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Abstract 37 

Prior research confirmed the substantial bias from using precipitation-based intensity-duration-38 

frequency curves (PREC-IDF) in design flood estimates and proposed next-generation IDF curves 39 

(NG-IDF) that represent both rainfall and snow processes in runoff generation. This study 40 

improves the NG-IDF technology for a snow-dominated test basin in the Sierra Nevada. A well-41 

validated physics-based hydrologic model, the Distributed Hydrology Soil Vegetation Model 42 

(DHSVM), is used to continuously simulate snowmelt and streamflow that are used as benchmark 43 

datasets to systematically assess the NG-IDF technology. We find that, for the studied small snow-44 

dominated basin, the use of standard rainfall hyetographs in the NG-IDF technology leads to 45 

substantial underestimation of design floods. Thus, we propose probabilistic hyetographs that can 46 

represent unique patterns of events with different underlying mechanisms. For the test basin where 47 

flooding events are generated entirely by snowmelt, we develop a hyetograph that characterizes 48 

snowmelt temporal patterns, which greatly improves the performance of NG-IDF technology in 49 

design flood estimates. In contrast to the standard rainfall hyetographs characterized by a 50 

symmetrically peaked, bell-shaped curve, the snowmelt hyetograph displays a more rapid rise (i.e., 51 

greater intensity) and a distinct diurnal pattern influenced by solar energy input. The results also 52 

show that the uncertainty of hyetography plays an important role in design flood estimation and 53 

can have important implications for future flood projections. 54 

 55 

 56 

 57 

 58 

 59 
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Plain Language Summary 60 

In recent years, flood hazards have gained increasing attention from national and international 61 

homeland security communities. Accurately assessing floods is crucial for many hydrologic 62 

applications, including infrastructure design, planning, and renewal, as well as the national flood 63 

insurance program. This research focuses on evaluating and enhancing the next-generation flood 64 

design technology, which is an improvement over the traditional rainfall-based method that does 65 

not account for snow processes in flood generation. Our study reveals a significant underestimation 66 

of floods when using standard rainfall temporal pattern in a small snow-dominated basin. To 67 

address this issue, we propose probabilistic curves that consider the temporal patterns of snowmelt, 68 

resulting in a considerable reduction in flood estimation errors. In contrast to the standard rainfall 69 

temporal pattern characterized by a symmetrically peaked, bell-shaped curve, the snowmelt 70 

temporal pattern displays a more rapid rise (i.e., greater intensity) and a distinct diurnal pattern 71 

influenced by solar energy input. The results demonstrate that the next-generation flood design 72 

technology has the potential to complement the traditional method for hydrologic design in snow-73 

dominated regions, providing a consistent design approach in both rain-dominated and snow-74 

dominated areas. 75 

 76 

 77 

 78 

 79 
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 81 
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1 Introduction 83 

The repeated recurrence of high-profile flood events (e.g., California in 2017, Michigan in 2020, 84 

Germany and Belgium in 2021, Yellowstone National Park in 2022) has resulted in major public 85 

safety concerns and motivated U.S. Department of Homeland Security communities to explore 86 

new sources and tools for designing proper infrastructure and facilities (ASCE, 2018; ESTCP, 87 

2018). Traditionally, engineers use statistics of observed extreme precipitation, referred to as 88 

precipitation-based intensity-duration-frequency (PREC-IDF) curves (Chow et al., 1988), for 89 

infrastructure design to withstand extreme flooding events, such as the National Oceanic and 90 

Atmospheric Administration (NOAA) Atlas 14 (Perica et al., 2013). This PREC-IDF approach 91 

assumes the phase of precipitation as rainfall that immediately starts the rainfall-runoff process. In 92 

the mountainous regions of the western United States where snowmelt or rain-on-snow (ROS) is 93 

the dominant flood-generating mechanism, the use of the PREC-IDF approach can lead to 94 

significant biases (i.e., largely underestimation) of design basis events that subsequently propagate 95 

into infrastructure design (Hamlet, 2018; Hou et al., 2019; Yan et al., 2019a, 2020a). For instance, 96 

Cho and Jacobs (2020) utilized gridded snow water equivalent (𝑆𝑆𝑆𝑆𝑆𝑆) data for the conterminous 97 

United States (CONUS) to calculate design snowmelt values. They then compared these values to 98 

the NOAA Atlas 14 for the 44 U.S. states. Their findings indicate that standard design values are 99 

surpassed by design snowmelt values in 23% of the total extent. 100 

In snow-dominated regions of the United States, there is a lack of consistent and 101 

coordinated surface water design manuals (Yan et al., 2018). Instead, different methods are 102 

employed, varying from a basic "blind approach" that solely utilizes the PREC-IDF curves to a 103 

"tuning factor approach" that involves augmenting the PREC-IDF values with a snowmelt factor, 104 

and more advanced techniques such as utilizing physics-based hydrologic modeling. For example, 105 
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Snohomish County in Washington State, which experiences a range of hydrologic conditions (from 106 

rain-dominant to transitional rain-snow to snow-dominant), recommends the use of NOAA PREC-107 

IDF curves for designing facilities like wetpool treatment facilities (SCDM, 2016). In contrast, 108 

Chelan County in the same state, with snow-dominated watersheds, uses the tuning factor approach 109 

outlined in the Stormwater Management Manual for Eastern Washington (SWMMEW, 2019). 110 

However, this approach is backed by data from only nine sites and rests on the premise that the 111 

observed December–February average daily snow depth will melt during a 72h ROS event. The 112 

federal Unified Facilities Criteria (UFC) suggests using National Resource Conservation Service 113 

(NRCS) Technical Release 55 (TR-55) for small watershed design and the Storm Water 114 

Management Model (Rossman, 2004) for large, high-risk infrastructure design projects (UFC, 115 

2013). 116 

Considering the significant expense associated with the use of advanced physically based 117 

models, including staff proficiency, manpower, and computational resources, along with the local 118 

regulations discussed previously, it's reasonable to anticipate that IDF-based technology will 119 

remain crucial in hydrologic design in the foreseeable future, particularly for small-scale 120 

infrastructure projects. Furthermore, agencies and regulators are more likely to adopt 121 

modifications of the current IDF technology instead of a complete technological shift to a 122 

physically based hydrologic modeling approach. Yan et al. (2018) proposed next-generation IDF 123 

(NG-IDF) curves to overcome the deficiency of PREC-IDF and provided a consistent IDF design 124 

approach for both rain- and snow-dominated regions. Briefly, the NG-IDF curves used the concept 125 

of “water available for runoff (𝑊𝑊)” rather than “rainfall” to capture the actual water reaching the 126 

land surface from combined or individual effects of rainfall, snowmelt, and/or ROS. Based on the 127 

observations from nearly 400 Snowpack Telemetry (SNOTEL) stations across the western United 128 
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States, Yan et al. (2019a) compared the design flood estimates by using PREC-IDF and NG-IDF 129 

curves coupled with the NRCS TR-55 single-event rainfall-runoff model (Cronshey et al., 1986). 130 

They showed that about 70% of the stations in the western United States were subject to 131 

underdesign with the use of PREC-IDF curves, for which the PREC-IDF curves generated lower 132 

design floods by 324%. The lower estimation is due to the fact that in snow-dominated regions, 133 

precipitation falls as snow during winter, and the subsequent spring snowmelt or ROS events 134 

exhibit higher intensities. 135 

Follow-up research in the NG-IDF context extended the application of NG-IDF beyond 136 

SNOTEL to cover the CONUS (Sun et al., 2019, 2022a). However, there are several remaining 137 

challenges associated with NG-IDF that we address explicitly in this research. First, an outstanding 138 

issue with the use of NG-IDF technology in practice is the choice of hyetograph (i.e., 𝑊𝑊 temporal 139 

pattern), which is used to temporally distribute the 𝑊𝑊 magnitude over the selected duration (e.g., 140 

24-h). Yan et al. (2020b) found that by assuming a uniform 𝑊𝑊  hyetograph, the design flood 141 

estimates from NG-IDF technology were consistently underestimated in snow-dominated regions 142 

of the western United States. Despite that the choice of hyetograph has a significant impact on 143 

design flood estimates (Huff, 1990; Hettiarachchi et al., 2018), currently, all standard hyetographs 144 

are developed for rainfall cases only such as triangular/NRCS hyetographs (McCuen, 1998; Perica 145 

et al., 2013) and we are unaware of a hyetograph developed or studied for 𝑊𝑊  with different 146 

underlying mechanisms. 147 

In regions where snowmelt and ROS events are the dominant flood-generating mechanisms, 148 

the use of the standard 24h symmetrically peaked, bell-shaped rainfall hyetograph may lead to 149 

underestimation of 𝑊𝑊 intensity. This is due to the tendency of snowpack to freeze overnight and 150 

melt rapidly during periods of high net solar radiation (Gleason et al., 2013; Musselman et al., 151 
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2017). Moreover, the 𝑊𝑊  hyetograph may become nonstationary in the future due to global 152 

warming-induced changes in precipitation phase, flood-generating mechanisms, and snowmelt 153 

rate. For example, mountainous regions that were previously dominated by snow in March and 154 

April during the late 20th century will likely experience increased rainfall frequency in those 155 

months during the mid-21st century (Klos et al., 2014; USGCRP, 2018; Cho et al., 2021). In a 156 

warmer climate, snowpack decline is expected to decrease ROS events at lower elevations while 157 

increasing them at higher elevations due to a transition from snowfall to rain (Musselman et al., 158 

2018; Li et al., 2019). Additionally, snowpack will melt earlier and at a lower rate due to reduced 159 

energy availability (Musselman et al., 2017; Yan et al., 2019b). Land use changes, such as 160 

afforestation activities, may increase ROS frequency (Mooney and Lee, 2022), while postfire land 161 

may increase snowmelt rate (Gleason et al., 2013). 162 

Second, NG-IDF technology has not undergone validation at a basin scale that is more 163 

relevant for hydrological design compared to the point or the hillslope scale used in previous 164 

studies (Yan et al., 2019a, 2020b). Previous NG-IDF studies also assumed uniform bare soil cover 165 

conditions, neglecting the complexity of land surface and associated processes that drive runoff in 166 

real design problems. Lastly, the uncertainties associated with the 𝑊𝑊  hyetograph selection on 167 

design flood estimates are unknown. The shape of hyetographs is subject to uncertainties due to 168 

the inherent natural variability of the climate. For instance, the standard NRCS rainfall hyetographs 169 

may differ from the corresponding temporal distribution curves derived from analyzing a specific 170 

local storm. Additionally, the shape of hyetograph can also vary in response to atmospheric 171 

temperature fluctuations. For instance, Wasko and Sharma (2015) indicate that higher 172 

temperatures, irrespective of the climatic region or season, tend to result in steeper temporal 173 

patterns. Consequently, it is crucial to accurately quantify the impacts of hyetograph shape 174 



Confidential manuscript submitted to: AGU-Water Resources Research 

8 

uncertainties on the estimation of design floods. This paper aims to address these challenges. 175 

Specifically, we aim to 176 

1. Propose a general method to develop a hyetograph of 𝑊𝑊 considering snowmelt and/or 177 

ROS processes to illustrate the role of snowmelt temporal patterns in estimating design 178 

hydrologic extremes,  179 

2. Evaluate performances of NG-IDF technology in design flood estimates at a design 180 

basin scale following the current TR-55 hydrologic design guideline, and   181 

3. Quantify the contribution of 𝑊𝑊  hyetograph selection to the uncertainty in NG-IDF 182 

design flood estimates. 183 

 184 

2 Methodology 185 

In this section, we introduce the assessment framework of the NG-IDF technology in design flood 186 

estimates, followed by detailed descriptions of the study area, data sources, and each framework 187 

component. 188 

 189 

2.1 Assessment Framework 190 

The framework for quantitative assessment of design flood estimates from the NG-IDF technology 191 

is presented in Figure 1. First, we generate continuous simulations of streamflow for the basin of 192 

interest using the DHSVM model. DHSVM is forced by 15min meteorological inputs. Using the 193 

Mountain Microclimate Simulation Model (Hungerford et al., 1989), daily Livneh meteorological 194 

data (Livneh et al., 2013) are disaggregated into 15min time steps. Simulations from process-based 195 

models are used because long-term flow measurements are generally scarce at high-latitude 196 

locations and especially for headwater streams that fit the small-scale engineering design basin, 197 
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due to inherent difficulties of access (Bales et al., 2006; Curran et al., 2016; Lundquist et al., 2016). 198 

With no observations found within the basin of interest, DHSVM is calibrated and validated 199 

against the available snow and streamflow observations at a higher level of the hydrologic unit 200 

(which contains the small design basin). Second, the NG-IDF curves are developed based on the 201 

DHSVM simulated annual maximum water available for runoff (𝑊𝑊 ) following the methods 202 

detailed in section 2.5.  Meanwhile, flood frequency statistics (e.g., the 10-year flood) are also 203 

derived directly from the DHSVM annual maximum streamflow data, which is used as the 204 

benchmark to assess design floods estimated using the NG-IDF technology in the last step. Third, 205 

based on the DHSVM 𝑊𝑊 time series, hyetographs of 𝑊𝑊 are studied and proposed for NG-IDF 206 

curves. Fourth, with a selection of 𝑊𝑊 hyetograph, the derived NG-IDF curves are used to drive the 207 

TR-55 event-based model to estimate the associated design floods. Last, the design floods from 208 

TR-55 are compared to the benchmark estimates of design floods from DHSVM continuous 209 

streamflow simulation with uncertainty quantification. In our frequency analysis of DHSVM 210 

streamflow and NG-IDF curves, we utilize the Monte Carlo method to measure the uncertainty 211 

present in the sample data. Further information regarding the quantification of uncertainty is 212 

provided in section 2.7. 213 

 214 

[Place Figure 1 here] 215 

 216 

2.2 Study Area 217 

The Upper West Walker Basin (UWWB) is a sub-basin of the West Walker Basin (Hydrologic 218 

Unit Code: 16050302) located in the eastern Sierra Nevada Mountains, California (Figure 2a). The 219 

UWWB has a drainage area of about 633 km2 and encompasses an elevation range of about 1,500 220 

m. The primary source of streamflow is derived from the spring snowmelt, which originates from 221 
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winter precipitation in the form of snow. Runoff from snowmelt flows through the DoD Marine 222 

Corps Mountain Warfare Training Center (MCMWTC) to Walker Lake with peak streamflow 223 

occurring between April and June (Hatchett et al., 2016). In this study, the assessment of NG-IDF 224 

technology focuses on a selected small test basin that drains into MCMWTC, rather than 225 

considering the entire UWWB (Figure 2b). We focus on infrastructure safety at the DoD 226 

MCMWTC site due to its critical role in force training to defend U.S. national security interests. 227 

The test basin has an area of 2.36 km2, which aligns with the TR-55 design scale for small 228 

watersheds (Cronshey et al., 1986). The test basin has uniform bedrock-derived soil but contains 229 

multiple land covers. The dominant land cover is grassland (32%) and forest (31%). The data 230 

sources used to derive this information will be introduced in the next section.  231 

 232 

[Place Figure 2 here] 233 

 234 

2.3 DHSVM Hydrological Simulation 235 

DHSVM (Wigmosta et al., 1994) is a physics-based, spatially distributed hydrologic model that 236 

explicitly solves water and energy balances for each model grid cell with a spatial resolution 237 

ranging from 10 m to 150 m. DHSVM includes a two-layer canopy submodel that represents 238 

canopy processes such as canopy snow processes and evapotranspiration, a two-layer energy-239 

balance submodel for snow accumulation and melt, a four-layer soil submodel, and three-240 

dimensional surface and saturated subsurface flow routing submodels (Wigmosta et al., 2002). 241 

DHSVM was originally developed for simulating hydrologic response in mountainous terrain and 242 

subsequent developments have enhanced the snow submodel to better represent climate-forest-243 

snow interactions (Sun et al., 2018, 2022b), extended the model capability for simulating urban 244 
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hydrology and water quality (Cao et al., 2016; Yan et al., 2021; Fullerton et al., 2022), and 245 

parallelized the model structure for large-scale application at high-performance computing 246 

infrastructure (Perkins et al., 2019). 247 

The required meteorological forcing data for DHSVM include precipitation, air 248 

temperature, wind speed, relative humidity, downward solar, and downward longwave radiation. 249 

In this study, we ran the DHSVM at a 90 m scale and 15min time step for 33 years from water 250 

years 1981–2011 with a 3-year spin-up period. The 15min meteorological forcing data were 251 

generated by disaggregating the daily Livneh meteorological data (Livneh et al., 2013) using the 252 

Mountain Microclimate Simulation Model (MTCLIM) (Hungerford et al., 1989). Subdaily 253 

precipitation assumes daily precipitation occurred at a uniform rate throughout the day. Subdaily 254 

air temperatures were estimated using third-order Hermite polynomials spline based on daily 255 

minimum and maximum air temperatures. Wind speed is assumed to be constant throughout the 256 

day. Relative humidity was calculated based on subdaily temperatures, with the assumption that 257 

the dew point is equal to the daily minimum temperature. Downward shortwave radiation was 258 

calculated based on daily temperature range and dewpoint temperature using the Thornton and 259 

Running (1999) algorithm, where dewpoint temperature was estimated based on daily minimum 260 

temperature and precipitation. Downward longwave radiation was calculated using the method 261 

described by Prata (1996) and is dependent on subdaily temperatures. For more information on the 262 

MTCLIM algorithm, refer to Hungerford et al. (1989). In this study, because the meteorological 263 

forcing, 𝑆𝑆𝑆𝑆𝑆𝑆, and flow measurements are only available at 24h scale, we developed IDF curves 264 

solely at a 24h scale and then utilized the hyetograph to disaggregate the 24h precipitation/𝑊𝑊 into 265 

subdaily scales for TR-55 modeling. Moreover, all other meteorological factors influencing 266 

snowmelt within this basin exhibit variations occurring at 15-minute intervals. Given that this 267 
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basin is primarily influenced by snowmelt rather than rainfall, the effect of subdaily fluctuations 268 

in precipitation on peak flow simulations in the DHSVM model will be negligible. 269 

Other data used for DHSVM model input and parameterization include the U.S. Geological 270 

Survey (USGS) digital elevation model (DEM) terrain data (Danielson and Gesch, 2011), the 271 

NRCS Soil Survey Geographic Database (SSURGO) soil data 272 

(http://soils.usda.gov/survey/geography/), and the Multi-Resolution Land Characteristics 273 

Consortium National Land Cover Database (https://www.mrlc.gov/). Because no snow or flow 274 

measurement exists within or nearby the test basin, we calibrated and validated the DHSVM model 275 

for the UWWB, using daily streamflow data from two USGS gauges (ID 10296500 and 10296000) 276 

and daily 𝑆𝑆𝑆𝑆𝑆𝑆 data from the Sonora SNOTEL site (Figure 2a). Data from the SNOTEL site were 277 

first screened following a rigorous three-stage SNOTEL quality control filter (Yan et al., 2018) 278 

and subsequently bias corrected for snowfall undercatch (Sun et al., 2019). The resulting SNOTEL 279 

data is referred to as bias-corrected quality-controlled (BCQC) SNOTEL data and is available at 280 

https://climate.pnnl.gov/. DHSVM calibration and validation use the common period of available 281 

streamflow, 𝑆𝑆𝑆𝑆𝑆𝑆, and Livneh meteorological data from the water year 1984 to 2011. 282 

The performance of the DHSVM for simulating daily streamflow and 𝑆𝑆𝑆𝑆𝑆𝑆 is evaluated 283 

using three statistical metrics including the root-mean-square-error (RMSE), Nash-Sutcliffe 284 

efficiency (NSE) (Nash and Sutcliffe, 1970), and Kling-Gupta efficiency (KGE) (Gupta et al., 285 

2009). The metrics RMSE and NSE focus on the modeling skills of high flow, while the KGE 286 

metric is a multi-objective metric that takes into account the water balance, flow variability, and 287 

correlation. The value of NSE varies from −∞ to 1 and a value of 1 indicates a perfect fit between 288 

observations and simulations. The KGE metric addresses several shortcomings in NSE (e.g., 289 

underestimation of the variability) and is now increasingly used for hydrologic model calibration 290 

http://soils.usda.gov/survey/geography/
https://www.mrlc.gov/
https://climate.pnnl.gov/
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and evaluation (Knoben et al., 2019; Mizukami et al., 2019; Clark et al., 2021). Like NSE, the 291 

value of KGE ranges between −∞ and 1, and a value of 1 indicates a perfect agreement between 292 

simulations and observation. 293 

 294 

2.4 TR-55 Event-based Rainfall-Runoff Modeling  295 

The NRCS TR-55 guideline (Cronshey et al., 1986) provides a standard procedure for hydrologic 296 

design at small-scale watersheds. If the watershed is not divided and the channel routing is not 297 

taken into account, it is advisable to refrain from using TR-55 for basins larger than 250 km2 298 

(Ponce and Hawkins, 1996). The model described in TR-55 assumes a rainfall amount uniformly 299 

imposed on the watershed over a specified duration. A design storm depth per unit area (selected 300 

from IDF curves with a predefined design hyetograph) is converted to a runoff depth using the 301 

runoff curve number (CN) approach, which estimates runoff as a function of the antecedent 302 

moisture condition (AMC) and watershed physical characteristics (e.g., soil type, vegetation cover). 303 

Runoff is then transformed into a hydrograph by using the unit hydrograph (UH) routing method 304 

(Mockus, 1957) that depends on the runoff travel time through segments of the watershed (i.e., 305 

time of concentration). The dimensionless NRCS UH has two parameters, peak flood and time to 306 

peak, which are empirically estimated using the basin area and time of concentration. 307 

The basin average CN is set to 90 which corresponds to the wet AMC based on the CN 308 

table of the TR-55 guideline (Table S1). The physical explanation behind the use of wet AMC is 309 

that snowmelt events usually last for days to weeks and are more like to infiltrate soils (except 310 

when the soil is frozen), therefore producing a high AMC for runoff generation (Jencso et al., 2009; 311 

Yan et al., 2019a). The test basin time of concentration (𝑡𝑡𝑐𝑐) is estimated to be 44min following the 312 

TR-55 procedure (Cronshey et al., 1986). The critical design duration approach (Rogger et al., 313 
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2012; Yan et al., 2020b) is used here to identify potential peak design flood to make a fair 314 

comparison with design flood estimates from DHSVM continuous simulations. More specifically, 315 

the critical design duration refers to the duration that produces the largest peak flow. In this study, 316 

for each selected average recurrence interval (ARI), such as the 50-year event, we calculate the 317 

corresponding flood peaks for 24h, 48h, 72h, and 96h durations. The duration that yields the 318 

highest flood peak is identified as the critical design duration and utilized for the assessments. 319 

 320 

2.5 NG-IDF Curves vs. DHSVM Design Floods 321 

To estimate design floods from NG-IDF curves, we follow the following steps. First, from 322 

DHSVM continuous simulations, we construct the basin mean time series of 𝑊𝑊 with a 15min 323 

interval through mass balance as 𝑊𝑊 = 𝑃𝑃 − ∆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆 , where 𝑃𝑃  is precipitation, 𝑆𝑆  indicates 324 

condensation or evaporation/sublimation of snowpack, and ∆𝑆𝑆𝑆𝑆𝑆𝑆 is the change in 𝑆𝑆𝑆𝑆𝑆𝑆. We then 325 

aggregated the 15min 𝑊𝑊  time series for constructing basin-scale NG-IDF curves at selected 326 

durations varying from 1–4 days (Perica et al., 2013). We did not include the subdaily duration 327 

because the input precipitation data has no diurnal variability, and DHSVM was calibrated for 328 

daily flow and 𝑆𝑆𝑆𝑆𝑆𝑆 observations (i.e., to reduce uncertainties in estimated NG-IDF curves). For 329 

each duration, the annual maximum (water year) 𝑊𝑊 data set was extracted using a moving window 330 

approach. As an illustration, when considering a 24h period, a moving window with a size of 96 331 

is utilized to extract 96 sets of 15min data points. The window advances 15min at a time to estimate 332 

the maximum 24h 𝑊𝑊 for a given year. 333 

Following the NOAA Atlas 14 (Bonnin et al., 2011), the generalized extreme value (GEV) 334 

distribution was fit to the annual maximum 𝑊𝑊 data set based on L-moments statistics (Hosking 335 

and Wallis, 1997). Before the frequency analysis, we used the nonparametric Mann-Kendall test 336 



Confidential manuscript submitted to: AGU-Water Resources Research 

15 

(Mann, 1945; Kendall, 1975) to examine the stationarity assumption (Milly et al., 2008) of the 337 

annual maximum 𝑊𝑊 data set. To investigate the independence and stationarity, we additionally 338 

utilized the nonparametric Wald-Wolfowitz test (Wald and Wolfowitz, 1943). The NG-IDF curves 339 

were then developed for four selected exceedance probabilities: 0.2, 0.1, 0.04, and 0.02, which 340 

correspond to extreme events with ARIs of 5, 10, 25, and 50 years. The ARI was cut off at 50-year 341 

to reduce uncertainties in NG-IDF curves from extrapolating longer return periods from 28 years 342 

of simulations. For design floods estimated from continuous DHSVM simulations, the approach 343 

is Similar to the frequency analysis procedure for NG-IDF curve development. We first extracted 344 

the DHSVM continuously simulated annual maximum streamflow (also based on water years) and 345 

examined the stationarity assumption using the Mann-Kendall test. We then used the same GEV 346 

distribution to fit the data set using the L-moments statistics and estimated the benchmark design 347 

floods for the ARIs of 5, 10, 25, and 50 years. It is noted that other methods like peaks-over-348 

threshold (Coles, 2001) or r-largest order statistics (Smith, 1986) can expand the dataset and reduce 349 

uncertainties in frequency analysis. To eliminate any discrepancies that could arise from dissimilar 350 

sample sizes or subjective threshold values in frequency analysis and focus solely on the snow 351 

process, we utilized the same GEV distribution for both NG-IDF, PREC-IDF, and flood frequency 352 

analysis. Furthermore, our evaluation of floods adhered to standard hydrologic design methods, 353 

like NOAA Atlas 14, which employs the GEV distribution. Considering that DHSVM basin-wide 354 

continuous flow simulations provide more reliable estimates of design floods, the difference 355 

between the two design flood estimates (DHSVM vs. NG-IDF) is a good indication of the 356 

limitations underlying the NG-IDF technology, which can include simplified physical hydrologic 357 

process, assumption of equal ARI between design storm and design flood, and selection of 358 

hyetograph. As an example, many studies (Viglione and Blöschl, 2009; Viglione et al., 2009) have 359 
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shown that flood ARI can be more or less frequent than the corresponding storm ARI depending 360 

on the storm duration, watershed time of concentration, and antecedent moisture condition. As 361 

previously mentioned in the Introduction, although the IDF approach has its limitations, it is still 362 

sensible to expect that this method will continue to be essential in hydrologic design, particularly 363 

for smaller infrastructure projects, in the near future. 364 

Besides a deterministic assessment of the relative difference between the two design flood 365 

estimates, we further provide a probabilistic assessment to test if these differences are statistically 366 

significant. A Monte Carlo (MC) simulation suggested by Hosking & Wallis (1997) and NOAA 367 

Atlas 14 (Bonnin et al., 2011) was used to quantify the sample data uncertainty (i.e., the uncertainty 368 

of GEV parameters). A total of 1,000 synthetic ensembles were generated to quantify the GEV 369 

parameter uncertainties associated with NG-IDF curves and DHSVM flood frequency analysis. In 370 

this study, we used the “lmom” package (version 2.6) (Hosking, 2017) in “R” (version 3.4.3) to 371 

perform all L-moments and MC analyses. The 𝑍𝑍 statistic (Mikkelsen et al., 2005; Madsen et al., 372 

2009; Ganguli and Coulibaly, 2017; Yan et al., 2020b) was used to test the statistically significant 373 

differences of the design flood estimates between the NG-IDF technology (𝑞𝑞𝑛𝑛𝑛𝑛) and DHSVM 374 

continuous simulation method (𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠): 375 

 𝑍𝑍 =
𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑛𝑛𝑛𝑛

�0.5�𝑠𝑠𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝑠𝑠𝑛𝑛𝑛𝑛2 �
 

(1) 

where 𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠 is the design flood estimated from DHSVM flood frequency analysis, 𝑞𝑞𝑛𝑛𝑛𝑛 is the 376 

design flood obtained from the NG-IDF technology, 𝑠𝑠𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠 is the DHSVM design flood standard 377 

deviation estimated from the 1,000 DHSVM design flood ensemble, and 𝑠𝑠𝑛𝑛𝑛𝑛  is the standard 378 

deviation of the NG-IDF derived design flood, which is estimated from the 1,000 design flood 379 

ensemble generated from running TR-55 using each of the 1,000 NG-IDF ensemble members. 380 
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 381 

2.6 Hyetograph of Water Available for Runoff 382 

We developed and compared the 𝑊𝑊  hyetographs generated from two approaches. The first 383 

approach follows the NOAA Atlas 14 that develops standard hyetographs for rainfall cases only 384 

(i.e., assuming all 𝑊𝑊 events are rainfall events), while the second and new approach introduced 385 

here develops hyetographs based on the dominant mechanism of 𝑊𝑊 events. 386 

The NOAA Atlas 14 method (Bonnin et al., 2011) was modified from the methodology 387 

originally proposed by Huff (1990). We computed 𝑊𝑊 accumulation for specific periods (i.e., 1–4 388 

days) to be consistent with the durations used in the NG-IDF curves. For each selected duration, 389 

the following steps were repeated. First, a moving window approach was used to estimate 𝑊𝑊 390 

accumulation over the selected duration based on the 15min DHSVM basin mean 𝑊𝑊 time series. 391 

The largest three 𝑊𝑊 accumulations were then obtained for each month over the entire simulation 392 

period. Following the NOAA Atlas 14, the 2-year ARI 𝑊𝑊 magnitude was used as the minimum 393 

threshold to select large 𝑊𝑊 events for developing hyetographs. Different thresholds were evaluated, 394 

including the 25-year ARI, and found that the results were comparable to the 2-year ARI. As a 395 

result, the 2-year ARI was selected to generate more samples for the development of probabilistic 396 

hyetographs. Each event was then converted into a ratio of the cumulative 15min 𝑊𝑊 to the total 397 

𝑊𝑊 for that duration (i.e., percent of total 𝑊𝑊), and a ratio of the cumulative time to the total time 398 

(i.e., percent of duration). Thus, the last value of the summation ratios is always equal to 100% in 399 

the hyetograph. The obtained ensemble large 𝑊𝑊  events were further subdivided into quartiles 400 

based on where in the hyetograph (i.e., temporal distribution) most 𝑊𝑊 occurred to provide more 401 

specific information on the observed varying hyetographs (Bonnin et al., 2011). For example, the 402 

1st-quartile data consists of events where the greatest percentage of the total 𝑊𝑊 fell during the 1st-403 
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quartile of the duration, i.e., the first 6 hours of a 24h period. For the 𝑊𝑊 events classified for each 404 

quartile, we can then estimate the cumulative probability of occurrences (i.e., quantiles). For 405 

example, the 10% hyetograph curve (90% quantile) indicates that 10% of the corresponding 𝑊𝑊 406 

events have temporal distributions above the curve. 407 

Contrary to the NOAA Atlas 14 hyetograph method that considers rainfall events only, the 408 

new approach developed here takes into account the generating mechanism of 𝑊𝑊 events, including 409 

rainfall, snowmelt, and ROS (Yan et al., 2018). As will be shown in section 3.2, the hyetograph 410 

shapes of 𝑊𝑊  driven by different mechanisms show substantial differences. For example, the 411 

temporal distribution of snowmelt-driven 𝑊𝑊 events shows an explicit diurnal cycle associated with 412 

the diurnal variability of solar radiation, while the temporal distribution of rainfall events presents 413 

a symmetrically peaked, bell-shaped curve. Thus, it is questionable to develop a unified 𝑊𝑊 414 

hyetograph that simply combines the temporal patterns of all large 𝑊𝑊  events generated from 415 

different mechanisms. A better approach to developing the 𝑊𝑊 hyetograph is first to identify the 416 

dominant 𝑊𝑊 generating mechanism for the study basin, and then generate the 𝑊𝑊 hyetograph for 417 

events with the same dominant mechanism. Following Yan et al. (2019b) and Sun et al. (2022a), 418 

we classified the daily 𝑊𝑊 time series into three mechanism classes: 419 

1. Rainfall dominated: daily 𝑊𝑊 of at least 10 mm and contains less than 20% snowmelt, 420 

2. Snowmelt dominated: daily 𝑊𝑊 of at least 10 mm and the 𝑊𝑊 contains less than 20% 𝑃𝑃, 421 

and 422 

3. ROS dominated: daily 𝑃𝑃 of at least 10 mm falling on snowpack of at least 10 mm 𝑆𝑆𝑆𝑆𝑆𝑆, 423 

and 𝑊𝑊 contains at least 20% snowmelt. 424 

 425 
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2.7 Uncertainty in Design Floods 426 

Besides proposing a hyetograph of 𝑊𝑊, another goal here is to disentangle and quantify uncertainty 427 

contributions of the 𝑊𝑊 sample data and 𝑊𝑊 hyetograph selection on the design flood estimates 428 

through the standard TR-55 procedure. The individual uncertainty contribution of an NG-IDF 429 

sample set or 𝑊𝑊 hyetograph is estimated using a sequential sampling procedure similar to that 430 

used by Schewe et al. (2014) and Samaniego et al. (2017). For example, assume we quantify the 431 

𝑊𝑊 hyetograph uncertainty using 50 ensemble members and NG-IDF sample data uncertainty using 432 

1,000 ensemble members. The component of the NG-IDF sample data uncertainty is characterized 433 

by calculating the range of design floods across all 1,000 NG-IDF MC samples separately for each 434 

selected 𝑊𝑊  hyetograph, which is then averaged over all 50 𝑊𝑊  hyetograph ensembles. The 435 

component of the 𝑊𝑊 hyetograph uncertainty is estimated in a similar fashion. We first calculate 436 

the design flood range across all 50 𝑊𝑊 hyetograph ensembles for each NG-IDF sample set and 437 

then average them over 1,000 NG-IDF samples. The above procedure was applied separately to 438 

each selected duration (i.e., 1–4 days) and ARI (i.e., 5–50 years). The range statistic is used here 439 

to understand the full range of the dispersion. The statistically significant difference between the 440 

two averaged range statics is tested using the aforementioned 𝑍𝑍 statistic. 441 

 442 

3 Results and Discussion 443 

In the following, the analyses performed for NG-IDF technology and DHSVM continuous 444 

simulation are reported. We first report the results of the DHSVM evaluation, the development of 445 

NG-IDF curves, and DHSVM flood frequency estimations in section 3.1. Second, we discuss the 446 

water available for runoff (𝑊𝑊) hyetographs and compare the design flood estimates derived from 447 

NG-IDF technology to the corresponding DHSVM benchmark in sections 3.2 and 3.3. Last, we 448 
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disentangle and quantify the uncertainty contributions of the 𝑊𝑊 sample data and 𝑊𝑊 hyetograph to 449 

TR-55 design flood estimates in section 3.4. 450 

 451 

3.1 DHSVM Evaluation and NG-IDF Curves  452 

The historical records for both streamflow and 𝑆𝑆𝑆𝑆𝑆𝑆 over water years 1984–2011 were split into 453 

two periods of 19 and 9 years in length: 1984–2002 for DHSVM calibration and 2003–2011 for 454 

validation. Model calibration was conducted manually by comparing the daily simulations with 455 

observations of 𝑆𝑆𝑆𝑆𝑆𝑆  and streamflow, sequentially. Figure 3 presents the DHSVM model 456 

performance in streamflow and 𝑆𝑆𝑆𝑆𝑆𝑆  simulations for both calibration and validation periods. 457 

Except for one year (1997) when the observed streamflow peak was significantly greater than the 458 

simulated value at the USGS gauge 10296000, other periods had a very good agreement between 459 

the simulations and observations. In the calibration period, statistical comparisons of measured 460 

versus simulated daily values resulted in KGE values of 0.84, 0.82, and 0.74, NSE values of 0.73, 461 

0.72, and 0.77, and RMSE values of 6.25 m3/s, 6.25 m3/s, and 131 mm for the USGS gauges 462 

10296500, 10296000, and the Sonora SNOTEL site, respectively. The performance of the 463 

calibrated model on the validation data set had slightly lower skill, with KGE values of 0.63, 0.82, 464 

and 0.76, NSE values of 0.53, 0.68, and 0.78, and RMSE values of 9.28 m3/s, 7.94 m3/s, and 141 465 

mm for the USGS gauges 10296500, 10296000, and the Sonora SNOTEL site, respectively. The 466 

January 1997 observed peak flow in the Walker River was greater than that of previous and 467 

subsequent floods. The January 1997 flood was caused by ROS resulting from unseasonably warm 468 

rain in the Sierra Nevada. Accurate simulation of ROS flooding is challenging due to various 469 

factors such as rain intensity and amount, prevailing freezing level, and spatial distribution of snow 470 

cover. Either of these uncertainties could contribute to bias in predicting the peak flow during ROS 471 
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events (Fehlmann et al., 2019). Although SNOTEL simulation indicated a good match in 𝑆𝑆𝑆𝑆𝑆𝑆 472 

simulation in 1997, one SNOTEL site may not represent all mountain ranges, and the SNOTEL 473 

network is biased towards specific types of terrain and vegetation (Mote et al., 2016). Interpolated 474 

precipitation data at higher mountains may be subject to bias due to limited gauge coverage or 475 

gauge undercatch (Groisman and Legates, 1994; Serreze et al., 2001; Lundquist et al., 2019), 476 

which could also lead to underestimation of the 1997 flood. We also examined the 28-year annual 477 

maximum time series of daily streamflow and 𝑊𝑊 from DHSVM simulations and observations. The 478 

mean absolute relative differences for the annual maximum streamflow (AM-S) are 20.2% and 479 

19.0% at the USGS gauges 10296500 and 10296000, for the annual maximum 𝑊𝑊 (AM-W) is 19.6% 480 

at the Sonora SNOTEL, respectively. Given the hydrologically challenging context, it is good in 481 

practice if errors in estimated flood peaks are within 20% of the value derived from validation data 482 

(Calver et al., 2009; Yan et al., 2020b). In summary, model calibration and validation results gave 483 

satisfactory and comparable performances on both streamflow and snow simulations. This 484 

validated DHSVM model was used as the benchmark for the following assessment of NG-IDF 485 

technology. 486 

 487 

[Place Figure 3 here] 488 

 489 

After extracting the basin mean AM-W time series, we used the nonparametric Mann-490 

Kendall test to examine the stationarity assumption for frequency analysis. For each selected 491 

duration (24–96 hours), no statistically significant trend was identified (p-value>5%). The 492 

supplementary Wald-Wolfowitz test (p-value>5%) verified the assumption of stationarity and 493 

independence for frequency analysis as well. Figure 4 presents the basin-scale NG-IDF curves for 494 
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the four selected durations varying from 24h to 96h. The associated basin-scale PREC-IDF curves 495 

are provided in Figure S1. The shaded areas characterized the 90% confidence intervals associated 496 

with the 𝑊𝑊 sample data uncertainty in frequency analysis. It is observed that extreme events with 497 

longer ARIs had larger uncertainties; it comes as no surprise because we used 28 years of data to 498 

extrapolate the 50-year events. For example, for a 5-year 24h event (i.e., an event with an ARI of 499 

5 years and duration of 24 hours), the range of the 90% confidence intervals was 6.2 mm; while 500 

for a 50-year 24h event, the range of 90% confidence intervals was 27.7 mm. Figure 5 presents the 501 

DHSVM simulated hydrograph and AM-S time series for the test basin. About 93% of AM-S data 502 

occurred between February–May, indicating the snowmelt-dominant flood-generating mechanism 503 

for the test basin. Based on the nonparametric Mann-Kendall and Wald-Wolfowitz tests, no 504 

statistically significant trend was identified for the AM-S time series. After confirming the 505 

stationary assumption, we estimated the DHSVM design flood benchmark in addition to their 506 

associated uncertainties for NG-IDF assessment. 507 

 508 

[Place Figures 4–5 here] 509 

 510 

3.2 Water Available for Runoff Hyetograph 511 

Based on the classification criteria described in section 2.6, we first identified the dominant 512 

mechanism for the selected large daily 𝑊𝑊 events. During the 28-year simulation period, we found 513 

125 snowmelt events, 3 rainfall events, and 0 ROS events. For the 3 large rainfall events, we 514 

confirmed that their occurrence dates (e.g., July 24, 1998) were far away from their associated 515 

AM-S dates (e.g., April 22, 1998), indicating that the large rainfall events did not lead to an AM-516 
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S. Thus, the 𝑊𝑊 hyetograph developed in this study was generated from the snowmelt mechanism 517 

only. 518 

Following the procedure used by the NOAA Atlas 14, for each selected duration, we 519 

extracted large 𝑊𝑊 accumulations (i.e., > 2-year ARI event) estimated from the basin mean 15min 520 

𝑊𝑊 time series. Any large 𝑊𝑊 accumulation that contained the 3 rainfall events was removed for the 521 

following hyetograph development. As a result, a total of 55, 46, 42, and 34 large 𝑊𝑊  events 522 

generated from the snowmelt mechanism only were retained for the 24, 48, 72, and 96h duration, 523 

respectively. Figure 6 illustrates the ensemble temporal distributions of 𝑊𝑊 events (from snowmelt 524 

only), in terms of percent of total 𝑊𝑊 versus percent of duration, at each selected duration. For 525 

illustration purposes only, Figure S2 presents the ensemble temporal distributions of 𝑊𝑊 events 526 

including the 3 large rainfall events for the 24h duration case. Contrary to the rainfall temporal 527 

distribution, it is observed that the snowmelt temporal distribution showed a more rapid rise (i.e., 528 

higher intensity) and an explicit diurnal pattern controlled by solar energy input. For instance, at 529 

nighttime, there is no change in the 𝑊𝑊 temporal distribution. Among the 3 large rainfall events, 530 

the largest percentage of the total rainfall fell during the 1st-quartile of the duration (i.e., first 6 531 

hours of 24h duration) was only about 60% (Figure S2); while for snowmelt events, this value was 532 

100% (i.e., all snowpack melted in the first 6 hours). After acquiring all ensemble temporal 533 

distributions of 𝑊𝑊, we further divided each distribution by quartiles based on where in distribution 534 

the most 𝑊𝑊 occurred. Analysis shows that the 24h and 48h events were dominated in the 1st-535 

quartile while the 72h and 96h events were dominated in the 2nd-quartile. About 78% and 50% of 536 

the 55 and 46 large 𝑊𝑊  events occurred in the 1st-quartile for the 24h and 48h durations, 537 

respectively; and about 43% and 50% of the 42 and 34 large 𝑊𝑊 events occurred in the 2nd-quartile 538 

for the 72h and 96h durations, respectively. 539 
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 540 

[Place Figure 6 here] 541 

 542 

Based on the obtained ensemble temporal distributions at each selected duration, we then 543 

develop a probabilistic hyetograph of 𝑊𝑊  by estimating the exceedance probabilities of 𝑊𝑊 544 

occurrence (i.e., quantiles) at each time step. Contrary to the probabilistic rainfall hyetograph 545 

developed in the NOAA Atlas 14 that combines all large rainfall cases, the unique diurnal pattern 546 

associated with the snowmelt-dominant 𝑊𝑊 hyetograph requires special attention. Taking a 24h 547 

duration event for example, if all obtained 𝑊𝑊 temporal distributions are divided evenly into the 548 

1st-quartile and 4th-quartile (e.g., the horizontal lines occur evenly at the 10% or 90% y-axis value), 549 

the estimated median (50% exceedance probability) curve will be close to the uniform distribution 550 

over the 24h duration (e.g., a 1:1 line), which substantially underestimates the snowmelt intensity. 551 

To address this issue, we developed the probabilistic 𝑊𝑊 hyetograph based only on the large 𝑊𝑊 552 

events that occurred in the dominant quartile, similar to the alternative quartile-based rainfall 553 

hyetograph in the NOAA Atlas 14. 554 

Figure 7 presents the probabilistic hyetographs of 𝑊𝑊  for the test basin over the four 555 

selected durations. The graph represents the cumulative probability of occurrence at 20% 556 

increments and a moving window smoothing technique was performed on each curve (Bonnin et 557 

al., 2011). For the 24h and 48h durations, the probabilistic hyetographs were developed using 558 

ensemble 𝑊𝑊 events where most 𝑊𝑊 occurred in the 1st-quartile; for the 72h and 96h durations, they 559 

were developed using the 𝑊𝑊 events where most 𝑊𝑊 occurred in the 2nd-quartile. For each duration, 560 

the 10% hyetograph curve indicates that 10% of the corresponding 𝑊𝑊  events had temporal 561 

distributions that fell above the curve (i.e., 10% exceedance probability); the 50% curve represents 562 
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the median temporal distribution. The broad range between these curves represents the broad 563 

uncertainties associated with the 𝑊𝑊 hyetograph in design flood estimates. In this study, we tested 564 

the median (50% curve) hyetograph and an optimized hyetograph method in the NG-IDF modeling. 565 

In the optimized hyetograph method, all curves varying from 10% to 90% (at a 10% increment) 566 

were used in the NG-IDF modeling and the best results (i.e., closest to the DHSVM benchmark) 567 

were retained. The median hyetograph was used to test whether a hyetograph under the “average” 568 

condition can lead to acceptable results; the optimized hyetograph method was used to evaluate 569 

what are the best results we can achieve with the use of  𝑊𝑊 hyetographs in the NG-IDF modeling. 570 

Note that our objective is not to overfit the model in order to make NG-IDF estimation align with 571 

DHSVM benchmark through optimized hyetograph selection. Rather, our aim is to measure the 572 

level of uncertainty in hyetograph selection during flood estimation and to emphasize the 573 

significance of taking hyetograph uncertainty into account when conducting flood risk analysis, as 574 

detailed in section 3.4. 575 

 576 

[Place Figure 7 here] 577 

 578 

3.3 NG-IDF Modeling 579 

Before using the developed snowmelt 𝑊𝑊  hyetographs, we first tested the standard rainfall 580 

hyetographs in the NG-IDF modeling for comparisons. In our previous studies, we extensively 581 

investigated the difference between PREC-IDF and NG-IDF curves (Yan et al., 2018, 2019a, 582 

2020b). However, in this study, our focus is solely on NG-IDF modeling. Specifically, we analyze 583 

NG-IDF modeling using a rainfall hyetograph in comparison to a developed snowmelt hyetograph. 584 

Figure 8 compared the developed snowmelt 𝑊𝑊 hyetograph (using 24h median hyetograph as a 585 
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proof-of-concept) against five standard rainfall hyetographs: uniform hyetograph proposed in the 586 

rational method and four types of NRCS rainfall hyetographs widely used over the U.S. Results 587 

suggest that all rainfall hyetographs substantially underestimate the 𝑊𝑊  intensity in the snow-588 

dominated test basin. In the following comparisons, we used two rainfall hyetographs ‒ the 589 

uniform hyetograph and the NRCS Type IA hyetograph that is recommended for hydrologic design 590 

in the Sierra Nevada and Cascade mountains (McCuen, 1998). The uniform hyetograph is included 591 

because only daily precipitation data are available, and we uniformly disaggregated the 592 

precipitation data over 24 hrs. 593 

 594 

[Place Figure 8 here] 595 

 596 

Figure 9a compares the design flood estimates from the DHSVM continuous simulations 597 

(𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠) and NG-IDF modeling (𝑞𝑞𝑛𝑛𝑛𝑛) with the use of uniform hyetograph and NRCS Type IA 598 

hyetograph, respectively. Note that we used the critical design duration approach to identify 599 

potential peak design flood in the NG-IDF technique. In addition to the deterministic estimates, 600 

sample uncertainties associated with DHSVM flood and NG-IDF frequency analysis were also 601 

quantified and shown as the 90% confidence intervals (i.e., error bars) in Figure 9a. As described 602 

in section 2.5, the 𝑍𝑍 statistic was used to test the statistically significant differences in the design 603 

flood estimates between the two methods. The associated p-values of the pairwise comparison 604 

between DHSVM and NG-IDF estimates were also shown in Figure 9a. It is observed that 605 

compared to 𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠, 𝑞𝑞𝑛𝑛𝑛𝑛 with the use of uniform and NRCS hyetographs both showed statistically 606 

significant underestimations of design floods (p-value < 1%) for all four ARIs, even though the 607 

wet AMC and critical design duration were used to reduce the potential underestimation of the 608 
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design flood. In sum, these results suggested that standard rainfall hyetographs can lead to a 609 

substantial underestimate of flood risk and it is necessary to develop new hyetographs to enhance 610 

NG-IDF performance. Note that the larger confidence interval associated with the NG-IDF method 611 

are due to the TR-55 nonlinear rainfall-runoff process used to convert 𝑊𝑊 magnitude into flood 612 

magnitude, whereas DHSVM directly generates design flood magnitude through frequency 613 

analysis of annual maximum flood. Similar results are found in Yan et al. (2019a). 614 

 615 

[Place Figure 9 here] 616 

 617 

 Figure 9b compares the design flood estimates from 𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑞𝑞𝑛𝑛𝑛𝑛  with the use of 618 

median and optimized 𝑊𝑊 hyetographs, respectively. To select the optimized hyetographs, various 619 

curves ranging from 10% to 90% were tested (with a 10% increment) in the NG-IDF modeling. 620 

The optimized hyetographs were then chosen based on their similarity to the DHSVM benchmark, 621 

with the best-fit curve being selected. Similar to Figure 9a, the error bars represent the 90% 622 

confidence intervals of design flood estimates associated with the sample data uncertainties in the 623 

NG-IDF curves; the p-values of the pairwise comparison indicate the 𝑍𝑍 statistics. It is observed 624 

that compared to the results with the use of standard rainfall hyetographs (Figure 9a), the use of 625 

either median or optimized 𝑊𝑊  hyetographs substantially improved the design flood estimates. 626 

When using the median 𝑊𝑊 hyetograph, the absolute relative errors between 𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑞𝑞𝑛𝑛𝑛𝑛 were 627 

about 23%, 8%, 9%, and 20% for the 5-, 10-, 25-, and 50-year events, respectively. The absolute 628 

relative errors were further reduced to about 5%, 1%, 2%, and 0.5% for the 5-, 10-, 25-, and 50-629 

year events with the use of optimized 𝑊𝑊 hyetograph, respectively. When considering the sample 630 

uncertainties in the NG-IDF curves, we found statistically insignificant differences (i.e., p-value > 631 
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5%) between the 𝑞𝑞𝑑𝑑ℎ𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑞𝑞𝑛𝑛𝑛𝑛 for all four selected ARIs with the use of median and optimized 632 

𝑊𝑊 hyetographs, respectively. These results suggested that 𝑊𝑊 hyetographs offer good performance 633 

for NG-IDF technology in hydrologic design and the median 𝑊𝑊 hyetograph may be appropriate. 634 

However, the broad range in the 𝑊𝑊 hyetograph shown in Figure 7 can result in a broad range of 635 

design peak flow or volume estimates, leading to large uncertainties associated with the 𝑊𝑊 636 

hyetograph selection. We argue that the probabilistic 𝑊𝑊 hyetograph should be used in a way that 637 

reflects the goals of the user, and no single 𝑊𝑊 hyetograph (e.g., median curve) works the best 638 

under all design conditions. A practical path forward is to quantify the uncertainty contribution of 639 

𝑊𝑊 hyetograph selection in NG-IDF design flood estimates and then perform a design risk analysis 640 

that depends on the risk tolerance of a particular asset or project. To illustrate, a wide variety of 641 

design floods or volumes can be estimated. To minimize the risk of failure in the design of critical 642 

infrastructure, it is advisable for users to focus on temporal distributions that are more likely to 643 

produce higher peaks instead of median cases. Additionally, a decision-analytic cost-loss-ratio 644 

model (Murphy, 1977) can be utilized to determine the total cost associated with a specific 645 

hyetograph. Furthermore, users should evaluate whether utilizing results from one of the quartiles 646 

instead of all samples would yield more suitable outcomes for their particular circumstances. 647 

It should be noted that when conducting frequency analysis on annual maximum 𝑊𝑊 and 648 

streamflow, an important assumption is made that all samples are stationary, independent, and 649 

identically distributed. In the case of the small basin examined in this study, this assumption holds 650 

true because all samples are generated from the snowmelt process and no statistically significant 651 

trends have been observed. However, for larger basins that involve multiple flood-generation 652 

processes, such as flood mixtures, additional attention is required when estimating flood quantiles. 653 

Previous studies (Murphy, 2001; Barth et al., 2019) have highlighted the need to account for such 654 
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flood mixtures. Furthermore, with the expected impact of climate change, flood-generation 655 

processes may undergo changes, such as a decrease in ROS events at lower elevations and an 656 

increase at higher elevations (Musselman et al., 2018; Li et al., 2019). Consequently, it is crucial 657 

to employ a physically informed approach for flood frequency analysis, considering both the 658 

historical period and future projections. For instance, Barth et al. (2017) employed the mechanism 659 

of atmospheric rivers to partition annual peak flows in the western U.S. They estimated flood 660 

quantiles by considering a mixed population. Additionally, Yu et al. (2022) demonstrated that 661 

neglecting mixture effects can lead to substantial uncertainties in estimating the magnitudes of 662 

extreme flood statistics. As explained in section 2.6, the classification of 𝑊𝑊 into rainfall, snowmelt, 663 

and ROS events can assist in partitioning flood peaks and conducting flood frequency analysis 664 

using mixed flood populations. 665 

 666 

3.4 Sample and Hyetograph Uncertainty Contributions on Design Floods 667 

In this NG-IDF technology assessment, both methods used simulations from validated DHSVM, 668 

and therefore the two major uncertainty sources associated with the NG-IDF technology 669 

assessment were the data sample uncertainty in NG-IDF frequency analysis and 𝑊𝑊 hyetograph 670 

uncertainty in the TR-55 modeling. Following the procedure described in section 2.7, we 671 

quantified the uncertainty contribution of each component to the mean range of design flood 672 

estimates using the range statistic in Figure 10. 673 

 674 

[Place Figure 10 here] 675 

 676 
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Using the standard 𝑍𝑍 test, the differences between the two mean ranges were all statistically 677 

significant (i.e., p-value < 5%) except for the 72h, 5-year event as shown in Figure 10. The 678 

magnitudes of both mean ranges tend to increase with ARI, suggesting larger uncertainty 679 

associated with less frequent extreme events. For events with lower ARIs such as 5-year or 10-680 

year, both the data sample and 𝑊𝑊  hyetograph uncertainties are important to the design flood 681 

uncertainties (relative difference <50%); for events with higher ARIs such as 50-year, the data 682 

sample uncertainty dominates (relative difference >100%), due to extrapolating to large ARIs 683 

using short- to modest-length records (i.e., 28 years). This is mainly because the shape parameter 684 

of extreme value distribution determines the nature of the tail of the distribution and its value has 685 

significant impacts on the severity of large ARI events. Unfortunately, no matter what estimation 686 

method is selected, the shape parameter is difficult to estimate and sensitive to extreme events, 687 

especially given short records (Cooley et al., 2007; Cooley and Sain, 2010). These findings are 688 

also consistent with the latest federal flood frequency guideline Bulletin 17C (England et al., 2018), 689 

which recommended using regional information to reduce data sample uncertainty, particularly 690 

when records are short (less than 30 years). 691 

 It is worth noting that the contribution of the 𝑊𝑊 hyetograph uncertainty, although smaller 692 

than the data sample uncertainty at larger ARIs, cannot be neglected, considering that the 693 

associated mean range of design flood estimates exceeded the absolute value of the DHSVM 694 

benchmark as shown in Figure 9. For example, for the 24h, 50-year event, the mean range of design 695 

flood contributed from the 𝑊𝑊 hyetograph uncertainty was 4.66 m3/s, exceeding the absolute value 696 

of the DHSVM benchmark of 3.74 m3/s. Especially for small infrastructures such as drainage 697 

system design, many local/federal surface water design manuals (UFC, 2013; SCDM, 2016; 698 

SWMMEW, 2019) recommend ARIs of 5-year to 25-year. The sample data uncertainty versus the 699 
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𝑊𝑊 hyetograph uncertainty is actually the epistemic uncertainty versus aleatory uncertainty which 700 

involves a lack of knowledge about the response data or random natural variability (Beven and 701 

Smith, 2015). The epistemic uncertainty can be suitably resolved by improving the model while 702 

the aleatory uncertainty cannot be diminished. For example, we can use the peaks-over-threshold 703 

method, the regionalization method, or extend the simulation period to reduce the sample data 704 

uncertainty in NG-IDF curves; however, the 𝑊𝑊 hyetograph uncertainty cannot be reduced because 705 

of the natural variability. These results support that we must consider 𝑊𝑊 hyetograph uncertainty 706 

in NG-IDF design and nonstationary changes of 𝑊𝑊 hyetograph in future flood projections, and the 707 

developed 𝑊𝑊  hyetograph can provide information using a probabilistic approach to risk 708 

assessment that is adjustable based on design cost and changing operating conditions. As 709 

mentioned in the Introduction section, the IDF design approach necessitates not only a storm 710 

magnitude but also a predetermined hyetograph, with the shape of the hyetograph differing 711 

depending on the underlying mechanism, such as the standard rainfall hyetograph versus the 712 

snowmelt hyetograph illustrated in Figure 8. Numerous studies (Cheng and AghaKouchak, 2014; 713 

Ragno et al., 2018; Hou et al., 2019; Schlef et al., 2023) have examined the potential changes in 714 

IDF curves resulting from global warming. However, climate change will cause different regions 715 

to experience varying shifts in their dominant flood-generating mechanisms, with higher 716 

mountains potentially experiencing more ROS events. 717 

 718 

4 Conclusions 719 

In this study, we assessed the performance of the recently developed NG-IDF technology in design 720 

flood estimates for hydrologic design at a snow-dominated small basin located in the eastern Sierra 721 

Nevada Mountains, California where the snowmelt flows through the U.S. DoD’s MCMWTC. 722 
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Based on evaluations of NG-IDF technology, we proposed a new probabilistic 𝑊𝑊 hyetograph that 723 

explicitly represents the temporal patterns of snowmelt and quantified the contribution of 𝑊𝑊 724 

hyetograph uncertainty in design flood estimates.  725 

 Based on the results of this study, we have four major conclusions: 726 

1) The standard rainfall hyetographs such as uniform distribution proposed in the rational 727 

method, or NRCS temporal distributions lead to substantial underestimation of design floods and 728 

therefore are inappropriate for the small snow-dominated basin in the Sierra Nevada. There is an 729 

emerging need to systematically develop 𝑊𝑊 hyetograph over the CONUS.  730 

2) The median 𝑊𝑊 hyetograph generates acceptable flood estimates but the probabilistic 𝑊𝑊 731 

hyetograph represents a broad range of uncertainty or aleatory uncertainty which is caused by 732 

random natural variability and cannot be diminished, resulting in a broad range of variability in 733 

design peak flow or volume estimates. A full risk analysis that includes 𝑊𝑊 hyetograph uncertainty 734 

is recommended for risk-based hydrologic design and future climate change impact studies on 735 

flood risk (e.g., changes in hyetograph versus changes in storm magnitude).  736 

3) Instead of simply “pooling” all ensembles of large 𝑊𝑊 events together in developing a 737 

probabilistic 𝑊𝑊 hyetograph, it is important to investigate the underlying mechanism (e.g., rainfall, 738 

snowmelt, ROS) to gain a physical understanding of their behaviors. For example, the test basin 739 

in this study was dominated by the snowmelt mechanism and therefore the 𝑊𝑊  hyetograph 740 

presented an explicit diurnal pattern controlled by solar energy input.  741 

4) Sample data uncertainty in the NG-IDF frequency analysis and 𝑊𝑊  hyetograph 742 

uncertainty in the TR-55 modeling equally contribute to the design flood uncertainties at smaller 743 

ARIs such as 5-year event (which is commonly used in hydrologic design such as culverts); sample 744 

data uncertainty dominates the 𝑊𝑊 hyetograph uncertainty at larger ARIs such as 50-year event. 745 
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The sample data uncertainty or epistemic uncertainty can be suitably resolved by improving the 746 

model such as the regionalization method or extending the DHSVM simulation period. 747 

Nevertheless, it should be acknowledged that these findings are derived from a small snow-748 

dominated basin in the Sierra Nevada, and as such, the outcomes may differ for larger snow-749 

dominated areas with varying basin sizes, climates, and vegetation. 750 

Despite the promising results with the use of the developed 𝑊𝑊  hyetograph, we 751 

acknowledge that further assessments are still necessary to make NG-IDF technology ready for 752 

practicing design. The conclusion reached in this study pertains solely to the small study basin in 753 

the Sierra Nevada Mountains. Obviously, more case studies are necessary to develop regional 𝑊𝑊 754 

hyetographs generated from different physical mechanisms and validate them in different 755 

hydroclimate regions. The characteristics of a basin, including its size, topography, climate, and 756 

vegetation type, can have an impact on the shape of the hyetograph and the estimation of design 757 

flood. For instance, in a large basin with rainfall- and snow-dominated regions, the standard 758 

rainfall hyetograph may be suitable if summer thunderstorms are the primary cause of flooding 759 

instead of spring snowmelt (Gochis et al., 2015). However, at lower elevations where snow has 760 

historically dominated, the standard rainfall hyetograph may become applicable in the future due 761 

to a shift in precipitation phase from snowfall to rain. Conversely, at higher elevations, the 762 

snowmelt hyetograph may currently be effective but could underestimate design flood estimation 763 

in the future due to an increase in the frequency of ROS events under climate change (Musselman 764 

et al., 2018). Additionally, the vegetation type in a basin can also affect the hyetograph shape, with 765 

evergreen forests having a higher occurrence of ROS events than open spaces (Mooney and Lee, 766 

2022), and postfire lands potentially accelerating the rate of snowmelt (Gleason et al., 2013). Next, 767 

we plan to use the well-validated DHSVM model with the developed regionally coherent snow 768 
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parameters (Sun et al., 2019) to construct regional 𝑊𝑊 hyetographs over the CONUS and test them 769 

against different hillslope configurations and selected validation basins using the general method 770 

presented in this study. 771 

 772 

Open Research 773 

The DHSVM source code is available at (Perkins et al., 2023). 774 

The BCQC SNOTEL data used in this study are available at 775 

https://climate.pnnl.gov/?category=Hydrology&card=2520c45b90be6207c5b68aef3817da52 776 

The USGS and the National Geospatial-Intelligence Agency Global Multi-resolution Terrain 777 

Elevation Data 2010 are available at (Danielson and Gesch, 2011).  778 

The Livneh meteorological forcing data are available at (Livneh et al., 2015).  779 

The National Land Cover Database is available at 780 

https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover&f%5B1%5D=region%3A781 

conus  782 

The NRCS Soil Survey SSURGO soil data are available at (Soil Survey Staff, 2022). 783 

The USGS streamflow observations data for gauge 10296500 are available at 784 

https://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=rdb&site_no=10296500&legacy=&re785 

ferred_module=sw&period=&begin_date=1984-01-01&end_date=2013-12-31 786 

The USGS streamflow observations data for gauge 10296000 are available at 787 

https://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=rdb&site_no=10296000&legacy=&re788 

ferred_module=sw&period=&begin_date=1984-01-01&end_date=2013-12-31 789 
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 1099 
 1100 

Figure 1. The framework for developing water available for runoff hyetograph and evaluating the 1101 
NG-IDF technology in design flood estimates using DHSVM continuous simulations. 1102 
 1103 
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 1105 
Figure 2. The location of Upper West Walker Bain and the selected small snow-dominated basin 1106 
that flows into the U.S. Department of Defense (DoD) Marine Corps Mountain Warfare Training 1107 
Center (MCMWTC). 1108 
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 1130 
Figure 3. Comparison of measured and simulated daily streamflow (a and b) and snow water 1131 
equivalent (c) for the Upper West Walker Bain. 1132 
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 1148 
Figure 4. Basin-scale NG-IDF curves with the associated 90% confidence intervals for the four 1149 
selected durations varying from 24h to 96h. 1150 
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 1167 
Figure 5. (a) DHSVM simulated 15min hydrograph for the small test basin. (b) Annual maximum 1168 
(water year) flood time series (obtained from the 15min hydrograph) for the small snow-dominated 1169 
basin.  1170 
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 1181 
Figure 6. Ensemble hyetographs of water available for runoff (𝑊𝑊) for each selected duration. All 1182 
hyetographs were derived from large snowmelt events only. 1183 
 1184 
 1185 
 1186 
 1187 
 1188 
 1189 
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 1190 
 1191 
Figure 7. Probabilistic water available for runoff (𝑊𝑊) hyetograph for the test basin. The graph 1192 
represents the cumulative probability of occurrence at 20% increments based only on the 𝑊𝑊 events 1193 
that belonged to the dominant quartile. Using the 24h duration as an example, the 1st-quartile is 1194 
the dominant quartile which means that most of the 𝑊𝑊 events had their greatest percentage of the 1195 
total 𝑊𝑊 fell during the 1st-quarter, i.e., the first 6h.  1196 
 1197 
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 1198 
Figure 8. The standard NRCS rainfall hyetographs and uniform rainfall hyetograph versus the 1199 
snowmelt hyetograph.  1200 
 1201 
 1202 
 1203 
 1204 
 1205 
 1206 
 1207 
 1208 
 1209 
 1210 
 1211 
 1212 
 1213 
 1214 
 1215 
 1216 
 1217 



Confidential manuscript submitted to: AGU-Water Resources Research 

50 

 1218 
 1219 
Figure 9. (a) Comparison of design flood estimations from DHSVM and NG-IDF technology in 1220 
which two standard rainfall hyetographs were used. The error bar represents the associated 90% 1221 
confidence intervals due to sample data uncertainty. The pair bracket presents the p-value from 𝑍𝑍 1222 
statics in the significance test. (b) Similar to (a) but the developed snowmelt hyetographs were 1223 
used in the NG-IDF technology. Median 𝑊𝑊 hyetograph indicates the 50% hyetographs extracted 1224 
from Figure 7, separately for each duration. Optimized 𝑊𝑊 hyetograph indicates that we ran the 1225 
TR-55 with different 𝑊𝑊 hyetographs (e.g., varying from 10% curve to 90% curve) and reported 1226 
the best design flood estimates we had achieved. 1227 
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 1249 
 1250 
Figure 10. Mean range of design flood estimates depicting the uncertainty contribution of the 1251 
sample data and water available for runoff hyetograph inTR-55 modeling for the four selected 1252 
durations and ARIs. 1253 
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