
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. 2020 1

A Sliding-rod Variable-strain Model for Concentric Tube Robots
Federico Renda1, Conor Messer2, Frederic Boyer3

Abstract—In this work, the Piecewise Variable-strain (PVS)
approach is applied to the case of Concentric Tube Robots
(CTRs) and extended to include the tubes’ sliding motion. In
particular, the currently accepted continuous Cosserat rod model
is discretized onto a finite set of strain basis functions. At the
same time, the insertion and rotation motions of the tubes
are included as generalized coordinates instead of boundary
kinematic conditions. Doing so, we obtain a minimum set of
closed-form algebraic equations that can be solved not only for
the shape variables but also for the actuation forces and torques
for the first time. This new approach opens the way to torque-
controlled CTRs, which is poised to enhance elastic stability and
improve interaction forces’ control at the end-effector.

I. INTRODUCTION

Continuum robots can be considered a class of soft manipu-
lators, particularly suited for Minimally Invasive Surgery (MIS)
[1]. One of the most promising continuum robotic systems
developed so far is the Concentric Tube Robot (CTR), a
collection of nested millimeters tubes whose elastic interaction
is used to control the system’s overall shape and the iteration
force at the end-effector for surgical intervention [2]. CTRs have
demonstrated promising results in a variety of MIS applications.
For a thorough survey of the clinical applications of CTRs,
see [3] and the references therein.

The development of CTRs has been made possible thanks
to rapid advancement in modeling these kinds of complex
non-linear systems. These research efforts have converged on a
select type of Cosserat rods model with a particular kinematic
structure representing the internal tubes’ additional rotational
motion [4], [5]. Although this Cosserat approach has been
improved over the years to include tubes’ clearance, friction
[6], and inertial dynamics [7], it has been essentially maintained
as initially proposed [8]. Here, we refer to it as the standard
CTR model, and we briefly recall it in section II.

On the other hand, a general soft robot is composed of
flexible and rigid elements arranged in a parallel or serial
fashion and capable of locomoting in the environment. A novel
coordinates system has been proposed to model these kinds of
systems, which discretizes the continuous Cosserat model of the
flexible components onto a finite set of strain basis functions
[9], [10]. This Piecewise Variable-strain (PVS) approach is a
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generalization of traditional robotics’ geometric model [11]
to the case of highly flexible or soft robots [12]. Thus, it
provides the theoretical framework for applying traditional
control strategies to the field of soft robots. One of the aims of
the present work is to apply the PVS approach to CTR systems.
In this way, we further extend the general PVS approach to this
essential soft robotic technology. At the same time, we open
new prospects for the control design of CTRs. In particular, the
PVS model provides the equilibrium equations as a minimum
set of closed-form algebraic equations, which can be easier to
handle for control and design optimization.

Furthermore, in this work, we tackle one of the main
limitations of the standard CTR model concerned with the
sliding structure problem, also known as the spaghetti problem
[13]. In the standard model, the tubes’ insertion is prescribed
once and rigidly defines the system’s sections’ domains. This
prevents to fully model the sliding motion of the tubes. In fact,
the recent extension to dynamics assumes negligible insertion
velocity and acceleration [7]. Here we relax this assumption,
although still in a static setting, which allows calculating the
actuation forces and torques required for the equilibrium. To
the authors’ knowledge, it is the first time that such a model
is proposed for CTRs. The spaghetti problem appears in the
planar models of animal locomotion [14], structural stability
[15], and finite element analysis [16]. Thus, to the authors’
knowledge, it is also the first time the spaghetti problem is
tackled in three dimensions and with an additional relative
rotation.

II. MODEL PRELIMINARIES

Before applying the PVS approach to solve the CTR
equilibrium, we revise the standard CTR model [4], [5] using
geometric notation. For simplicity, we will present the case of
fully overlapping tubes here. Note that additional details about
the CTR kinematics will be provided for the more general
cases analyzed in section III. Furthermore, a new kinematic
model that includes the sliding and rotation of the the bases
of the tubes as generalized coordinates of the system will be
introduced in section IV.

A. Kinematics
Each tube of a concentric tube system can be modeled as

a Cosserat rod, a continuous set of rigid cross sections of
infinitesimal thickness along a material curvilinear abscissa
X ∈ [0, L] where L is the total length of the rod. Identifying
each rigid cross-section with the moving frame rigidly attached
to it, the configuration of the tube is completely defined by
a curve g(·) : X 7→ g(X) ∈ SE(3) represented by the
homogeneous matrix:

g =

(
R r
0T 1

)
, (1)
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where r(X) ∈ R3 is the position vector of the origin of the
moving frame and R(X) ∈ SO(3) is the rotation matrix
representing its orientation with respect to the spatial frame.

The high aspect ratio and material property of the con-
ventional CTR allow assuming inextensibility and shearless
deformation (Kirchhoff-Love kinematics). Furthermore, the
tubes being concentric, their centerline must be the same at
any configuration. Then, it follows that an inner tube differs
from its outer tube only by a rotation around the tangent vector
to the centerline [5], defined by:

gθ(X) =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 , (2)

where θ(X) is the rotation angle and we have assumed a local
coordinate frame as shown in Figure 1. Thus, for a tube j we
obtain:

g1(X) = g1(X)

gj(X) = gj−1(X)gθj (X), (j = 2, ..., N)
(3)

where N is the total number of tubes. Note that in this model,
the concentric tubes share the same material abscissa X .

Let’s obtain the time (∂/∂t = ˙ ) and space (∂/∂X = ′ )
derivative of the tubes configuration g with the Lie algebra
se(3). Starting with tube 1 we get:(

g−1
1 (X)ġ1(X)

)∨
= η1(X) =

(
wT1 , v

T
1

)T ∈ R6 (4)(
g−1

1 (X)g′1(X)
)∨

= ξ1(X) =
(
kT1 ,u

T
1

)T
∈ R6. (5)

where v(X), u(X) ∈ R3 represent the linear strains and
velocity respectively, while w(X), k(X) ∈ R3 are the angular
strains and velocity respectively. All the quantities are defined
in the local frame at X . To indicate the angular strain in the
reference stress-free configuration, we use the notation k∗.
Finally, the superscript ∨ indicates the isomorphism between
the Lie algebra se(3) and R6 [11] (∧ will be used in the
opposite direction).

Equating the mixed partial derivatives of the tube configura-
tion, we obtain a compatibility equation between the velocity
and strain twists.

∂

∂t
g′1 =

∂

∂X
ġ1 =⇒ η′1 = ξ̇1 − adξ1η1 . (6)

As shown in [9], integrating (6) with respect to space yields
the following useful relation:

η1(X) = Ad−1
g1(X)

∫ X

0

Adg1 ξ̇1ds , (7)

where the operator Ad is the Adjoint map in SE(3) defined
in Appendix A.

For what concerns the inner tubes, first we define the
derivatives of the relative rotation gθ.(

g−1
θ (X)ġθ(X)

)∨
= ηθ(X) =

[
θ̇(X) 0 0 0 0 0

]T
(8)(

g−1
θ (X)g′θ(X)

)∨
= ξθ(X) = [θ′(X) 0 0 0 0 0]

T
. (9)

The same procedure that led to equation (7), in this case yields:

ηθ(X) =

∫ X

0

ξ̇θds , (10)

Finally, the chain rule together with (4), (5), (8), and (9) yields,
for a general tube j:

(
g−1
j ġj

)∨
= ηj(X) =

2∏
i=j

Ad−1
gθi
η1(X) +

j∑
i=2

ηθi(X) (11)

(
g−1
j g′j

)∨
= ξj(X) =

2∏
i=j

Ad−1
gθi
ξ1(X) +

j∑
i=2

ξθi(X). (12)

B. Statics
In this work, we focus our attention on the static equilibrium

of concentric tubes with no external applied force (except for
the actuation in section IV) to get more neat results. However,
it should be noted that there are no particular impediments that
would prevent extending the approach to the general dynamic
case, as recently done for the standard CTR model in [7]. This
extension will be targeted in future work.

The static equilibrium of a Cosserat rod in a concentric tube
setting can be derived from the general equilibrium equation
(see [17] for a derivation) with the addition of the constraints
wrenches due to the concentricity constraint. Thus, for a tube
j we obtain:

F ′ij + ad∗ξjF ij + Fλj = 0, (j = 1, ..., N) , (13)

where F ij (X) =
(
MT
ij (X),NT

ij (X)
)T
∈ R6 is the wrench

of internal moment and force, Fλj (X) ∈ R6 is the wrench
of distributed constraint force, and ad∗ is the co-adjoint map
in SE(3) defined in Appendix A. Note that the value of the
internal force Nij is unknown due to the inextensibility and
shearless constraints. On the other hand, the internal moment’s
value can be computed from a constitutive law that we assume
linear for simplicity.

Mij (X) = Σj

(
kj(X)− k∗j (X)

)
, (14)

where Σ = diag(GI,EJ,EJ) ∈ R3×3 is the elasticity matrix,
E is the Young modulus, G the shear modulus, and I , J are,
respectively, the polar and bending second moment of area
of the circular cross-section. For what concerns the constraint
contact force, although its value is also unknown, its basis can
be obtained from the virtual constraints equations that enforce
the concentricity constraint. These equations can be written in
the form

jj · (δrj(X)− δrj−1(X)) = 0, (j = 2, ..., N)

kj · (δrj(X)− δrj−1(X)) = 0, (j = 2, ..., N) ,
(15)

where jj and kj point in the y−, and z−axis directions of
tube j at X (see Fig. 1). Equation (15) says that the distributed
constraint force is equal and opposite between two consecutive
tubes and that it takes the form:

Fλj (X) =
[
0 0 0 0 λyj (X) λzj (X)

]T −
Ad∗gθj+1

[
0 0 0 0 λyj+1

(X) λzj+1
(X)

]T
,

(16)
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where λy(X) and λz(X) are Lagrange multipliers, and Ad∗

is the co-Adjoint map in SE(3) defined in Appendix A.
The static equilibrium of a collection of tubes imposes the

following boundary conditions on equation (13) [5].

N∑
j=1

Mij (X̄
−) =

N∑
j=1

Mij (X̄
+). (17)

Note that (17) also holds at discontinuity points X̄ where the
tubes stop to overlap (in that case, the upper limit of the sum
on the RHS will be smaller). Furthermore, since the concentric
tubes can not transmit axial torque to one another, the following
condition holds for each tube [5].

i ·Mi(X̄
−) = i ·Mi(X̄

+) , (18)

where i points in the direction tangent to the midline.

III. VARIABLE-STRAIN CTR MODEL

In [9], [10], a novel variable-strain approach has been
presented to model soft manipulators driven by tendons and
pneumatic chambers. This section aims to apply this technique
to CTRs to obtain a minimum set of closed-form equations
describing the system equilibrium.

According to the PVS approach, the configuration gj of
the collection of tubes is represented by the strain fields ξ1

and ξθj . In particular, the infinite dimensional strain fields are
discretized on a finite set of basis functions as follows.

ξ1(X) = B1(X)p1 + ξ , (19)
ξθj (X) = Bθj (X)pθj , (20)

where B1(X) ∈ R6×n1 and Bθj (X) ∈ R6×nθj are matrix
functions whose columns form the basis for the strain field
ξ1 and ξθj , respectively, while p1 ∈ Rn1 and pθj ∈ Rnθj are
the vectors of coordinates. Note that, due to the assumptions
made in section II, ξ is equal to [0 0 0 1 0 0], while the last
three rows of B1(X) and the last five rows of Bθj (X) are all
equal to zero. Then, the set of generalized coordinates become
q = (p1, pθ2 , . . . , pθN ), and the configuration gj(q) can be
reconstructed through the integration of equations (5), (9) and
the recursive formula given by (3).

The differential relation between configuration and general-
ized coordinates is obtained by replacing equations (19), (20)
in the velocity equations (7), (10), which yields

η1(X) =

[
Ad−1

g1

∫ X

0

Adg1B1ds

]
ṗ1 = S1(X)ṗ1 , (21)

ηθj (X) =

[∫ X

0

Bθjds

]
ṗθj = Jθj (X)ṗθj , (22)

and, in turn, replacing the result in the velocity equation (11).
Finally, we obtain:

ηj(X) =

 2∏
i=j

Ad−1
gθi
S1(X)

 ṗ1 +

j∑
i=2

Jθi(X)ṗθi

= Jj(X)ṗ1 +

j∑
i=2

Jθi(X)ṗθi .

(23)

Note that Jθi(X) is an analytical function that can be computed
offline given the choice of basis Bθi . The differential equation
(23) provides the required Jacobians to project the static
equilibrium (13) by d’Alembert’s principle. In particular,
equation (13) is projected with

∫ L
0
JTj dX and

∫ L
0
JTθidX for

all j and i. The results are then summed over all j from 1
to N to obtain as much algebraic equilibrium equation as the
dimension of q. This procedure is shown in detail for the case
of two fully overlapping tubes in the next section. The general
case of multiple non-overlapping tubes with straight actuation,
as shown in Figure 3, will be illustrated in the following.

A. Single overlapping sections
Let us consider the case of two fully overlapping tubes.

Applying the d’Alembert’s principle as described above yields:

2∑
j=1

∫ L

0

JTj

(
F ′ij + ad∗ξjF ij + Fλj

)
dX = 0

∫ L

0

JTθ2
(
F ′i2 + ad∗ξ2F i2 + Fλ2

)
dX = 0.

(24)

Considering the form of the constraint force (16) and the

identity F ′ij + ad∗ξjF ij = Ad∗
g−1
j

(
Ad∗gjF ij

)′
, we get (note

that AdTg = Ad∗g−1 ):

2∑
j=1

∫ L

0

(∫ X

0

BT
1 AdTg1ds

)(
AdgjF ij

)′
dX = 0

∫ L

0

(∫ X

0

BT
θ2ds

)
Ad∗

g−1
2

(Adg2F i2)
′
dX = 0.

(25)

Finally, integrating by part we obtain:∫ L

0

BT
1

(
F i1 + Ad∗gθ2

F i2

)
dX = 0∫ L

0

BT
θ2F i2dX =

∫ L

0

JTθ2ad∗ξ1Ad∗gθ2
F i2dX ,

(26)

where we have used the strain equation (12), the identity
JTθ2ad∗ξθ2

F i2 = 0 and the boundary conditions (17), (18) at L.
Note that, since the generalized coordinates q are independent,
the unknown constraint forces Fλj cancel out as expected.

Equation (26) can be solved numerically for the unknowns p1

and pθ2 that appear in F ij , ξ1, and gθ2 through equations (19),
(20), (14), and (9). Note that the integration of (9) becomes
very simple in this case. Specifically, the rotation angle θ of
(2) is obtained by:

θ2(X) = α2 + (Jθ2(X)pθ2)x , (27)

where ()x extracts the first rotational element of a vector and
α2 is the rotation of the tube imposed at the base by the
actuators.
Comparison with analytic torsionless case

As a first test to check the validity of the proposed
model, we consider here the case of two torsionless, fully
overlapping tubes with three-dimensional deformation. The
torsionless approximation was used at the beginning of the
CTR development, and analytic solutions are available for the
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constant curvature approximation [18], [19], [20] as well as
the general unconstrained curvature case [21].

Assuming no torsion, the equilibrium equation (26) becomes:∫ L

0

BT
1 (F i1 + F i2) dX = 0 , (28)

with θ2 = 0 and ξ1 = ξ2 = ξ. To reproduce the available
analytic solution with unconstrained curvature [21], we select
the following basis for the strain ξ.

BT
1 (X) =


0 (k∗1)y (X) 0 0 0 0

0 (k∗2)y (X) 0 0 0 0

0 0 (k∗1)z (X) 0 0 0
0 0 (k∗2)z (X) 0 0 0

 ,

(29)
where k∗j is the reference strain of tube j. Thus, n1 = 4 and
the generalized coordinates p1 = q = [q1 q2 q3 q4]

T represent
the amount of reference curvatures making up the equilibrium
configuration. Rearranging (28), we can write:(∫ L

0

[
(k∗1)

2
y (k∗1)y (k∗2)y

(k∗2)y (k∗1)y (k∗2)
2
y

]
dX

)[
q1

q2

]
=

1

(EJ1 + EJ2)

∫ L

0

[
EJ1 (k∗1)

2
y + EJ2 (k∗1)y (k∗2)y

EJ1 (k∗2)y (k∗1)y + EJ2 (k∗2)
2
y

]
dX .

(30)

A similar equation can be obtained for q3 and q4. Solving for
q, we get:

q =
1

(EJ1 + EJ2)
[EJ1 EJ2 EJ1 EJ2]

T
, (31)

which correctly corresponds to the analytic solution k =
(Σ1 + Σ2)

−1
(Σ1k

∗
1 + Σ2k

∗
2).

B. Multiple non-overlapping sections
Let us now move to the case of multiple non-overlapping

tubes. To approach this problem, we divide the system domain
into piecewise variable-strain sections corresponding to the
curvature discontinuity located at the end of every overlapping
portion. Thus, the kinematic equation (3) is applicable locally
at each overlapping portion and can be generalized as follows
(see Figure 1):

gjs(X) =

(
j−1∏
i=1

gi(Li)gθ(i+1)s
(Li)

)
gj(X)

gks(X) = g(k−1)s(X)gθks (X), (k = j + 1, ..., N) ,

(32)

where gjs indicates the configuration of tube j with respect
to the spatial frame, while gj represents the configuration
with respect to the local overlapping portion. Li is the length
of tube i, which corresponds to the end of an overlapping
portion. gθjs (X) is the total rotation between tube j and tube
j − 1 at X , which is obtained through the product of the
partial rotation of each overlapping portion preceding X . For
example, consider the total rotation between tube j and tube
j − 1 at X located on the third overlapping section, then
gθjs (X) = gθj1 (L1)gθj2 (L2)gθj3 (X).

A procedure similar to the single overlapping sections case
leads to the equilibrium equations for general multiple non-
overlapping tubes in the generalized variable-strain coordinates.

Fig. 1: Kinematics of multiple non-overlapping sections. For each overlapping
portion the kinematic equation (3) applies.

For example, consider the case of three non-overlapping tubes,
then we obtain:∫ L1

0

BT
1

(
F i1 + Ad∗gθ2s

(
F i2 + Ad∗gθ3s

F i3

))
dX = 0∫ L1

0

BT
θ21

(F i2 + F i3) dX =∫ L1

0

JTθ21 ad∗ξ1Ad∗gθ2s

(
F i2 + Ad∗gθ3s

F i3

)
dX∫ L1

0

BT
θ31

F i3 =

∫ L1

0

JTθ31 ad∗ξ1Ad∗gθ2s gθ3s
F i3dX+

JTθ31 (L1)

∫ L2

L1

ad∗ξ2Ad∗gθ3s
F i3dX∫ L2

L1

BT
2

(
F i2 + Ad∗gθ3s

F i3

)
dX = 0∫ L2

L1

BT
θ32

F i3dX =

∫ L2

L1

JTθ32 ad∗ξ2Ad∗gθ3s
F i3dX∫ L3

L2

BT
3 F i3dX = 0 .

(33)

As with (26), equation (33) can be solved numerically for the
unknown q =

(
p1, pθ21 , pθ31 , p2, pθ32 , p3

)
.

Comparison with simulation in literature
The multiple overlapping tubes model is tested by comparing

the equilibrium configuration obtained for a two tubes robot
with a literature benchmark reported in [21]. Consider two tubes
of length 140 mm (outer) and 200 mm (inner) with constant
pre-curvature and physical properties reported in Table I. We
seek for the equilibrium configuration when the inner tube
is rotated by α2 = 180◦. The system domain is divided into
two variable-strain sections. The generalized coordinates are
q = (p1, pθ2 , p2), and the equilibrium equations are a subset
of (33). The resulting model takes the form of a nonlinear
algebraic system of equations that can be solved numerically
with the MATLAB© fsolve function. We chose a linear non-
homogeneous base for the strains involved in the first section,
i.e.: k1, and θ′2. Then, we have

B1 =


1 X 0 0 0 0
0 0 1 X 0 0
0 0 0 0 1 X
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Bθ2 =


1 X
0 0
0 0
0 0
0 0
0 0

 ,
(34)

For the second section, since it is unloaded, we use the reference
strain k∗2 as a basis for the strain k2, which gives p2 = 1.
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TABLE I: Physical Properties of Tubes

Outer tube Inner tube
Young’s Modulus (GPa) 58 58

Shear Modulus (GPa) 21.5 21.5
Inner diameter (mm) 2.01 0
Outer diameter (mm) 2.39 1.6

Reference curvature (mm−1) 0.0099 0.0138

Fig. 2: Equilibrium configurations computed with the variable-strain model
for two concentric tubes with constant pre-curvature. The inner tube is rotated
by 180◦. The result of the variable-strain model match well with the one off
the standard CTR model [21].

As illustrated in [21], the CTR has three equilibrium
configurations. The solution to which the solver converges
depends on the initial guess. Figure 2 illustrates the equilibrium
configurations obtained with the variable-strain model. A visual
comparison shows a good match with the standard CTR model
(Fig. 3 of [21]). Furthermore, the inner tube’s rotation with
respect to the outer tube at the end of the overlapping section
is equal to θ2(L1) = ±85.5◦, which is only 1.3% bigger than
the value reported in [21] (±84.4◦).

C. Complete CTR system
The CTR systems considered so far only include the tubes’

portions that follow the insertion orifice, assuming that the
rotation input α was applied there (see equation (27)). However,
a complete CTR system is also composed of a straight portion
that precedes the insertion point and terminates with an
actuation system responsible for applying the input angle and
insertion motion. To include this part, we place the 0 of the
system domain X at the innermost tube base. Then, we divide
the system domain into several sections corresponding to the
different discontinuities. Those include a change in the number
of overlapping tubes (as before), the insertion orifice, and,
eventually, a reference strain jump. For instance, the straight
portion is usually obtained by letting the tube be originally
straight at the proximal end and curved toward the distal end.
Finally, we constrain the straight portion by choosing only a
torsional strain basis for these proximal sections. Note that this
method applies to fully curved tubes as well, where external
constraints enforce the straightness condition.

For example, let us consider the two tubes CTR sys-
tem shown in Figure 3, where each tube has a straight
proximal reference strain of length Ljs as indicated. There
are five sections in this example indicated with an addi-
tional subscript in the following. Define D1, D2 to be the
distance between the insertion orifice and the outer and
inner tube base, respectively, and ∆D = D2 − D1. Then,
the equilibrium equations for the generalized coordinates
q =

(
pθ21 , p12 , pθ22 , p13 , pθ23 , p14 , pθ24 , p25

)
are given

by:∫ ∆D

0

BT
θ21

F i2dX = JTθ21 (∆D)

(∫ L2s

D2

ad∗ξ1Ad∗gθ2s
F i2dX+

∫ ∆D+L1

L2s

ad∗ξ1Ad∗gθ2s
F i2dX

)
∫ D2

∆D

BT
12

(F i1 + F i2) dX = 0∫ D2

∆D

BT
θ22

F i2dX = JTθ22 (D2)

(∫ L2s

D2

ad∗ξ1Ad∗gθ2s
F i2dX+

∫ ∆D+L1

L2s

ad∗ξ1Ad∗gθ2s
F i2dX

)
∫ L2s

D2

BT
13

(
F i1 + Ad∗gθ2s

F i2

)
dX = 0∫ L2s

D2

BT
θ23

F i2dX =

∫ L2s

D2

JTθ23 ad∗ξ1Ad∗gθ2s
F i2dX+

JTθ23 (L2s)

(∫ L2

L2s

ad∗ξ1Ad∗gθ2s
F i2dX

)
∫ ∆D+L1

L2s

BT
14

(
F i1 + Ad∗gθ2s

F i2

)
dX = 0∫ ∆D+L1

L2s

BT
θ24

F i2dX =

∫ ∆D+L1

L2s

JTθ24 ad∗ξ1Ad∗gθ2s
F i2dX∫ L2

∆D+L1

BT
25
F i2dX = 0.

(35)

In developing the equilibrium equation (35), we have used the
identity JTθ ad∗ξF i = 0 for the straight portion that precedes the
insertion orifice. Furthermore, note that B12

has only torsional
components, and Bθ22

(X), Bθ23
(X) are equal to zero at X <

∆D and X < D2, respectively.
Considering the equilibrium equations for different CTR

systems presented so far (26), (33) and (35), we notice a pattern
that can be exploited to produce the equilibrium equations for
other particular CTR systems, without going through all the
mathematical steps.
Comparison with experiments in literature

The results of the complete system model (35) are compared
with experimentally validated simulations available in the
literature [21]. Consider two tubes with a straight portion
followed by a constant pre-curvature, as shown in Figure
3, and physical properties reported in Table I. We seek the
equilibrium configuration in two sets of insertion and rotation
conditions of the inner tube. In the first set, the full overlap
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Fig. 3: Sketch of the simulated complete CTR system. Dimensions of the tubes
are as follows: straight length L1s = 93.5mm (outer) L2s = 218.5mm
(inner), curved length L1c = 92.3mm (outer) L2c = 85mm (inner)

Fig. 4: Equilibrium configurations computed with the variable-strain model
for two concentric tubes with straight portion and constant pre-curvature. The
inner tube is rotated from 0◦ to 280◦ in 20◦ increments (left) and from 0◦ to
200◦ in 20◦ increments (right). The result of the variable-strain model match
well with the one of the standard CTR model [21].

case, D2 = 208.5 mm, and α2 goes from 0◦ to 280◦ in
20◦ increments. In the second set, the partial overlap case,
D2 = 170.5 mm, and α2 goes from 0◦ to 200◦ in 20◦

increments. D1 and α1 are always equal to 93.5 mm and
0, respectively. We chose a quadratic basis for all the strains
involved, except for the last section, where we use k∗2.

Figure 4 illustrates the equilibrium configurations obtained
with the variable-strain model. A visual comparison shows a
good match with the standard CTR model (Fig. 9 of [21]).

D. Benefits of the PVS model for CTR
The proposed piecewise variable-strain approach for con-

centric tube robots presents several benefits. It provides the
equilibrium equations as a minimum set of closed-form
algebraic equations. The system is easy to handle for control
and design optimization since all the boundary and continuity
conditions are already intrinsically embedded in the equilibrium
equations. The model presents a repetitive pattern that facilitates
the scaling to a higher number of tubes. Furthermore, extension
to dynamics can be done without any change to the number
and type of generalized coordinates. Finally, the PVS model is
well-posed to accommodate additional DOFs and incorporate
design variation of CTRs as well as generalization to other
rod-driven soft robots. In the next section, we include the tubes’
insertion and rotation motion as generalized coordinates of the
system for the first time.

IV. SLIDING CTR MODEL

According to the authors’ understanding of the standard
approach, the tubes’ insertion and rotation motion modeling
are yet to be fully accomplished [4], [5]. The rotation motion is
included as kinematic boundary conditions. Thus, no equations
of motion have been produced for these DoFs, which could be
used to compute the required actuation torques. Furthermore,
the insertion motion appears only in the definition of each
overlapping section’s domain, which fixes the shared material
abscissa between the overlapping tubes once for all. Doing
so, the standard CTR model cannot account for time-varying
insertion policies if not blending static snapshots using a
derivative propagation approach [22]. Accordingly, the recent
extension of the standard model to dynamics assumes zero
insertion velocity and acceleration [7]. This section will extend
the proposed PVS model for CTR to include the input motions
as generalized variables and overcome the standard model’s
above limitations.

Before that, we establish a general result for the differential
kinematics of rod’s sections with a variable domain. Consider a
rod section with material abscissa X ∈ [a(t), b(t)] and g(a) =
I . The tip of the section g(b) can be formally represented by
the integration of the linear time-varying differential equation
(4) through its state-transition matrix g(b) = Φ(b, a). Then,
the derivative of g(b) with respect to time has to include the
variation of the domain boundaries in addition to the variation
of the shape. This can be calculated as follows.

∂Φ(b, a)

∂a

da

dt
= −ξ̂(a)g(b)ȧ, and

∂Φ(b, a)

∂b

db

dt
= g(b)ξ̂(b)ḃ,

(36)
where the first can be considered a ”growing from the base”
term and the second a ”growing from the tip” term. Note that
internal cross-sections g(X) will vary only due to the proximal
boundary a, while they are indifferent to the distal boundary
b. Finally, the total velocity twist becomes:

η(b) = Ad−1
g(b)

∫ b

a

Adgξ̇dX + ξ(b)ḃ−Ad−1
g(b)ξ(a)ȧ , (37)

Observe the differences with equation (7) and (10) used so far.
To keep track of the potentially variable boundaries, in the

following, we replace the notation g(b) with g([a, b]).

A. Complete CTR system with actuation forces and torques
Let us consider, without loss of generality, two non-

overlapping concentric tubes constrained to be straight before
the insertion orifice, as shown in Figure 3. We removed the
reference strain discontinuity here for simplicity, reducing the
number of required sections to four. First, we define two
material abscissas respectively for the outer tube X1 = [0, L1],
and the inner tube X2 = [0, L2]. Overlapping cross-sections
are then related by:

X1 = X2 −∆D , (38)

where D1 and D2 are generalized coordinates now. In this
example, the full set of generalized coordinates is q =(
D1, D2, α1, α2, pθ21 , p12 , pθ22 , p13 , pθ23 , p24

)
.

Contrary to section III-C, we fix the spatial frame on the
insertion orifice. Then, the tubes’ sections’ kinematics can be
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expressed with equation (32) after being pre-multiplied by a
translational homogeneous matrix gt, which depends on the
insertions D1 and D2. Let us focus on the overlapping section
immediately after the insertion orifice. The kinematics can be
written as:

g1s(X1 ≥ D1) = gt([0,−D1])g12([0, D1])g13([D1, X1])

g2s(X2 ≥ D2) = gt([0,−D1])g12([0, D1])g13([D1, X1(∆D)])

gθ21 ([0,∆D])gθ22 ([∆D,D2])gθ23 ([D2, X2], X1(∆D)) ,
(39)

where, for the inner tube, X1 is given by (38). The last
term gθ23 ([D2, X2], X1(∆D)) indicates the relative rotation
between X1(∆D) of the outer tube and X2 of the inner tube
accumulated in the last section starting from D2.

Using the general formula (37) and the discretizations (19),
and (20), we obtain the differential kinematics of the section.

η1s(X1) = Ad−1
g13 (X1)

[
Bαα̇1 − ξ̄k1(D1)Ḋ1 + S12

(D1)ṗ12

]
+

J13
(X1)ṗ13

η2s(X2) = Ad−1
gθ2s

(X2)η1s(X1) +Bαα̇2 + Jθ21 (∆D)ṗθ21 +

Jθ22 (D2)ṗθ22 + Jθ23 (X2)ṗθ23 −Ad−1
gθ2s

(X2)ξ̄k1(X1)∆Ḋ ,

(40)

where Bα = [1 0 0 0 0 0]T , ξ̄k1 = [0 (k1)y (k1)z 1 0 0]T .
Note that the variable upper boundary of gθ23 is due to
X1(∆D). Thus, its variation has to be taken with X2 fixed.

Equation (40) provides the additional Jacobians correspond-
ing to the input motions. Similar equations can be obtained
for the other three sections. Projecting the differential equation
(13) by d’Alembert’s principle using these additional Jacobians
yields the equilibrium equations for the insertion and rotation
input forces τD1 , τD2 , and torques τα1 , τα2 .

τD1
= EJ1

[
ξTk1
(
ξk1 − ξ∗k1

) (
D+

1

)]
+ EJ2

[
1

2
ξTk1ξk1

(
D+

2

)
+∫ L1+∆D

D2

(
ξ′k1 + adξ1 ξ̄k1

)T
Adgθ2s

ξ∗k2dX+

ξTk1

(
1

2
ξk1 −Adgθ2s

ξ∗k2

)(
L1 + ∆D−

)
−

ξTk2
(
ξk2 − ξ∗k2

) (
L1 + ∆D+

)]
τD2

= EJ2

[
ξTk1

(
1

2
ξk1 −Adgθ2s

ξ∗k2

)(
D+

2

)
−∫ L1+∆D

D2

(
ξ′k1 + adξ1 ξ̄k1

)T
Adgθ2s

ξ∗k2dX−

ξTk1

(
1

2
ξk1 −Adgθ2s

ξ∗k2

)(
L1 + ∆D−

)
+

ξTk2
(
ξk2 − ξ∗k2

) (
L1 + ∆D+

)]
τα1

= −τα2

τα2
= −BT

α

∫ L1+∆D

D2

ad∗ξ1Ad∗gθ2s
F i2dX

(41)

where ξk = [0 (k)y (k)z 0 0 0]T . To obtain equation (41) we

Fig. 5: Equilibrium configurations of two concentric tubes for investigation
of the actuation inputs. The top row shows planar configurations while the
bottom row resents out-of-plane conformations. The details of the reference
shapes and calculated actuation inputs are reported for each cases in Table II.

have also used the following boundary conditions.

ξ̄TF i1(0) = −τD1
, BT

αF i1(0) = −τα1

ξ̄TF i2(0) = −τD2
, BT

αF i2(0) = −τα2

(42)

According to the Newton law of conservation of momentum,
the input forces’ and torques’ sums have to be zero. It is an
excellent verification to check if equation (41) satisfies these
conditions. For the input torques, the third equation of (41)
ensures that the actuation torques are equal and opposite. For
what concerns the input forces, we have:

τD1
+ τD2

= EJ1

[
ξTk1
(
ξk1 − ξ∗k1

) (
D+

1

)]
+

EJ2

[
ξTk1

(
ξk1 −Adgθ2s

ξ∗k2

) (
D+

2

)]
,

τD1
+ τD2

= ξTk1

(
F i1

(
D+

1

)
+ Ad∗gθ2s

F i2

(
D+

2

))
= 0

(43)

where the last identity, which states that the internal stress
is null on the cross-section immediately after the orifice, is
justified by the fact that no external forces act on the system
from that point onward. Thus, also the input forces are equal
and opposite as required.

B. Simulation tests
Some simulation tests are presented in this section to explore

the behavior of the actuation forces and torques. We consider
six configurations (three planar and three out-of-plane) of two
concentric tubes with physical properties as for Table I. In all
the cases, we consider linear non-homogeneous (or constant)
pre-curvatures. The linear and non-homogeneous pre-curvature
coefficients are varied to study the effect on the actuation
forces and torques. In the out-of-plane cases, the inner tube is
rotated by 90◦ with respect to the outer tube. Figure 5 shows
the six configurations studied, while Table II reports the exact
values of the non-homogeneous and linear coefficients and the
calculated values of the actuation inputs.

The following observations can be made. For case a), the
insertion motions D1 and D2 do not influence the actuation
inputs value. In case b), while the insertion of the inner tube D2

is still irrelevant, the force input absolute value |τD| increase
with the outer tube’s insertion and curvature. In c), the force
input absolute value |τD| increase with the insertion of the outer
tube and the retraction of the inner tube. For the out-of-plane
cases, in general, the absolute value |τD| increases with the
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TABLE II: Sliding-rod test results

Outer tube Inner tube Actuation
α2 constant linear constant linear τD2 τα2

[rad/m] [rad/m2] [rad/m] [rad/m2] [N] [Nm]
a) 0◦ 10 0 30 0 0 0
b) 0◦ 30 -80 30 0 3.65 0
c) 0◦ 30 0 50 80 6.71 0
d) 90◦ 20 0 10 0 0.28 0.118
e) 90◦ 20 40 10 0 -1.45 0.122
f) 90◦ 20 0 10 40 1.89 0.129

rotation angle α2 up to 90◦, and it is symmetric with respect
to clockwise or counterclockwise rotations. In particular, the
linear coefficients of e) and f) have an opposite contribution
to the actuation force τD2

. In case e), τD2
decreases with the

increment of the linear coefficient until it becomes negative,
as reported in Table II. In case f), the opposite applies.

C. Benefits of the sliding-rod PVS model for CTR
The sliding-rod PVS model presented here proposes a

growing (non-material) approach, which allows extending the
PVS model to include the tubes’ sliding motion without the
need of calculating the unknown interaction forces. This new
model can be used to control the CTR motion through the
actuation force and torques instead of the insertion and rotation
kinematics. Torque-controlled CTR can provide a new way to
enhance elastic stability and improve interaction forces’ control
at the end-effector, currently a major concern in the design of
CTR [23]. In the present form, the base force equations (41)
can also be used to improve fast kinematic controllers of [24],
which is based on actuation load sensing.

V. CONCLUSIONS

In this paper, the recently proposed piecewise variable-
strain approach for modeling highly deformable rods has been
adjusted and applied to the case of concentric tube robots.
The performances of the new approach have been compared
with analytic, simulated, and experimental data available in
the literature. Furthermore, the PVS approach has been further
extended to include the tubes’ insertion motion for the first
time, which opens new unexplored possibilities for controlling
these kinds of systems.

Future works include experimental validations of the sliding-
rod PVS model, the addition of external forces, and the
extension to dynamics.

APPENDIX A
ADJOINT REPRESENTATIONS

Adg =

(
R 03×3

ũR R

)
, Ad∗g =

(
R ũR

03×3 R

)
,

adξ,η =

(
k̃, w̃ 03×3

ũ, ṽ k̃, w̃

)
,ad∗ξ,η =

(
k̃, w̃ ũ, ṽ

03×3 k̃, w̃

)
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