References
- X. Chen, R. Li, B. Li, et al. Achieving ultra-high ductility and
fracture toughness in molybdenum via
Mo2TiC2 MXene addition. Mater. Sci.
Eng. A, 2021, 818, 141422.
- P. Jehanno, M. Boning, H. Kestler, et al. Molybdenum alloys for high
temperature applications in air, Powder Metal., 2008, 51, 99-102.
- G. Liu, G.J. Zhang, F. Jiang, et al. Nanostructured high-strength
molybdenum alloys with unprecedented tensile ductility. Nature Mater.,
2013, 12, 344-350.
- W.B. Guo, G.P. Li, D. Bair, et al. Parametric optimization of
multi-pass electron beam melting for molybdenum alloy containing 47.5
wt% rhenium, Int. J. Refract. Met. H., 2023, 113, 106193.
- H. Yu, H.D. Zhang, L.J. Zhang, Regulation of performance of
laser-welded socket joint of Mo-14Re ultra-high-temperature heat pipe
by introducing Ti into both weld and heat affected zone, J. Mater.
Rea. Technol., 2023, 22, 569-584.
- G. Leichtfried, J.H. Schneibel, M. Heilmaier, et al. Ductility and
impact resistance of powder-metallurgical molybdenum-rhenium alloys,
Metall. Mater. Trans. A, 2006, 10, 2955-2961.
- X. Yu, P. Hu, K.S. Wang, et al. Microstructure and texture evolution
of pure molybdenum during hot deformation, Mater. Charact., 2020, 159,
110010.
- A. Chaudhuri, A. Sarkar, S. Suwas, et al. Investigation of
stress-strain response, microstructure and texture of hot deformed
pure molybdenum, Int. J. Refract. Met. H., 2018, 73, 168-182.
- Y. Xia, P. Hu, K.S. Wang, et al. Dynamic recrystallization behavior of
a Mo-2.0%ZrO2 alloy during hot deformation, Int. J. Refract. Met. H.,
2022, 109, 105983.
- H.R. Xing, P. Hu, Y.H. Zhou, et al. The microstructure
and texture evolution of pure molybdenum sheets under various rolling
reductions, Mater. Charact., 2020, 165, 110357.
- M.L. Lobanov, S.V. Danilov, V.I. Pastukhov, et al. The
crystallographic relationship of molybdenum textures after hot rolling
and recrystallization, Mater. Design, 2016, 109, 251-255.
- A.S. Schneider, B.G. Clark, C.P. Frick, et al. Effect of orientation
and loading rate on compression behavior of small-scale Mo pillars,
Mater. Sci. Engineer. A, 2009, 508, 241-246.
- Schneider, AS, Frick, CP, Arzt, E, et al. Influence of test
temperature on the size effect in molybdenum small-scale compression
pillars, Philos. Mag. Lett., 2013, 93, 331-338.
- J.Y. Kim, D.C. Jang, J.R. Greer, et al. Crystallographic orientation
and size dependence of tension compression asymmetry in molybdenum
nano-pillars, Inter. J. Plast., 2012, 28, 46-52.
- J.Y. Kim, J.R. Greer, Tensile and compressive behavior of gold and
molybdenum single crystals at the nano-scale, Acta Mater., 2009, 57,
5245-5253.
- S. Xu, D.Y. Xie, DY, G.S. Liu, et al. Quantifying the resistance to
dislocation glide in single phase FeCrAl alloy, Inter. J. Plast.,
2020, 132, 102770.
- J.Y. Kim, D.C. Jang, J.R. Greer, et al. Tensile and compressive
behavior of tungsten, molybdenum, tantalum and niobium at the
nanoscale, Acta Mater., 2010, 58, 2355-2363.
- X. Yu, Z. Li, P. Jain, et al. Effect of Si content on the uniaxial
tensile behavior of Mo-Si solid solution alloys, Acta Mater., 2021,
207, 116654.
- Weinberger, CR, Boyce, BL, Battaile, CC, Slip planes in bcc transition
metals, Inter. Mater. Rev., 2013, 58, 296-314.
- N. I. MEDVEDEVA, YU. N. GORNOSTYREV, A. J. FREEMAN. Solid solution
softening in bcc Mo alloys: Effect of transition-metal additions on
dislocation structure and mobility. Phys. Rev. B., 2005, 72(13):
134107.1-134107.9.
- J.H. Schneibel, E.J. Felderman, E.K. Ohriner, et al. Mechanical
properties of ternary molybdenum-rhenium alloys at room temperature
and 1700 K, Scripta Mater., 2008, 59, 131-134.