LSTM netwok:

Currently, the energy management strategy for demand charge is
being taken into account, which involves predicting the peak power
consumption. This prediction is typically based on the maximum
electricity demand observed over a historical period of 15 or 30
days. However, as depicted in Fig. 7, there can be notable dispar-
ities between the maximum power recorded in the previous month
or half a month ago and the actual electricity consumption patterns
observed in the current month. During the LSTM prediction pro-
cess, the training set consists of historical data spanning a period
of nine months, while the testing set includes data from the subse-
quent two months. As depicted in in Fig. 8, the predictions exhibit
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Fig. 8: Predicting the daily peak electricity consumption for the next
30 days.

a high degree of accuracy in capturing the variations of the daily
maximum electricity demand for the next 30 days. These results
effectively demonstrate the model’s ability to reflect the underlying
trend in power consumption dynamics.

6.1.3  Refining predictions based on historical peak con-
sumption power: Based on historical data, the objective is to
refine predictions and enhance their accuracy through adjustment.
After optimization, we have determined the value of parameter
lamda to be 0.0057, aiming to maximize the overall predictive accu-
racy after adjustment. As depicted in Fig. 9, the household user
employs a strategy of daily forecasting and updating in two typiacal
months. Due to the seasonal nature of electricity tariff packages with
demand charges, which are divided into summer and winter seasons,
the typical Month I is selected from a month during the summer
season, while the typical Month II is selected from a month during
the winter season. The daily estimated maximum demand for this
month, obtained through this approach, demonstrates an early con-
vergence with the actual values. Consequently, these estimates are
deemed reliable and are assimilated as enduring constraints within
the control model of the photovoltaic storage system.

Two commonly used long-term constraint acquisition methods
within a month S1 and S2 are selected for comparison. S1 repre-
sents: optimizing the overall system directly to obtain the highest
power based on historical data or future predictions. In this paper,
an operation of monthly updates is added for comparison. S2 repre-
sents: using the highest load power from the previous month as the
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Fig. 9: Prediction the daily peak electricity consumption for the next
30 days.

maximum demand constraint for the next month, which is commonly
applied in this scenario.

Furthermore, in a), the occurrence of peak demand for the month
is observed at an earlier stage. The predictive method incorporating
adjustments effectively captures this feature, allowing for the timely
establishment of a long-term constraint based on the estimated value.
This constraint remains applicable throughout the subsequent period
of the same month.The method S1 and the proposed method in this
paper yield similar results, while the method S2 clearly does not
adapt well to the high load conditions of this month.

Conversely, in b), where the peak demand for the month manifests
at a later stage, the augmented predictive method anticipates this sce-
nario in advance, so it enables the precise setting of a long-term
constraint at the commencement of the month, ensuring accurate
integration within the control framework. The S2 method, which is
based on the highest load of the past month, appears to be overes-
timated. On the other hand, the S1 method fails to predict the load
peak in a timely manner, resulting in a long-term strict demand con-
straint that hinders the optimal energy management strategy for the
photovoltaic and storage system.

As a result, the demand forecasting method that incorporates
intra-month adjustments refines the prediction in terms of household
electricity consumption using LSTM network. And it can provide
more support for the subsequent energy management strategy.

6.2  Electricity tariff selection

6.2.1 Energy management strategy considering demand
charge: A comparison was made on the household electricity
usage of a specific day for a residential user under three different
strategies, which are:
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Fig. 10: Comparative analysis of the three strategies during winter.

Table 4 Comparison of charges for electricity tariffs under deterministic con-
ditions

Electricity price Summer Winter Total electricity charges
Tariff scheme A $174.38 $228.97 $403.36
Tariff scheme B $171.94 $233.74 $ 405.68
Tariff scheme C $116.46 $259.65 $376.12

Strategy 1: Daily forecasting of monthly demand power and
incorporating demand constraints in the model with rolling oper-
ation, which is the energy management strategy proposed in this
study.

Strategy 2: Energy management strategy without considering
demand constraints.

Strategy 3: The commonly used strategy in residential photo-
voltaic energy storage systems. When the solar power generation
exceeds the household load, the excess electricity is prioritized for
charging the energy storage system, and any surplus electricity is
fed back to the grid. Conversely, when the solar power generation
is lower than the energy storage level, priority is given to using
the stored energy to power the household, and if the energy storage
capacity is insufficient, electricity is purchased from the grid.

As shown in Fig. 10, under the three energy management strate-
gies, the highest input power for the daily load during the peak
summer month of July exhibits significant variations. Strategy 1
effectively restricts the peak power below the anticipated highest
power for that specific day in July, thereby reducing the demand
charges for that month.

Furthermore, as shown in Fig. 11, the three energy management
strategies demonstrate distinct effects on the highest input power
for the daily load of the household during the peak winter month
of November. Despite the introduction of an off-peak electricity
price during the winter season, Strategy 1 still effectively manages
to control the peak power below the projected highest power for that
specific day in November, resulting in a reduction in demand charges
for that month.

6.2.2  Electricity charge comparison and tariff selection: For
the three different electricity tariffs listed in Table 1 to Table 3, we
employ the proposed energy management strategies in this study to
conduct operational simulations of actual photovoltaic and load out-
puts over the past year. Subsequently, we analyze the total electricity
costs for the user under each tariff. Only for the electricity tariffs
with demand charges, the demand power is predicted and incorpo-
rated into long-term constraints. The comparative analysis results for
the entire year are shown in Table 4.
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Fig. 11: Comparative analysis of the three strategies during summer.
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Fig. 12: Distribution of electricity costs under Tarrif scheme A.

In summer, the peak electricity demand throughout the day often
occurs during off-peak hours of Tariff C. The peak charges during
this period are relatively low, resulting in lower overall electricity
costs compared to Tariffs A and B.

In winter, however, the peak electricity demand throughout the
day often occurs during peak hours of Tariff C, which have high
peak charges. As a result, the total charges during winter are higher
compared to Tariff schemes A and B. Taking into account the elec-
tricity costs for the entire year, choosing Tariff scheme C remains the
optimal choice for this residential user.

In addition to deterministic profit analysis results, probabilistic
analysis methods considering prediction errors can also be used to
compare the electricity costs of different packages and calculate the
electricity costs under different probabilities.

The probability distribution of electricity costs for the year under
electricity tariff A is shown in Fig. 12. Table 5 shows the max-
imum electricity costs that can be reached within each electricity
tariff package under high, moderate, and low probabilities. It can be
observed that under Tariff scheme A, a conservative estimate sug-
gests that the electricity cost is approximately $ 430, on average it
is estimated to be around $ 410, and in fewer cases, it may only
require an electricity cost of $ 370. Fig.13 depicts the probability
distribution of electricity costs for the upcoming year under three
different tariff schemes. Comparatively, the electricity cost distribu-
tions for Tariff A and Tariff B exhibit close similarity, owing to their
approximate demand charges. Conversely, the electricity cost distri-
bution under Tariff C demonstrates significant divergence, primarily
due to its minimal demand charges in certain months. This finding
aligns well with the results of deterministic electricity cost compar-
ison, affirming that selecting Tariff C as the optimal tariff choice is
consistent with the deterministic assessment of electricity costs.
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Table 5 The potential maximum electricity costs for various tariffs under
different probabilities

Probabilities Low Moderate High
Tariff scheme A $ 432.56 $399.42 $374.55
Tariff scheme B $436.15 $ 402.87 $376.49
Tariff scheme C $441.73 $382.13 $347.02
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Fig. 13: Distribution of electricity costs under three tariffs.

7 Conclusion

Diversified pricing tariffs for electricity, including time-of-use rates
and demand charges based on peak power demand, are increasingly
being adopted. This study focuses on the pricing structure of elec-
tricity tariffs with demand charges in Arizona, North America, and
analyzes an electricity tariff selection method considering uncer-
tainty applicable to households equipped with solar PV and energy
storage systems.

In this study, a dynamically updated monthly demand power
forecasting method is proposed for production simulation, enabling
energy management strategies to account for long-term scale con-
straints on a monthly basis and perform rolling optimizations. Addi-
tionally, considering prediction uncertainty, probabilistic electricity
costs under different electricity tariff packages are obtained using
Monte Carlo simulations, providing a richer set of references for
electricity tarift selection.

In the case study presented in this paper, an analysis was con-
ducted on a household user’s annual energy usage for three electric-
ity tariff schemes that include demand charge. Both deterministic
and probabilistic analyses of electricity costs were performed. In
both cases, the conclusion was that selecting Tariff scheme C would
result in the lowest electricity costs. However, the tariff selection
method that considers uncertainty could also provide insights into
the best and worst-case scenarios for each package, particularly
when dealing with lower prediction accuracy.
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