References
1 Ricciardi, E., Bonino, D., Pellegrini, S. & Pietrini, P. Mind the
blind brain to understand the sighted one! Is there a supramodal
cortical functional architecture? Neurosci Biobehav Rev41 , 64-77, doi:10.1016/j.neubiorev.2013.10.006 (2014).
2 Pascual-Leone, A. & Hamilton, R. The metamodal organization of the
brain. Prog Brain Res 134 , 427-445,
doi:10.1016/s0079-6123(01)34028-1 (2001).
3 Boyraz, P. & Treue, S. Misperceptions of speed are accounted for by
the responses of neurons in macaque cortical area MT. J
Neurophysiol 105 , 1199-1211, doi:10.1152/jn.00213.2010 (2011).
4 Newsome, W. T. & Pare, E. B. A selective impairment of motion
perception following lesions of the middle temporal visual area (MT).J Neurosci 8 , 2201-2211,
doi:10.1523/JNEUROSCI.08-06-02201.1988 (1988).
5 Orban, G. A., Saunders, R. C. & Vandenbussche, E. Lesions of the
superior temporal cortical motion areas impair speed discrimination in
the macaque monkey. Eur J Neurosci 7 , 2261-2276,
doi:10.1111/j.1460-9568.1995.tb00647.x (1995).
6 He, S., Cohen, E. R. & Hu, X. Close correlation between activity in
brain area MT/V5 and the perception of a visual motion aftereffect.Curr Biol 8 , 1215-1218,
doi:10.1016/s0960-9822(07)00512-x (1998).
7 Hogendoorn, H. & Verstraten, F. A. Decoding the motion aftereffect in
human visual cortex. Neuroimage 82 , 426-432,
doi:10.1016/j.neuroimage.2013.06.034 (2013).
8 Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion
aftereffect reconsidered. Neuron 32 , 161-172,
doi:10.1016/s0896-6273(01)00452-4 (2001).
9 Tootell, R. B. et al. Visual motion aftereffect in human
cortical area MT revealed by functional magnetic resonance imaging.Nature 375 , 139-141, doi:10.1038/375139a0 (1995).
10 Jiang, F., Stecker, G. C. & Fine, I. Auditory motion processing
after early blindness. J Vis 14 , 4, doi:10.1167/14.13.4
(2014).
11 Lewis, J. W., Beauchamp, M. S. & DeYoe, E. A. A comparison of visual
and auditory motion processing in human cerebral cortex. Cereb
Cortex 10 , 873-888, doi:10.1093/cercor/10.9.873 (2000).
12 Lewis, R. & Noppeney, U. Audiovisual synchrony improves motion
discrimination via enhanced connectivity between early visual and
auditory areas. J Neurosci 30 , 12329-12339,
doi:10.1523/JNEUROSCI.5745-09.2010 (2010).
13 Poirier, C. et al. Specific activation of the V5 brain area by
auditory motion processing: an fMRI study. Brain Res Cogn Brain
Res 25 , 650-658, doi:10.1016/j.cogbrainres.2005.08.015 (2005).
14 Strnad, L., Peelen, M. V., Bedny, M. & Caramazza, A. Multivoxel
pattern analysis reveals auditory motion information in MT+ of both
congenitally blind and sighted individuals. PLoS One 8 ,
e63198, doi:10.1371/journal.pone.0063198 (2013).
15 Jiang, F., Stecker, G. C., Boynton, G. M. & Fine, I. Early Blindness
Results in Developmental Plasticity for Auditory Motion Processing
within Auditory and Occipital Cortex. Front Hum Neurosci10 , 324, doi:10.3389/fnhum.2016.00324 (2016).
16 Saenz, M., Lewis, L. B., Huth, A. G., Fine, I. & Koch, C. Visual
Motion Area MT+/V5 Responds to Auditory Motion in Human Sight-Recovery
Subjects. J Neurosci 28 , 5141-5148,
doi:10.1523/JNEUROSCI.0803-08.2008 (2008).
17 Beauchamp, M. S., Yasar, N. E., Kishan, N. & Ro, T. Human MST but
not MT responds to tactile stimulation. J Neurosci 27 ,
8261-8267, doi:10.1523/JNEUROSCI.0754-07.2007 (2007).
18 Blake, R., Sobel, K. V. & James, T. W. Neural synergy between
kinetic vision and touch. Psychol Sci 15 , 397-402,
doi:10.1111/j.0956-7976.2004.00691.x (2004).
19 Hagen, M. C. et al. Tactile motion activates the human middle
temporal/V5 (MT/V5) complex. Eur J Neurosci 16 , 957-964,
doi:10.1046/j.1460-9568.2002.02139.x (2002).
20 Ricciardi, E. et al. The effect of visual experience on the
development of functional architecture in hMT+. Cereb Cortex17 , 2933-2939, doi:10.1093/cercor/bhm018 (2007).
21 Sani, L. et al. Effects of Visual Experience on the Human MT+
Functional Connectivity Networks: An fMRI Study of Motion Perception in
Sighted and Congenitally Blind Individuals. Front Syst Neurosci4 , 159, doi:10.3389/fnsys.2010.00159 (2010).
22 Summers, I. R., Francis, S. T., Bowtell, R. W., McGlone, F. P. &
Clemence, M. A functional-magnetic-resonance-imaging investigation of
cortical activation from moving vibrotactile stimuli on the fingertip.J Acoust Soc Am 125 , 1033-1039, doi:10.1121/1.3056399
(2009).
23 van Kemenade, B. M. et al. Tactile and visual motion direction
processing in hMT+/V5. Neuroimage 84 , 420-427,
doi:10.1016/j.neuroimage.2013.09.004 (2014).
24 Dormal, G., Rezk, M., Yakobov, E., Lepore, F. & Collignon, O.
Auditory motion in the sighted and blind: Early visual deprivation
triggers a large-scale imbalance between auditory and ”visual” brain
regions. Neuroimage 134 , 630-644,
doi:10.1016/j.neuroimage.2016.04.027 (2016).
25 Rezk, M. et al. Shared Representation of Visual and Auditory
Motion Directions in the Human Middle-Temporal Cortex. Curr Biol30 , 2289-2299 e2288, doi:10.1016/j.cub.2020.04.039 (2020).
26 Alais, D. & Burr, D. The ventriloquist effect results from
near-optimal bimodal integration. Curr Biol 14 , 257-262,
doi:10.1016/j.cub.2004.01.029
S0960982204000430 [pii] (2004).
27 Ernst, M. & Banks, M. Humans integrate visual and haptic information
in a statistically optimal fashion. Nature 415 , 429-433
(2002).
28 Alais, D. & Burr, D. No direction-specific bimodal facilitation for
audiovisual motion detection. Brain Res Cogn Brain Res19 , 185-194, doi:10.1016/j.cogbrainres.2003.11.011
S0926641003002982 [pii] (2004).
29 Wuerger, S. M., Hofbauer, M. & Meyer, G. F. The integration of
auditory and visual motion signals at threshold. Perception &
psychophysics 65 , 1188-1196 (2003).
30 Meyer, G. F. & Wuerger, S. M. Cross-modal integration of auditory
and visual motion signals. Neuroreport 12 , 2557-2560,
doi:10.1097/00001756-200108080-00053 (2001).
31 Sanabria, D., Spence, C. & Soto-Faraco, S. Perceptual and decisional
contributions to audiovisual interactions in the perception of apparent
motion: a signal detection study. Cognition 102 ,
299-310, doi:10.1016/j.cognition.2006.01.003 (2007).
32 Soto-Faraco, S., Kingstone, A. & Spence, C. Integrating motion
information across sensory modalities: the role of top-down factors.Prog Brain Res 155 , 273-286,
doi:10.1016/S0079-6123(06)55016-2 (2006).
33 Meyer, G. F., Wuerger, S. M., Röhrbein, F. & Zetzsche, C. Low-level
integration of auditory and visual motion signals requires spatial
co-localisation. Experimental brain research Experimentelle
Hirnforschung Expérimentation cérébrale 166 , 538-547,
doi:10.1007/s00221-005-2394-7 (2005).
34 Konkle, T., Wang, Q., Hayward, V. & Moore, C. I. Motion aftereffects
transfer between touch and vision. Curr Biol 19 ,
745-750, doi:10.1016/j.cub.2009.03.035 (2009).
35 Brainard, D. H. The Psychophysics Toolbox. Spat Vis10 , 433-436 (1997).
36 Pelli, D. G. The VideoToolbox software for visual psychophysics:
transforming numbers into movies. Spat Vis 10 , 437-442
(1997).
37 Johnston, A., Benton, C. P. & Morgan, M. J. Concurrent measurement
of perceived speed and speed discrimination threshold using the method
of single stimuli. Vision Res 39 , 3849-3854,
doi:10.1016/s0042-6989(99)00103-0 (1999).
38 Norman, J. F. et al. The role of explicit and implicit
standards in visual speed discrimination. Perception 37 ,
889-901, doi:10.1068/p5888 (2008).
39 McKee, S. P., Silverman, G. H. & Nakayama, K. Precise velocity
discrimination despite random variations in temporal frequency and
contrast. Vision Res 26 , 609-619,
doi:10.1016/0042-6989(86)90009-x (1986).
40 Carlile, S. & Leung, J. The Perception of Auditory Motion.Trends Hear 20 , doi:10.1177/2331216516644254 (2016).
41 Cicchini, G. M. & Burr, D. C. Serial effects are optimal.Behav Brain Sci 41 , e229, doi:10.1017/S0140525X18001395
(2018).
42 Fischer, J. & Whitney, D. Serial dependence in visual perception.Nat Neurosci 17 , 738-743, doi:10.1038/nn.3689 (2014).
43 Liberman, A., Fischer, J. & Whitney, D. Serial dependence in the
perception of faces. Curr Biol 24 , 2569-2574,
doi:10.1016/j.cub.2014.09.025 (2014).
44 Taubert, J., Van der Burg, E. & Alais, D. Love at second sight:
Sequential dependence of facial attractiveness in an on-line dating
paradigm. Sci Rep 6 , 22740, doi:10.1038/srep22740
(2016).
45 Alais, D., Leung, J. & Van der Burg, E. Linear Summation of
Repulsive and Attractive Serial Dependencies: Orientation and Motion
Dependencies Sum in Motion Perception. J Neurosci 37 ,
4381-4390, doi:10.1523/JNEUROSCI.4601-15.2017 (2017).
46 Blake, R., Ahlström, U. & Alais, D. Perceptual priming by invisible
motion. Psychol Sci 10 , 145-150,
doi:10.1111/1467-9280.00122 (1999).
47 Kanai, R. & Verstraten, F. A. Perceptual manifestations of fast
neural plasticity: motion priming, rapid motion aftereffect and
perceptual sensitization. Vision Res 45 , 3109-3116,
doi:10.1016/j.visres.2005.05.014 (2005).
48 Pantle, A. J., Gallogly, D. P. & Piehler, O. C. Direction biasing by
brief apparent motion stimuli. Vision Res 40 , 1979-1991,
doi:10.1016/s0042-6989(00)00071-7 (2000).
49 Alais, D., Wenderoth, P. & Burke, D. The contribution of
one-dimensional motion mechanisms to the perceived direction of drifting
plaids and their after effects. Vision Res 34 ,
1823-1834, doi:10.1016/0042-6989(94)90307-7 (1994).
50 Anstis, S., Verstraten, F. A. & Mather, G. The motion aftereffect.Trends Cogn Sci 2 , 111-117,
doi:10.1016/s1364-6613(98)01142-5 (1998).
51 Altman, J. A. & Viskov, O. V. Discrimination of perceived movement
velocity for fused auditory image in dichotic stimulation. J
Acoust Soc Am 61 , 816-819, doi:10.1121/1.381371 (1977).
52 Grantham, D. W. Detection and discrimination of simulated motion of
auditory targets in the horizontal plane. J Acoust Soc Am79 , 1939-1949, doi:10.1121/1.393201 (1986).
53 De Bruyn, B. & Orban, G. A. Human velocity and direction
discrimination measured with random dot patterns. Vision Res28 , 1323-1335, doi:10.1016/0042-6989(88)90064-8 (1988).
54 McKee, S. P. & Nakayama, K. The detection of motion in the
peripheral visual field. Vision Res 24 , 25-32,
doi:10.1016/0042-6989(84)90140-8 (1984).
55 Carlile, S. & Best, V. Discrimination of sound source velocity in
human listeners. J Acoust Soc Am 111 , 1026-1035,
doi:10.1121/1.1436067 (2002).
56 Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons
in middle temporal visual area of the macaque monkey. I. Selectivity for
stimulus direction, speed, and orientation. J Neurophysiol49 , 1127-1147, doi:10.1152/jn.1983.49.5.1127 (1983).
57 Perrone, J. A. & Thiele, A. Speed skills: measuring the visual speed
analyzing properties of primate MT neurons. Nat Neurosci4 , 526-532, doi:10.1038/87480 (2001).
58 Roggerone, V., Vacher, J., Tarlao, C. & Guastavino, C. Auditory
motion perception emerges from successive sound localizations integrated
over time. Sci Rep 9 , 16437,
doi:10.1038/s41598-019-52742-0 (2019).
59 Rudolph, K. & Pasternak, T. Transient and permanent deficits in
motion perception after lesions of cortical areas MT and MST in the
macaque monkey. Cereb Cortex 9 , 90-100,
doi:10.1093/cercor/9.1.90 (1999).
60 Huk, A. C. & Heeger, D. J. Task-related modulation of visual cortex.J Neurophysiol 83 , 3525-3536,
doi:10.1152/jn.2000.83.6.3525 (2000).
61 Chaplin, T. A., Rosa, M. G. P. & Lui, L. L. Auditory and Visual
Motion Processing and Integration in the Primate Cerebral Cortex.Front Neural Circuits 12 , 93,
doi:10.3389/fncir.2018.00093 (2018).
62 Alink, A., Euler, F., Kriegeskorte, N., Singer, W. & Kohler, A.
Auditory motion direction encoding in auditory cortex and high-level
visual cortex. Hum Brain Mapp 33 , 969-978,
doi:10.1002/hbm.21263 (2012).
63 Battal, C., Rezk, M., Mattioni, S., Vadlamudi, J. & Collignon, O.
Representation of Auditory Motion Directions and Sound Source Locations
in the Human Planum Temporale. J Neurosci 39 , 2208-2220,
doi:10.1523/JNEUROSCI.2289-18.2018 (2019).
64 Baumgart, F., Gaschler-Markefski, B., Woldorff, M. G., Heinze, H. J.
& Scheich, H. A movement-sensitive area in auditory cortex.Nature 400 , 724-726, doi:10.1038/23390 (1999).
65 Pavani, F., Macaluso, E., Warren, J. D., Driver, J. & Griffiths, T.
D. A common cortical substrate activated by horizontal and vertical
sound movement in the human brain. Curr Biol 12 ,
1584-1590, doi:10.1016/s0960-9822(02)01143-0 (2002).
66 Warren, J. D., Zielinski, B. A., Green, G. G., Rauschecker, J. P. &
Griffiths, T. D. Perception of sound-source motion by the human brain.Neuron 34 , 139-148, doi:10.1016/s0896-6273(02)00637-2
(2002).
67 Perrott, D. R., Costantino, B. & Ball, J. Discrimination of moving
events which accelerate or decelerate over the listening interval.J Acoust Soc Am 93 , 1053-1057, doi:10.1121/1.405553
(1993).
68 Freeman, T. C. et al. Discrimination contours for moving
sounds reveal duration and distance cues dominate auditory speed
perception. PLoS One 9 , e102864,
doi:10.1371/journal.pone.0102864 (2014).
69 Getzmann, S. & Lewald, J. Cortical processing of change in sound
location: smooth motion versus discontinuous displacement. Brain
Res 1466 , 119-127, doi:10.1016/j.brainres.2012.05.033 (2012).
70 Cavanagh, P. & Mather, G. Motion: the long and short of it.Spat Vis 4 , 103-129, doi:10.1163/156856889x00077 (1989).
71 Mikami, A. Direction selective neurons respond to short-range and
long-range apparent motion stimuli in macaque visual area MT. Int
J Neurosci 61 , 101-112, doi:10.3109/00207459108986278 (1991).
72 Mikami, A. Spatiotemporal characteristics of direction-selective
neurons in the middle temporal visual area of the macaque monkeys.Exp Brain Res 90 , 40-46, doi:10.1007/BF00229254 (1992).
73 Newsome, W. T., Mikami, A. & Wurtz, R. H. Motion selectivity in
macaque visual cortex. III. Psychophysics and physiology of apparent
motion. J Neurophysiol 55 , 1340-1351,
doi:10.1152/jn.1986.55.6.1340 (1986).
74 Gurtubay-Antolin, A. et al. Direct Structural Connections
between Auditory and Visual Motion-Selective Regions in Humans. J
Neurosci 41 , 2393-2405, doi:10.1523/JNEUROSCI.1552-20.2021
(2021).