References
Arca, M., Mougel, F., Guillemaud, T., Dupas, S., Rome, Q., Perrard, A., Muller, F., Fossoud, A., Capdevielle-Dulac, C., Torres-Leguizamon, M., Chen, X. X., Tan, J. L., Jung, C., Villemant, C., Arnold, G. and Silvain, J. F. 2015. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina , in Europe. Biological Invasions, 17: 2357-2371.
Archer, M.E. 2012. Vespine Wasps of the World. Behaviour, Ecology and Taxonomy of the Vespinae; Monograph Series; Siri Scientific Press: Manchester, UK. Vol. 4: 1–352.
Bates, D., Mächler, M., Bolker, B., and Walker, S. 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Barton, K, 2022. MuMIn: Multi-Model Inference. R package version 1.47.1, <https://CRAN.R-project.org/package=MuMIn>.
Bijlsma, R. G. 1997. Handleiding veldonderzoek roofvogels. De Takkeling, 5(1): 5-6.
Birkhead, T. R. 1974. Predation by birds on social wasps. British Birds, 67(6): 221-229.
Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. ed. Springer, New York.
Carlsson, N. O., Sarnelle, O., and Strayer, D. L. 2009. Native predators and exotic prey–an acquired taste? Frontiers in Ecology and the Environment, 7(10): 525-532.
Christensen, R. H. B. (2022). ordinal - Regression Models for Ordinal Data. R package version 2022.11-16. https://CRAN.R-project.org/package=ordinal.
Diéguez-Antón, A., Escuredo, O., Seijo, M. C. and Rodríguez-Flores, M. S. 2022. Embryo, Relocation and Secondary Nests of the Invasive SpeciesVespa velutina in Galicia (NW Spain). Animals, 12: 2781.
Gamauf, A. 1999. Der Wespenbussard (Pernis apivorus ) ein Nahrungsspezialist? Der Einfluß sozialer Hymenopteren auf Habitatnutzung und Home Range-Größe. Egretta 42: 57-85.
Gamauf, A., and Haring, E. 2004. Molecular phylogeny and biogeography of honey‐buzzards (genera Pernis and Henicopernis ). Journal of Zoological Systematics and Evolutionary Research, 42(2): 145-153.
Hagemeijer, E.J.M. and Blair, M.J., (eds) 1997. The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. T & AD Poyser, London.
Itämies, J. U. H. A. N. I., and Mikkola, H. 1972. The diet of honey buzzards Pernis apivorus in Finland. Ornis Fennica 49: 7-10.
Johnson, M. T., and Agrawal, A. A. 2003. The ecological play of predator–prey dynamics in an evolutionary theatre. Trends in Ecology and Evolution, 18(11): 549-551.
Kostrzewa, A. 1998. Pernis apivorus Honey Buzzard. BWP update, 2(2): 107-120.
Laurino, D., Lioy, S., Carisio, L., Manino, A., and Porporato, M. 2019.Vespa velutina : An alien driver of honey bee colony losses. Diversity 12: 1-15.
Macià, F. X., Menchetti, M., Corbella, C., Grajera, J., and Vila, R. 2019. Exploitation of the invasive Asian hornet Vespa velutina by the European honey buzzard Pernis apivorus . Bird Study, 66(3): 425-429.
Newton I. 1979. Population ecology of raptors. T & AD Poyser LTD.
Nadolski, J. 2012. Structure of nests and colony sizes of the European hornet (Vespa crabro ) and Saxon wasp (Dolichovespula saxonica ) (Hymenoptera: Vespinae) in urban conditions. sociobiology, 59(4), 1075-1120.
Palomino Nantón, D. and Valls, J. 2011. Las rapaces forestales de España. Población reproductora en 2009-2010 y método de censo. SEO/BirdLife, 153.
Pinheiro J, Bates D, R Core Team 2022. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-157, <https://CRAN.R-project.org/package=nlme>.
Purroy, J. and Purroy, F. J. 2016. Abejero europeo – Pernis apivorus . En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. Available in: http://www.vertebradosibericos.org/
R Core Team 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rebollo, S., Martínez-Hesterkamp, S., García-Salgado, G., Pérez-Camacho, L., Fernández-Pereira, J. and Jenness, J. 2017. Spatial relationships and mechanisms of coexistence between dominant and subordinate top predators. Journal of Avian Biology 48: 1226-1237.
Rebollo, S., Rey-Benayas, J. M., Villar-Salvador, P., Pérez-Camacho, L., Castro, J., Molina-Morales, M., Leverkus, A. B., Baz, A., Martínez-Baroja, L., Quiles, P., Gómez-Sánchez, D., Fernández-Pereira, J. M., Meltzer, J., Monteagudo, N., Ballesteros, L., Cayuela, L., de las Heras, D., García-Salgado, G. and Martínez-Hesterkamp, S. 2019. Servicios de la avifauna (high-mobile link species) en mosaicos agroforestales: regeneración forestal y regulación de plagas. Ecosistemas, 28(2): 32-41.
Rebollo, S., Díaz-Aranda, L. M., Martín-Ávila, J. A., Hernández-García, M., López-Rodríguez, M., Monteagudo, N., and Fernández-Pereira, J. M. (2023). Assessment of the consumption of the exotic Asian HornetVespa velutina by the European Honey Buzzard Pernis apivorus in southwestern Europe. Bird Study, 70 (1-2): 1-15.
Roberts, S. J. and Coleman, M. 2001. Some observations on the diet of European Honey-buzzards in Britain. British birds, 94: 433-438.
Roberts, S. J., Lewis, J. M. S. and Williams, I. T. 1999. Breeding European Honey-Buzzards in Britain. British Birds 92: 326-345.
Rodríguez-Lado, L., Tapia, L., Pérez, M., Taboada, T., Martínez-Cortizas, A. and Macías, F. 2018. Atlas digital de propiedades de suelos de Galicia. Universidad de Santiago de Compostela.
Rojas-Nossa, S. V. and Calviño-Cancela, M. 2020. The invasive hornetVespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biological Invasions, 22: 2609-2618.
Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, Mchugh K, Hiraldo F. 2008. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst. 39:1–19.
Sievwright, H., and Higuchi, H. 2011. Morphometric analysis of the unusual feeding morphology of Oriental Honey Buzzards. Ornithological Science, 10(2), 131-144.
Sievwright, H., and Higuchi, H. 2016. The feather structure of Oriental Honey Buzzards (Pernis ptilorhynchus) and other hawk species in relation to their foraging behavior. Zoological science, 33(3), 295-302.
Slagsvold, T. and Sonerud, G. A. 2007. Prey size and ingestion rate in raptors: importance for sex roles and reversed sexual size dimorphism. J. Avian Biol. 38: 650–661.
Sonerud, G. A., Steen, R., Løw, L. M., Røed, L. T., Skar, K., Selås, V., and Slagsvold, T. 2014. Evolution of parental roles in raptors: prey type determines role asymmetry in the Eurasian kestrel. Animal Behaviour, 96: 31-38.
Spencer, C. N., McClelland, B. R., and Stanford, J. A. 1991. Shrimp stocking, salmon collapse, and eagle displacement. BioScience, 41(1): 14-21.
Sumner, S., Law, G., and Cini, A. 2018. Why we love bees and hate wasps. Ecological Entomology, 43(6): 836-845.
van Manen, W., van Diermen, J., van Rijn, S. and van Geneijgen, P. 2011. Ecologie van de Wespendief Pernis apivorus op de Veluwe in 2008-2010 Populatie, broedbiologie, habitatgebruik en voedsel. Natura 2000 rapport, Provincie Gelderland Arnhem NL / stichting Boomtop www.boomtop.org Assen NL.
Vansteelant, W., and Agostini, N. 2021. European honey buzzardPernis apivorus . In Migration strategies of birds of prey in Western Palearctic: 35-48. CRC Press.
Vega, J. M., Ortiz-Sánchez, F. J., Martínez-Arcediano, A., Castro, L., Alfaya, T., Carballada, F., Carballada, S., Marqués, L., Vega, A. and Ruiz-León, B. 2022. Social wasps in Spain: the who and where. Allergologia et Immunopathologia, 50(2): 58-64.
Venables, W. N. and Ripley, B. D. 2002 Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Ziesemer, F. and Meyburg, B.U. 2015. Home range, habitat use and diet of Honey-buzzards during the breeding season. British Birds 108: 467-481.
Figure and table captions
Table 1: Abundance of vespid species in the comb remains collected in honey-buzzard nests and surroundings. The abundance was estimated as a percentage of cells of each species relative to the total of large and small cells collected. The annual data for the period 2018-2021 and total are shown.
Table 2: Percentages of prey items in honey-buzzard´s diet. Large cell combs were considered “Asian-hornet” and small cell combs “common-wasp” (see Table 1 ). For vertebrates, we distinguished Lacertidae and Anguidae for reptile items, and feathered (adults, fledglings, and older nestlings) and chicks (without feathers) for avian items. The annual data for the period 2018-2021 and total are shown.
Table 3: Relative abundance of vespid species in the diet of the studied nests of honey-buzzards estimated from the number of cells consumed, and relative abundances of vespids species in the nesting territories estimated by baited traps. Ivlev selectivity index (E) was calculated for Asian-hornet and common-wasp in 2020 and 2021.
Table 4: Daily rate of prey items delivered to honey-buzzard´s nests. Large cell combs were considered “Asian-hornet” and small cell combs “common-wasp” (see Table 1 ). For vertebrates, we distinguished Lacertidae and Anguidae for reptile items, and feathered (adults, fledglings, and older nestlings) and chicks (without feathers) for avian items. The annual data for the period 2018-2021 and total are shown.
Figure 1: Interaction effect of vespid species and number of nestlings over the number of cells of the combs delivered to honey-buzzard´s nests. Common-wasps show more cells per comb than Asian-hornets and this difference is greater in nests of one nestling (a - a´ / b´- b). The isolated effect of the number of nestlings was not significant.
Figure 2: Interaction effect of the age and number of nestlings in the proportions of the four main types of prey delivered to the honey-buzzard nests: common-wasp (light grey), Asian-hornet (median grey), reptile (dark grey), and birds (black). Proportions are shown stacked. A significant effect was observed in the interaction of age and number of nestlings.
Figure 3: Effect of the year in the proportions of the four main types of prey delivered to the honey-buzzard nests: common-wasp (light grey), Asian-hornet (median grey), reptile (dark grey), and birds (black). Proportions are shown stacked. Note that the proportions are slightly different from Table 2 as here the model weighs the random effect of the nest.
Figure 4: Effect of the number and the age of nestlings over the number of prey delivered daily to honey-buzzard nests. Age did not show a significant effect in the rate of prey delivered, only the number of nestlings. The decrease in the rate of prey delivered to the nests with the age was not significant.