References
Arca, M., Mougel, F., Guillemaud, T., Dupas, S., Rome, Q., Perrard, A.,
Muller, F., Fossoud, A., Capdevielle-Dulac, C., Torres-Leguizamon, M.,
Chen, X. X., Tan, J. L., Jung, C., Villemant, C., Arnold, G. and
Silvain, J. F. 2015. Reconstructing the invasion and the demographic
history of the yellow-legged hornet, Vespa velutina , in Europe.
Biological Invasions, 17: 2357-2371.
Archer, M.E. 2012. Vespine Wasps of the World. Behaviour, Ecology and
Taxonomy of the Vespinae; Monograph Series; Siri Scientific Press:
Manchester, UK. Vol. 4: 1–352.
Bates, D., Mächler, M., Bolker, B., and Walker, S. 2014. Fitting linear
mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Barton, K, 2022. MuMIn: Multi-Model Inference. R package version 1.47.1,
<https://CRAN.R-project.org/package=MuMIn>.
Bijlsma, R. G. 1997. Handleiding veldonderzoek roofvogels. De Takkeling,
5(1): 5-6.
Birkhead, T. R. 1974. Predation by birds on social wasps. British Birds,
67(6): 221-229.
Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel
inference: a practical information-theoretic approach, 2nd ed. ed.
Springer, New York.
Carlsson, N. O., Sarnelle, O., and Strayer, D. L. 2009. Native predators
and exotic prey–an acquired taste? Frontiers in Ecology and the
Environment, 7(10): 525-532.
Christensen, R. H. B. (2022). ordinal - Regression Models for Ordinal
Data. R package version 2022.11-16.
https://CRAN.R-project.org/package=ordinal.
Diéguez-Antón, A., Escuredo, O., Seijo, M. C. and Rodríguez-Flores, M.
S. 2022. Embryo, Relocation and Secondary Nests of the Invasive SpeciesVespa velutina in Galicia (NW Spain). Animals, 12: 2781.
Gamauf, A. 1999. Der Wespenbussard (Pernis apivorus ) ein
Nahrungsspezialist? Der Einfluß sozialer Hymenopteren auf Habitatnutzung
und Home Range-Größe. Egretta 42: 57-85.
Gamauf, A., and Haring, E. 2004. Molecular phylogeny and biogeography of
honey‐buzzards (genera Pernis and Henicopernis ). Journal
of Zoological Systematics and Evolutionary Research, 42(2): 145-153.
Hagemeijer, E.J.M. and Blair, M.J., (eds) 1997. The EBCC Atlas of
European Breeding Birds: Their Distribution and Abundance. T & AD
Poyser, London.
Itämies, J. U. H. A. N. I., and Mikkola, H. 1972. The diet of honey
buzzards Pernis apivorus in Finland. Ornis Fennica 49: 7-10.
Johnson, M. T., and Agrawal, A. A. 2003. The ecological play of
predator–prey dynamics in an evolutionary theatre. Trends in Ecology
and Evolution, 18(11): 549-551.
Kostrzewa, A. 1998. Pernis apivorus Honey Buzzard. BWP update,
2(2): 107-120.
Laurino, D., Lioy, S., Carisio, L., Manino, A., and Porporato, M. 2019.Vespa velutina : An alien driver of honey bee colony losses.
Diversity 12: 1-15.
Macià, F. X., Menchetti, M., Corbella, C., Grajera, J., and Vila, R.
2019. Exploitation of the invasive Asian hornet Vespa velutina by
the European honey buzzard Pernis apivorus . Bird Study, 66(3):
425-429.
Newton I. 1979. Population ecology of raptors. T & AD Poyser LTD.
Nadolski, J. 2012. Structure of nests and colony sizes of the European
hornet (Vespa crabro ) and Saxon wasp (Dolichovespula
saxonica ) (Hymenoptera: Vespinae) in urban conditions. sociobiology,
59(4), 1075-1120.
Palomino Nantón, D. and Valls, J. 2011. Las rapaces forestales de
España. Población reproductora en 2009-2010 y método de censo.
SEO/BirdLife, 153.
Pinheiro J, Bates D, R Core Team 2022. nlme: Linear and Nonlinear Mixed
Effects Models. R package version 3.1-157,
<https://CRAN.R-project.org/package=nlme>.
Purroy, J. and Purroy, F. J. 2016. Abejero europeo – Pernis
apivorus . En: Enciclopedia Virtual de los Vertebrados Españoles.
Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias
Naturales, Madrid. Available in: http://www.vertebradosibericos.org/
R Core Team 2022. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rebollo, S., Martínez-Hesterkamp,
S., García-Salgado, G., Pérez-Camacho, L., Fernández-Pereira, J. and
Jenness, J. 2017. Spatial relationships and mechanisms of coexistence
between dominant and subordinate top predators. Journal of Avian Biology
48: 1226-1237.
Rebollo, S., Rey-Benayas, J. M., Villar-Salvador, P., Pérez-Camacho, L.,
Castro, J., Molina-Morales, M., Leverkus, A. B., Baz, A.,
Martínez-Baroja, L., Quiles, P., Gómez-Sánchez, D., Fernández-Pereira,
J. M., Meltzer, J., Monteagudo, N., Ballesteros, L., Cayuela, L., de las
Heras, D., García-Salgado, G. and Martínez-Hesterkamp, S. 2019.
Servicios de la avifauna (high-mobile link species) en mosaicos
agroforestales: regeneración forestal y regulación de plagas.
Ecosistemas, 28(2): 32-41.
Rebollo, S., Díaz-Aranda, L. M., Martín-Ávila, J. A., Hernández-García,
M., López-Rodríguez, M., Monteagudo, N., and Fernández-Pereira, J. M.
(2023). Assessment of the consumption of the exotic Asian HornetVespa velutina by the European Honey Buzzard Pernis
apivorus in southwestern Europe. Bird Study, 70 (1-2): 1-15.
Roberts, S. J. and Coleman, M. 2001. Some observations on the diet of
European Honey-buzzards in Britain. British birds, 94: 433-438.
Roberts, S. J., Lewis, J. M. S. and Williams, I. T. 1999. Breeding
European Honey-Buzzards in Britain. British Birds 92: 326-345.
Rodríguez-Lado, L., Tapia, L.,
Pérez, M., Taboada, T., Martínez-Cortizas, A. and Macías, F. 2018. Atlas
digital de propiedades de suelos de Galicia. Universidad de Santiago de
Compostela.
Rojas-Nossa, S. V. and Calviño-Cancela, M. 2020. The invasive hornetVespa velutina affects pollination of a wild plant through
changes in abundance and behaviour of floral visitors. Biological
Invasions, 22: 2609-2618.
Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, Mchugh K,
Hiraldo F. 2008. Top predators as conservation tools: ecological
rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst. 39:1–19.
Sievwright, H., and Higuchi, H. 2011. Morphometric analysis of the
unusual feeding morphology of Oriental Honey Buzzards. Ornithological
Science, 10(2), 131-144.
Sievwright, H., and Higuchi, H. 2016. The feather structure of Oriental
Honey Buzzards (Pernis ptilorhynchus) and other hawk species in relation
to their foraging behavior. Zoological science, 33(3), 295-302.
Slagsvold, T. and Sonerud, G. A. 2007. Prey size and ingestion rate in
raptors: importance for sex roles and reversed sexual size dimorphism.
J. Avian Biol. 38: 650–661.
Sonerud, G. A., Steen, R., Løw, L. M., Røed, L. T., Skar, K., Selås, V.,
and Slagsvold, T. 2014. Evolution of parental roles in raptors: prey
type determines role asymmetry in the Eurasian kestrel. Animal
Behaviour, 96: 31-38.
Spencer, C. N., McClelland, B. R., and Stanford, J. A. 1991. Shrimp
stocking, salmon collapse, and eagle displacement. BioScience, 41(1):
14-21.
Sumner, S., Law, G., and Cini, A. 2018. Why we love bees and hate wasps.
Ecological Entomology, 43(6): 836-845.
van Manen, W., van Diermen, J., van Rijn, S. and van Geneijgen, P. 2011.
Ecologie van de Wespendief Pernis apivorus op de Veluwe in
2008-2010 Populatie, broedbiologie, habitatgebruik en voedsel. Natura
2000 rapport, Provincie Gelderland Arnhem NL / stichting Boomtop
www.boomtop.org Assen NL.
Vansteelant, W., and Agostini, N. 2021. European honey buzzardPernis apivorus . In Migration strategies of birds of prey in
Western Palearctic: 35-48. CRC Press.
Vega, J. M., Ortiz-Sánchez, F. J., Martínez-Arcediano, A., Castro, L.,
Alfaya, T., Carballada, F., Carballada, S., Marqués, L., Vega, A. and
Ruiz-León, B. 2022. Social wasps in Spain: the who and where.
Allergologia et Immunopathologia, 50(2): 58-64.
Venables, W. N. and Ripley, B. D. 2002 Modern Applied Statistics with S.
Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Ziesemer, F. and Meyburg, B.U. 2015. Home range, habitat use and diet of
Honey-buzzards during the breeding season. British Birds 108: 467-481.
Figure and table
captions
Table 1: Abundance of vespid species in the comb remains
collected in honey-buzzard nests and surroundings. The abundance was
estimated as a percentage of cells of each species relative to the total
of large and small cells collected. The annual data for the period
2018-2021 and total are shown.
Table 2: Percentages of prey items in honey-buzzard´s diet.
Large cell combs were considered “Asian-hornet” and small cell combs
“common-wasp” (see Table 1 ). For vertebrates, we
distinguished Lacertidae and Anguidae for reptile items, and feathered
(adults, fledglings, and older nestlings) and chicks (without feathers)
for avian items. The annual data for the period 2018-2021 and total are
shown.
Table 3: Relative abundance of vespid species in the diet of
the studied nests of honey-buzzards estimated from the number of cells
consumed, and relative abundances of vespids species in the nesting
territories estimated by baited traps. Ivlev selectivity index (E) was
calculated for Asian-hornet and common-wasp in 2020 and 2021.
Table 4: Daily rate of prey items delivered to honey-buzzard´s
nests. Large cell combs were considered “Asian-hornet” and small cell
combs “common-wasp” (see Table 1 ). For vertebrates, we
distinguished Lacertidae and Anguidae for reptile items, and feathered
(adults, fledglings, and older nestlings) and chicks (without feathers)
for avian items. The annual data for the period 2018-2021 and total are
shown.
Figure 1: Interaction effect of vespid species and number of
nestlings over the number of cells of the combs delivered to
honey-buzzard´s nests. Common-wasps show more cells per comb than
Asian-hornets and this difference is greater in nests of one nestling (a
- a´ / b´- b). The isolated effect of the number of nestlings was not
significant.
Figure 2: Interaction effect of the age and number of nestlings
in the proportions of the four main types of prey delivered to the
honey-buzzard nests: common-wasp (light grey), Asian-hornet (median
grey), reptile (dark grey), and birds (black). Proportions are shown
stacked. A significant effect was observed in the interaction of age and
number of nestlings.
Figure 3: Effect of the year in the proportions of the four
main types of prey delivered to the honey-buzzard nests: common-wasp
(light grey), Asian-hornet (median grey), reptile (dark grey), and birds
(black). Proportions are shown stacked. Note that the proportions are
slightly different from Table 2 as here the model weighs the
random effect of the nest.
Figure 4: Effect of the number and the age of nestlings over
the number of prey delivered daily to honey-buzzard nests. Age did not
show a significant effect in the rate of prey delivered, only the number
of nestlings. The decrease in the rate of prey delivered to the nests
with the age was not significant.